
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/817661/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long-Term <i>In Vivo</i> Glucose Monitoring by Polymer-Dot Transducer in an Injectable Hydrogel Implant. Analytical Chemistry, 2022, 94, 2195-2203.	6.5	9
2	Ultrabright Pdots with a Large Absorbance Cross Section and High Quantum Yield. ACS Applied Materials & Interfaces, 2022, 14, 13631-13637.	8.0	7
3	Enhancing the Longâ€Term Stability of a Polymer Dot Glucose Transducer by Using an Enzymatic Cascade Reaction System. Advanced Healthcare Materials, 2021, 10, e2001019.	7.6	18
4	Reversible Ratiometric NADH Sensing Using Semiconducting Polymer Dots. Angewandte Chemie, 2021, 133, 12114-12119.	2.0	8
5	Reversible Ratiometric NADH Sensing Using Semiconducting Polymer Dots. Angewandte Chemie - International Edition, 2021, 60, 12007-12012.	13.8	37
6	Monitoring Metabolites Using an NAD(P)Hâ€sensitive Polymer Dot and a Metaboliteâ€Specific Enzyme. Angewandte Chemie, 2021, 133, 19480-19485.	2.0	8
7	Monitoring Metabolites Using an NAD(P)Hâ€sensitive Polymer Dot and a Metaboliteâ€Specific Enzyme. Angewandte Chemie - International Edition, 2021, 60, 19331-19336.	13.8	19
8	Improving the Accuracy of Pdot-Based Continuous Glucose Monitoring by Using External Ratiometric Calibration. Analytical Chemistry, 2021, 93, 2359-2366.	6.5	11
9	A BODIPYâ€Based Donor/Donor–Acceptor System: Towards Highly Efficient Longâ€Wavelengthâ€Excitable Nearâ€IR Polymer Dots with Narrow and Strong Absorption Features. Angewandte Chemie, 2019, 131, 7082-7086.	2.0	4
10	A BODIPYâ€Based Donor/Donor–Acceptor System: Towards Highly Efficient Longâ€Wavelengthâ€Excitable Nearâ€IR Polymer Dots with Narrow and Strong Absorption Features. Angewandte Chemie - International Edition, 2019, 58, 7008-7012.	13.8	57
11	Polymer dots enable deep in vivo multiphoton fluorescence imaging of microvasculature. Biomedical Optics Express, 2019, 10, 584.	2.9	15
12	Single-Molecule Flow Platform for the Quantification of Biomolecules Attached to Single Nanoparticles. Analytical Chemistry, 2018, 90, 6089-6095.	6.5	10
13	Ultrabright Polymer-Dot Transducer Enabled Wireless Glucose Monitoring <i>via</i> a Smartphone. ACS Nano, 2018, 12, 5176-5184.	14.6	97
14	Purification of Semiconducting Polymer Dots by Size Exclusion Chromatography Prior to Cytotoxicity Assay and Stem Cell Labeling. Analytical Chemistry, 2018, 90, 5569-5575.	6.5	19
15	Improving the Photostability of Semiconducting Polymer Dots Using Buffers. Analytical Chemistry, 2018, 90, 11785-11790.	6.5	9
16	Ratiometric Barcoding for Mass Cytometry. Analytical Chemistry, 2018, 90, 10688-10694.	6.5	9
17	Polymer dots enable deep in vivo multiphoton fluorescence imaging of cerebrovascular architecture. , 2018, , .		0
18	Semiconducting polymer dots with bright narrow-band emission at 800 nm for biological applications. Chemical Science, 2017, 8, 3390-3398.	7.4	67

#	Article	lF	CITATIONS
19	Photostable Ratiometric Pdot Probe for in Vitro and in Vivo Imaging of Hypochlorous Acid. Journal of the American Chemical Society, 2017, 139, 6911-6918.	13.7	311
20	Optically Encoded Semiconducting Polymer Dots with Single-Wavelength Excitation for Barcoding and Tracking of Single Cells. Analytical Chemistry, 2017, 89, 6232-6238.	6.5	17
21	Lanthanideâ€Coordinated Semiconducting Polymer Dots Used for Flow Cytometry and Mass Cytometry. Angewandte Chemie, 2017, 129, 15104-15108.	2.0	3
22	Lanthanideâ€Coordinated Semiconducting Polymer Dots Used for Flow Cytometry and Mass Cytometry. Angewandte Chemie - International Edition, 2017, 56, 14908-14912.	13.8	32
23	Recent Advances in the Development of Highly Luminescent Semiconducting Polymer Dots and Nanoparticles for Biological Imaging and Medicine. Analytical Chemistry, 2017, 89, 42-56.	6.5	230
24	Highly photostable wide-dynamic-range pH sensitive semiconducting polymer dots enabled by dendronizing the near-IR emitters. Chemical Science, 2017, 8, 7236-7245.	7.4	48
25	Fluorescent Probes for Biological Imaging. BioMed Research International, 2016, 2016, 1-1.	1.9	2
26	Optical painting and fluorescence activated sorting of single adherent cells labelled with photoswitchable Pdots. Nature Communications, 2016, 7, 11468.	12.8	85
27	<i>In Vivo</i> Dynamic Monitoring of Small Molecules with Implantable Polymer-Dot Transducer. ACS Nano, 2016, 10, 6769-6781.	14.6	132
28	Squaraine-Based Polymer Dots with Narrow, Bright Near-Infrared Fluorescence for Biological Applications. Journal of the American Chemical Society, 2015, 137, 173-178.	13.7	145
29	Single-Chain Semiconducting Polymer Dots. Langmuir, 2015, 31, 499-505.	3.5	8
30	Light-induced crosslinkable semiconducting polymer dots. Chemical Science, 2015, 6, 2102-2109.	7.4	22
31	Semiconducting polymer dots with monofunctional groups. Chemical Communications, 2014, 50, 5604-5607.	4.1	15
32	Europium-Complex-Grafted Polymer Dots for Amplified Quenching and Cellular Imaging Applications. Langmuir, 2014, 30, 8607-8614.	3.5	36
33	Yellow Fluorescent Semiconducting Polymer Dots with High Brightness, Small Size, and Narrow Emission for Biological Applications. ACS Macro Letters, 2014, 3, 1051-1054.	4.8	20
34	Highly luminescent, fluorinated semiconducting polymer dots for cellular imaging and analysis. Chemical Communications, 2013, 49, 8256.	4.1	43
35	Ratiometric Luminescent Detection of Bacterial Spores with Terbium Chelated Semiconducting Polymer Dots. Analytical Chemistry, 2013, 85, 9087-9091.	6.5	114
36	The near-infrared optical properties and Judd–Ofelt analysis of a Dy(III) complex. Journal of Luminescence, 2013, 143, 169-172.	3.1	15

#	Article	IF	CITATIONS
37	Multicolor Fluorescent Semiconducting Polymer Dots with Narrow Emissions and High Brightness. ACS Nano, 2013, 7, 376-384.	14.6	197
38	High-intensity near-IR fluorescence in semiconducting polymer dots achieved by cascade FRET strategy. Chemical Science, 2013, 4, 2143.	7.4	89
39	Conjugated Polymer Nanoparticles Incorporating Antifade Additives for Improved Brightness and Photostability. Journal of Physical Chemistry B, 2013, 117, 4517-4520.	2.6	28
40	Lyophilization of Semiconducting Polymer Dot Bioconjugates. Analytical Chemistry, 2013, 85, 4316-4320.	6.5	20
41	Highly fluorescent semiconducting polymer dots for single-molecule imaging and biosensing. Proceedings of SPIE, 2013, , .	0.8	1
42	Semiconducting Polymer Dots Doped with Europium Complexes Showing Ultranarrow Emission and Long Luminescence Lifetime for Timeâ€Gated Cellular Imaging. Angewandte Chemie - International Edition, 2013, 52, 11294-11297.	13.8	92
43	A compact and highly fluorescent orange-emitting polymer dot for specific subcellular imaging. Chemical Communications, 2012, 48, 1778.	4.1	109
44	Importance of Having Low-Density Functional Groups for Generating High-Performance Semiconducting Polymer Dots. ACS Nano, 2012, 6, 5429-5439.	14.6	108
45	A versatile method for generating semiconducting polymer dot nanocomposites. Nanoscale, 2012, 4, 7246.	5.6	31
46	Tracking of Single Charge Carriers in a Conjugated Polymer Nanoparticle. Nano Letters, 2012, 12, 1300-1306.	9.1	63
47	Stable Functionalization of Small Semiconducting Polymer Dots via Covalent Crossâ€Linking and Their Application for Specific Cellular Imaging. Advanced Materials, 2012, 24, 3498-3504.	21.0	120
48	Covalent Crossâ€Linking: Stable Functionalization of Small Semiconducting Polymer Dots via Covalent Crossâ€Linking and Their Application for Specific Cellular Imaging (Adv. Mater. 26/2012). Advanced Materials, 2012, 24, 3577-3577.	21.0	0
49	Near-infrared electroluminescence from double-emission-layers devices based on Ytterbium (III) complexes. Thin Solid Films, 2012, 520, 3663-3667.	1.8	20
50	Blue-Light Emission of Cu(I) Complexes and Singlet Harvesting. Inorganic Chemistry, 2011, 50, 8293-8301.	4.0	410
51	Novel Holmium (Ho) and Praseodymium (Pr) ternary complexes with fluorinated-ligand and 4,5-diazafluoren-9-one. Materials Letters, 2011, 65, 1642-1644.	2.6	14
52	Design of Highly Emissive Polymer Dot Bioconjugates for Inâ€Vivo Tumor Targeting. Angewandte Chemie - International Edition, 2011, 50, 3430-3434.	13.8	330
53	Photophysical properties of a series of high luminescent europium complexes with fluorinated ligands. Journal of Luminescence, 2011, 131, 328-335.	3.1	29
54	NIR-luminescence from ternary lanthanide [HoIII, PrIII and TmIII] complexes with 1-(2-naphthyl)-4,4,4-trifluoro-1,3-butanedionate. Journal of Luminescence, 2011, 131, 1857-1863.	3.1	45

#	Article	IF	CITATIONS
55	Luminescent Europium(III) Nanoparticles for Sensing and Imaging of Temperature in the Physiological Range. Advanced Materials, 2010, 22, 716-719.	21.0	409
56	A study on the NIR-luminescence emitted from ternary lanthanide [Er(III), Nd(III) and Yb(III)] complexes containing fluorinated-ligand and 4,5-diazafluoren-9-one. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 214, 152-160.	3.9	55
57	Near-Infrared Luminescence from Visible-Light-Sensitized Hybrid Materials Covalently Linked with Tris(8-hydroxyquinolinate)-lanthanide [Er(III), Nd(III), and Yb(III)] Derivatives. Journal of Physical Chemistry B, 2010, 114, 16393-16397.	2.6	54
58	Mechanism of Cellular Uptake of Highly Fluorescent Conjugated Polymer Nanoparticles. Biomacromolecules, 2010, 11, 2675-2682.	5.4	175
59	Luminescent terbium and europium probes for lifetime based sensing of temperature between 0 and 70 °C. Journal of Materials Chemistry, 2010, 20, 6975.	6.7	123
60	Bioconjugation of Ultrabright Semiconducting Polymer Dots for Specific Cellular Targeting. Journal of the American Chemical Society, 2010, 132, 15410-15417.	13.7	494
61	Temperature-Sensitive Luminescent Nanoparticles and Films Based on a Terbium (III) Complex Probe. Journal of Physical Chemistry C, 2010, 114, 12642-12648.	3.1	106
62	Amplified energy transfer in conjugated polymer nanoparticle tags and sensors. Nanoscale, 2010, 2, 1999.	5.6	191
63	Near-infrared luminescent mesoporous MCM-41 materials covalently bonded with ternary thulium complexes. Microporous and Mesoporous Materials, 2009, 117, 278-284.	4.4	29
64	The near-infrared optical properties of an Nd (III) complex and its potential application in electroluminescence. Inorganic Chemistry Communication, 2009, 12, 151-153.	3.9	19
65	Preparation and Luminescence Properties of Hybrid Titania Immobilized with Lanthanide Complexes. Journal of Physical Chemistry C, 2009, 113, 3945-3949.	3.1	48
66	A three-dimensional metal–organic framework based on a triazine derivative: syntheses, structure analysis, and sorption studies. CrystEngComm, 2009, 11, 2254.	2.6	12
67	Near-infrared luminescent xerogel materials covalently bonded with ternary lanthanide [Er(iii), Nd(iii), Yb(iii), Sm(iii)] complexes. Dalton Transactions, 2009, , 2406.	3.3	57
68	Nanoscale 3D Tracking with Conjugated Polymer Nanoparticles. Journal of the American Chemical Society, 2009, 131, 18410-18414.	13.7	126
69	Design and synthesis of near-IR luminescent mesoporous materials covalently linked with tris(8-hydroxyquinolinate)lanthanide(III) complexes. Microporous and Mesoporous Materials, 2008, 115, 535-540.	4.4	28
70	Performance of near-IR luminescent xerogel materials covalently bonded with ternary lanthanide (ErIII, NdIII, YbIII) complexes. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 193, 153-160.	3.9	26
71	Ternary lanthanide (Er3+, Nd3+, Yb3+, Sm3+, Pr3+) complex-functionalized mesoporous SBA-15 materials that emit in the near-infrared range. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 199, 57-63.	3.9	24
72	Synthesis and photophysical properties of novel organic–inorganic hybrid materials covalently linked to a europium complex. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 200, 318-324.	3.9	38

#	Article	IF	CITATIONS
73	The optical properties and the natural lifetime calculation of a Sm(III) complex. Inorganic Chemistry Communication, 2008, 11, 1284-1287.	3.9	34
74	1.54μm Near-infrared photoluminescent and electroluminescent properties of a new Erbium (III) organic complex. Organic Electronics, 2008, 9, 487-494.	2.6	53
75	Blue-light emission of mesoporous SBA-15 covalently bonded with carbazole chromophore. Microporous and Mesoporous Materials, 2008, 113, 402-410.	4.4	11
76	Preparation and luminescence properties of covalent linking of luminescent ternary europium complexes on periodic mesoporous organosilica. Microporous and Mesoporous Materials, 2008, 116, 28-35.	4.4	46
77	Mechanisms of efficiency enhancement in the doped electroluminescent devices based on a europium complex. Journal of Applied Physics, 2008, 104, 114507.	2.5	18
78	Near-Infrared Emission from Novel Tris(8-hydroxyquinolinate)lanthanide(III) Complexes-Functionalized Mesoporous SBA-15. Langmuir, 2008, 24, 5500-5507.	3.5	84
79	Taihu Lake Not to Blame for Wuxi's Woes. Science, 2008, 319, 158-158.	12.6	308
80	Conversion process of the dominant electroluminescence mechanism in a molecularly doped organic light-emitting device with only electron trapping. Journal of Applied Physics, 2007, 102, 064504.	2.5	24
81	Application of Distributed Genetic Algorithm Based on Migration Strategy in Image Segmentation. , 2007, , .		3
82	Bifunctional Magneticâ^'Optical Nanocomposites:  Grafting Lanthanide Complex onto Coreâ^'Shell Magnetic Silica Nanoarchitecture. Langmuir, 2007, 23, 7836-7840.	3.5	103
83	Synthesis, Structure, Photoluminescence, and Electroluminescence Properties of a New Dysprosium Complex. Journal of Physical Chemistry C, 2007, 111, 2295-2300.	3.1	75
84	Photoluminescence and electroluminescence properties of a samarium complex Sm(TTA)3phen. Chemical Physics Letters, 2007, 443, 258-263.	2.6	28
85	Near-infrared luminescent mesoporous materials covalently bonded with ternary lanthanide [Er(III), Nd(III), Yb(III), Sm(III), Pr(III)] complexes. Microporous and Mesoporous Materials, 2007, 98, 156-165.	4.4	114
86	Efficient organic electroluminescent devices based on an organosamarium complex. Journal of Luminescence, 2007, 122-123, 678-682.	3.1	13
87	Effect of silver nanoparticles on luminescent properties of europium complex in di-ureasil hybrid materials. Journal of Luminescence, 2007, 122-123, 892-895.	3.1	3
88	Change of the dominant luminescent mechanism with increasing current density in molecularly doped organic light-emitting devices. Journal of Luminescence, 2007, 126, 644-652.	3.1	11
89	Synthesis, structure and photochromic properties of a novel 1,6-hexanediamine trimolybdate supramolecular compound. Journal of Solid State Chemistry, 2007, 180, 393-399.	2.9	12
90	Probing Gene Expression in Live Cells, One Protein Molecule at a Time. Science, 2006, 311, 1600-1603.	12.6	823

#	Article	IF	CITATIONS
91	Covalent Linking of Near-Infrared Luminescent Ternary Lanthanide (Er3+, Nd3+, Yb3+) Complexes on Functionalized Mesoporous MCM-41 and SBA-15. Journal of Physical Chemistry B, 2006, 110, 7249-7258.	2.6	146
92	Dependence of Performance of Organic Light-emitting Devices on Sheet Resistance of Indium-tin-oxide Anodes1. Chemical Research in Chinese Universities, 2006, 22, 427-431.	2.6	1
93	Hydrothermal Synthesis of Single-Crystalline Antimony Telluride Nanobelts. Journal of the American Chemical Society, 2006, 128, 16490-16491.	13.7	121
94	Study on the Difference of Photochromic and Thermochromic Mechanism of Ethylenediamine Trimolybdate. Chemistry Letters, 2006, 35, 1146-1147.	1.3	0
95	Syntheses, Structures and Near-IR Luminescent Studies on Ternary Lanthanide (ErIII, HoIII, YbIII, NdIII) Complexes Containing 4,4,5,5,6,6,6-Heptafluoro-1-(2-thienyl)hexane-1,3-dionate. European Journal of Inorganic Chemistry, 2006, 2006, 3962-3973.	2.0	116
96	Synthesis of Neodymium Hydroxide Nanotubes and Nanorods by Soft Chemical Process. Journal of Nanoscience and Nanotechnology, 2006, 6, 2515-2519.	0.9	2
97	Precursor induced synthesis of hierarchical nanostructured ZnO. Nanotechnology, 2006, 17, 3607-3612.	2.6	38
98	Synthesis and luminescence properties of SBA-15 functionalized with covalently bonded ternary europium complex. Inorganic Chemistry Communication, 2005, 8, 440-443.	3.9	33
99	A New Sol-Gel Material Doped with an Erbium Complex and Its Potential Optical-Amplification Application. Advanced Functional Materials, 2005, 15, 1041-1048.	14.9	152
100	Synthesis, Characterization, and Luminescence Properties of the Ternary Europium Complex Covalently Bonded to Mesoporous SBA-15. Journal of Physical Chemistry B, 2005, 109, 15278-15287.	2.6	266
101	Efficient Electroluminescence from New Lanthanide (Eu3+, Sm3+) Complexes. Inorganic Chemistry, 2005, 44, 1611-1618.	4.0	202
102	Near-Infrared Luminescent Hybrid Materials Doped with Lanthanide (Ln) Complexes (Ln = Nd, Yb) and Their Possible Laser Application. Journal of Physical Chemistry B, 2005, 109, 6174-6182.	2.6	139
103	Incorporation of luminescent lanthanide complex inside the channels of organically modified mesoporous silica via template-ion exchange method. New Journal of Chemistry, 2005, 29, 1351.	2.8	78
104	Preparation and luminescence properties of in situ formed lanthanide complexes covalently grafted to a silica networkElectronic supplementary information (ESI) available: color photograph of organic-inorganic hybrid materials containing Eu3+ ions and Tb3+ ions. See http://www.rsc.org/suppdata/nj/b4/b401673d/. New Journal of Chemistry, 2004, 28, 1137.	2.8	37
105	Electroluminescence from5D0Â7FJand5D1Â7FJ(J= 0–4) transitions with a europium complex as emitter. Journal Physics D: Applied Physics, 2004, 37, 531-534.	2.8	14
106	Mixed micelles of cationic–nonionic surfactants: NMR self-diffusion studies of Triton X-100 and cetyltrimethylammonium bromide in aqueous solution. Colloid and Polymer Science, 2003, 281, 455-460.	2.1	32
107	Synthesis, structure and luminescent properties of a new praseodymium() complex with β-diketone. Inorganic Chemistry Communication, 2003, 6, 852-854.	3.9	57
108	Electroluminescence based on a β-diketonate ternary samarium complex. Journal of Materials Chemistry, 2002, 12, 919-923.	6.7	93

#	Article	IF	CITATIONS
109	Aggregation of sodium dodecyl sulfate in poly(ethylene glycol) aqueous solution studied by 1HÂNMR spectroscopy. Colloid and Polymer Science, 2002, 280, 479-484.	2.1	39
110	Unmasking Electronic Energy Transfer of Conjugated Polymers by Suppression of O2 Quenching. Science, 2000, 289, 1327-1330.	12.6	356
111	A Registration Method of Fundus Images Based on Edge Detection and Phase-Correlation. , 0, , .		8