Abdelaziz Heddi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/817637/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PGRP-LB: An Inside View into the Mechanism of the Amidase Reaction. International Journal of Molecular Sciences, 2021, 22, 4957.	4.1	5
2	The transposable element-rich genome of the cereal pest Sitophilus oryzae. BMC Biology, 2021, 19, 241.	3.8	40
3	Endosymbiosis morphological reorganization during metamorphosis diverges in weevils. Communicative and Integrative Biology, 2020, 13, 184-188.	1.4	8
4	Spatial and morphological reorganization of endosymbiosis during metamorphosis accommodates adult metabolic requirements in a weevil. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19347-19358.	7.1	58
5	Weevil <i>pgrp-lb</i> prevents endosymbiont TCT dissemination and chronic host systemic immune activation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5623-5632.	7.1	56
6	What can a weevil teach a fly, and reciprocally? Interaction of host immune systems with endosymbionts in Glossina and Sitophilus. BMC Microbiology, 2018, 18, 150.	3.3	39
7	An IMD-like pathway mediates both endosymbiont control and host immunity in the cereal weevil Sitophilus spp Microbiome, 2018, 6, 6.	11.1	62
8	Endosymbiosis as a source of immune innovation. Comptes Rendus - Biologies, 2018, 341, 290-296.	0.2	20
9	Effects of symbiotic status on cellular immunity dynamics in Sitophilus oryzae. Developmental and Comparative Immunology, 2017, 77, 259-269.	2.3	5
10	Antimicrobial peptides and cell processes tracking endosymbiont dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150298.	4.0	36
11	Direct flow cytometry measurements reveal a fine-tuning of symbiotic cell dynamics according to the host developmental needs in aphid symbiosis. Scientific Reports, 2016, 6, 19967.	3.3	71
12	Physiological effects of major up-regulated Alnus glutinosa peptides on Frankia sp. ACN14a. Microbiology (United Kingdom), 2016, 162, 1173-1184.	1.8	13
13	Weevil endosymbiont dynamics is associated with a clamping of immunity. BMC Genomics, 2015, 16, 819.	2.8	30
14	Systemic Infection Generates a Local-Like Immune Response of the Bacteriome Organ in Insect Symbiosis. Journal of Innate Immunity, 2015, 7, 290-301.	3.8	37
15	<i>Alnus</i> peptides modify membrane porosity and induce the release of nitrogen-rich metabolites from nitrogen-fixing <i>Frankia</i> . ISME Journal, 2015, 9, 1723-1733.	9.8	79
16	Genome Degeneration and Adaptation in a Nascent Stage of Symbiosis. Genome Biology and Evolution, 2014, 6, 76-93.	2.5	200
17	Insects Recycle Endosymbionts when the Benefit Is Over. Current Biology, 2014, 24, 2267-2273.	3.9	182
18	Tissue distribution and transmission routes for the tsetse fly endosymbionts. Journal of Invertebrate Pathology, 2013, 112, S116-S122.	3.2	102

Abdelaziz Heddi

#	Article	IF	CITATIONS
19	Insect immune system maintains long-term resident bacteria through a local response. Journal of Insect Physiology, 2013, 59, 232-239.	2.0	32
20	Host gene response to endosymbiont and pathogen in the cereal weevil Sitophilus oryzae. BMC Microbiology, 2012, 12, S14.	3.3	42
21	Antimicrobial Peptides Keep Insect Endosymbionts Under Control. Science, 2011, 334, 362-365.	12.6	343
22	RNAi in the cereal weevil Sitophilusspp: Systemic gene knockdown in the bacteriome tissue. BMC Biotechnology, 2009, 9, 44.	3.3	19
23	Identification of the Weevil immune genes and their expression in the bacteriome tissue. BMC Biology, 2008, 6, 43.	3.8	114
24	Long-Term Evolutionary Stability of Bacterial Endosymbiosis in Curculionoidea: Additional Evidence of Symbiont Replacement in the Dryophthoridae Family. Molecular Biology and Evolution, 2008, 25, 859-868.	8.9	120
25	Massive presence of insertion sequences in the genome of SOPE, the primary endosymbiont of the rice weevil Sitophilus oryzae. International Microbiology, 2008, 11, 41-8.	2.4	38
26	Host PGRP Gene Expression and Bacterial Release in Endosymbiosis of the Weevil Sitophilus zeamais. Applied and Environmental Microbiology, 2006, 72, 6766-6772.	3.1	78
27	Molecular and cellular profiles of insect bacteriocytes: mutualism and harm at the initial evolutionary step of symbiogenesis. Cellular Microbiology, 2005, 7, 293-305.	2.1	51
28	Endosymbiont Phylogenesis in the Dryophthoridae Weevils: Evidence for Bacterial Replacement. Molecular Biology and Evolution, 2004, 21, 965-973.	8.9	182
29	Comparative Genomics of Insect-Symbiotic Bacteria: Influence of Host Environment on Microbial Genome Composition. Applied and Environmental Microbiology, 2003, 69, 6825-6832.	3.1	59
30	A putative insect intracellular endosymbiont stem clade, within the Enterobacteriaceae, infered from phylogenetic analysis based on a heterogeneous model of DNA evolution. Comptes Rendus De L'Académie Des Sciences Série 3, Sciences De La Vie, 2001, 324, 489-494.	0.8	38
31	Intracellular bacterial symbiosis in the genus Sitophilus: the â€ [~] biological individual' concept revisited. Research in Microbiology, 2001, 152, 431-437.	2.1	20
32	Molecular Characterization of the Principal Symbiotic Bacteria of the Weevil Sitophilus oryzae: A Peculiar G + C Content of an Endocytobiotic DNA. Journal of Molecular Evolution, 1998, 47, 52-61.	1.8	126
33	A Molecular Aspect of Symbiotic Interactions between the WeevilSitophilus oryzaeand Its Endosymbiotic Bacteria: Over-expression of a Chaperonin. Biochemical and Biophysical Research Communications, 1997, 239, 769-774.	2.1	47
34	Steady state levels of mitochondrial and nuclear oxidative phosphorylation transcripts in Kearns-Sayre syndrome. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1994, 1226, 206-212.	3.8	32