Myeongsang Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8176120/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crowding tunes the organization and mechanics of actin bundles formed by crosslinking proteins. FEBS Letters, 2021, 595, 26-40.	2.8	6
2	Molecular dynamics study of interactions between polymorphic actin filaments and gelsolin segmentâ€1. Proteins: Structure, Function and Bioinformatics, 2020, 88, 385-392.	2.6	4
3	Experimental Realization of Few Layer Two-Dimensional MoS ₂ Membranes of Near Atomic Thickness for High Efficiency Water Desalination. Nano Letters, 2019, 19, 5194-5204.	9.1	80
4	Actin Filament Mechanics and Structure in Crowded Environments. Journal of Physical Chemistry B, 2019, 123, 2770-2779.	2.6	12
5	Investigation of the role hydrophobin monomer loops using hybrid models via molecular dynamics simulation. Colloids and Surfaces B: Biointerfaces, 2019, 173, 128-138.	5.0	3
6	Metal ions affect the formation and stability of amyloid \hat{l}^2 aggregates at multiple length scales. Physical Chemistry Chemical Physics, 2018, 20, 8951-8961.	2.8	39
7	Loading-device effects on the protein-unfolding mechanisms using molecular-dynamic simulations. Journal of Molecular Graphics and Modelling, 2018, 81, 162-167.	2.4	1
8	Mechanical features of various silkworm crystalline considering hydration effect via molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 2018, 36, 1360-1368.	3.5	9
9	Capping effects on polymorphic Al̂² 16–21 amyloids depend on their size: A molecular dynamics simulation study. Biophysical Chemistry, 2018, 232, 1-11.	2.8	3
10	Internal interaction changes within the mutation of SLC26A4 STAS domain. Chemical Physics Letters, 2018, 710, 226-233.	2.6	1
11	Mechanically inferior constituents in spider silk result in mechanically superior fibres by adaptation to harsh hydration conditions: a molecular dynamics study. Journal of the Royal Society Interface, 2018, 15, 20180305.	3.4	9
12	Characterizing Structural Stability of Amyloid Motif Fibrils Mediated by Water Molecules. ChemPhysChem, 2017, 18, 817-827.	2.1	7
13	Mechanical and vibrational characterization of amyloid-like HET-s nanosheets based on the skewed plate theory. Physical Chemistry Chemical Physics, 2017, 19, 11492-11501.	2.8	Ο
14	Structural analysis of oligomeric and protofibrillar AÎ ² amyloid pair structures considering F20L mutation effects using molecular dynamics simulations. Proteins: Structure, Function and Bioinformatics, 2017, 85, 580-592.	2.6	1
15	Structure-Property Relationship of Amyloidogenic Prion Nanofibrils. , 2017, , .		0
16	Effects of End-Terminal Capping on Transthyretin (105–115) Amyloid Protofibrils Using Steered Molecular Dynamics. Journal of Nanomaterials, 2016, 2016, 1-10.	2.7	4
17	Sodium chloride's effect on selfâ€assembly of diphenylalanine bilayer. Journal of Computational Chemistry, 2016, 37, 1839-1846.	3.3	9

18 Impact of solvent on silk materials. , 2016, , .

Myeongsang Lee

#	Article	IF	CITATIONS
19	Structural analysis of F20L oligomeric and protofibrillar amyloid pair structures using molecular dynamics simulations. , 2016, , .		0
20	Understanding structural characteristics of out-of-register hIAPP amyloid proteins via molecular dynamics. RSC Advances, 2016, 6, 77666-77672.	3.6	3
21	The effect of structural heterogeneity on the conformation and stability of Aβ–tau mixtures. RSC Advances, 2016, 6, 52236-52247.	3.6	13
22	End Capping Alters the Structural Characteristics and Mechanical Properties of Transthyretin (105–115) Amyloid Protofibrils. ChemPhysChem, 2016, 17, 425-432.	2.1	14
23	Mechanical behavior comparison of spider and silkworm silks using molecular dynamics at atomic scale. Physical Chemistry Chemical Physics, 2016, 18, 4814-4821.	2.8	26
24	Conformational changes of Aβ (1–42) monomers in different solvents. Journal of Molecular Graphics and Modelling, 2016, 65, 8-14.	2.4	14
25	Influence of Aromatic Residues on the Material Characteristics of AÎ ² Amyloid Protofibrils at the Atomic Scale. ChemPhysChem, 2015, 16, 2403-2414.	2.1	15
26	Morphology and mechanical properties of multi-stranded amyloid fibrils probed by atomistic and coarse-grained simulations. Physical Biology, 2015, 12, 066021.	1.8	13
27	Relationship between structural composition and material properties of polymorphic hIAPP fibrils. Biophysical Chemistry, 2015, 199, 1-8.	2.8	19
28	Effects of lysine residues on structural characteristics and stability of tau proteins. Biochemical and Biophysical Research Communications, 2015, 466, 486-492.	2.1	12
29	The bond survival time variation of polymorphic amyloid fibrils in the mechanical insight. Chemical Physics Letters, 2014, 600, 68-72.	2.6	23
30	The mechanical response of hIAPP nanowires based on different bending direction simulations. Physical Chemistry Chemical Physics, 2014, 16, 18493.	2.8	19
31	Role of Sequence and Structural Polymorphism on the Mechanical Properties of Amyloid Fibrils. PLoS ONE, 2014, 9, e88502.	2.5	51