
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8173972/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Top 10 plantâ€parasitic nematodes in molecular plant pathology. Molecular Plant Pathology, 2013, 14, 946-961.	4.2	1,454
2	Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotechnology, 2008, 26, 909-915.	17.5	1,012
3	Genomic Insights into the Origin of Parasitism in the Emerging Plant Pathogen Bursaphelenchus xylophilus. PLoS Pathogens, 2011, 7, e1002219.	4.7	351
4	Crops that feed the world 8: Potato: are the trends of increased global production sustainable?. Food Security, 2012, 4, 477-508.	5.3	295
5	Functional roles of effectors of plant-parasitic nematodes. Gene, 2012, 492, 19-31.	2.2	228
6	The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode. Genome Biology, 2014, 15, R43.	9.6	212
7	A nematode expansin acting on plants. Nature, 2004, 427, 30-30.	27.8	180
8	A family of glycosyl hydrolase family 45 cellulases from the pine wood nematodeBursaphelenchus xylophilus. FEBS Letters, 2004, 572, 201-205.	2.8	178
9	Degradation of plant cell walls by a nematode. Nature, 2000, 406, 36-37.	27.8	167
10	The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the basis of parasitism and virulence. Genome Biology, 2016, 17, 124.	8.8	156
11	Functional Analysis of Pathogenicity Proteins of the Potato Cyst Nematode Globodera rostochiensis Using RNAi. Molecular Plant-Microbe Interactions, 2005, 18, 621-625.	2.6	148
12	Horizontal Gene Transfer in Nematodes: A Catalyst for Plant Parasitism?. Molecular Plant-Microbe Interactions, 2011, 24, 879-887.	2.6	146
13	RNAi and Functional Genomics in Plant Parasitic Nematodes. Annual Review of Phytopathology, 2009, 47, 207-232.	7.8	132
14	<i>Bursaphelenchus xylophilus</i> : opportunities in comparative genomics and molecular host–parasite interactions. Molecular Plant Pathology, 2008, 9, 357-368.	4.2	131
15	Molecular and biochemical characterization of an endo-β-1,3-glucanase from the pinewood nematode Bursaphelenchus xylophilus acquired by horizontal gene transfer from bacteria. Biochemical Journal, 2005, 389, 117-125.	3.7	121
16	Ancient and Novel Small RNA Pathways Compensate for the Loss of piRNAs in Multiple Independent Nematode Lineages. PLoS Biology, 2015, 13, e1002061.	5.6	118
17	Analysis of chitin synthase function in a plant parasitic nematode, Meloidogyne artiellia, using RNAi. Gene, 2005, 349, 87-95.	2.2	110
18	A method for double-stranded RNA-mediated transient gene silencing inPhytophthora infestans. Molecular Plant Pathology, 2005, 6, 153-163.	4.2	108

#	Article	IF	CITATIONS
19	A surface-associated retinol- and fatty acid-binding protein (Gp-FAR-1) from the potato cyst nematode Globodera pallida: lipid binding activities, structural analysis and expression pattern. Biochemical Journal, 2001, 356, 387-394.	3.7	105
20	Cloning, expression and functional characterisation of a peroxiredoxin from the potato cyst nematode Globodera rostochiensis. Molecular and Biochemical Parasitology, 2000, 111, 41-49.	1.1	104
21	Characterization of a chorismate mutase from the potato cyst nematode Globodera pallida. Molecular Plant Pathology, 2003, 4, 43-50.	4.2	99
22	Cloning and Characterization of Pectate Lyases Expressed in the Esophageal Gland of the Pine Wood Nematode Bursaphelenchus xylophilus. Molecular Plant-Microbe Interactions, 2006, 19, 280-287.	2.6	99
23	A surface-associated retinol- and fatty acid-binding protein (Gp-FAR-1) from the potato cyst nematode Globodera pallida: lipid binding activities, structural analysis and expression pattern. Biochemical Journal, 2001, 356, 387.	3.7	97
24	Identification and functional characterization of effectors in expressed sequence tags from various life cycle stages of the potato cyst nematode <i>Globodera pallida</i> . Molecular Plant Pathology, 2009, 10, 815-828.	4.2	96
25	Identification and characterization of parasitism genes from the pinewood nematode <i>Bursaphelenchus xylophilus</i> reveals a multilayered detoxification strategy. Molecular Plant Pathology, 2016, 17, 286-295.	4.2	91
26	Expressed sequence tag (EST) analysis of the pine wood nematode Bursaphelenchus xylophilus and B. mucronatus. Molecular and Biochemical Parasitology, 2007, 155, 9-17.	1.1	83
27	Parasitism genes and host range disparities in biotrophic nematodes: the conundrum of polyphagy versus specialisation. BioEssays, 2008, 30, 249-259.	2.5	83
28	Identification and Characterisation of a Hyper-Variable Apoplastic Effector Gene Family of the Potato Cyst Nematodes. PLoS Pathogens, 2014, 10, e1004391.	4.7	82
29	Genomic characterisation of the effector complement of the potato cyst nematode Globodera pallida. BMC Genomics, 2014, 15, 923.	2.8	81
30	Horizontal gene transfer from bacteria and fungi as a driving force in the evolution of plant parasitism in nematodes. Nematology, 2005, 7, 641-646.	0.6	76
31	Genome Evolution of Plant-Parasitic Nematodes. Annual Review of Phytopathology, 2017, 55, 333-354.	7.8	71
32	Signatures of adaptation to plant parasitism in nematode genomes. Parasitology, 2015, 142, S71-S84.	1.5	68
33	Analysis of genes expressed in second stage juveniles of the potato cyst nematodes Globodera rostochiensis and G. pallida using the expressed sequence tag approach. Nematology, 2000, 2, 567-574.	0.6	53
34	Localisation of Globodera pallida FMRFamide-related peptide encoding genes using in situ hybridisation. International Journal for Parasitology, 2002, 32, 1095-1105.	3.1	52
35	Horizontal Gene Transfer from Bacteria Has Enabled the Plant-Parasitic Nematode <i>Globodera pallida</i> to Feed on Host-Derived Sucrose. Molecular Biology and Evolution, 2016, 33, 1571-1579.	8.9	52
36	Identification of putative expansin-like genes from the pine wood nematode, Bursaphelenchus xylophilus, and evolution of the expansin gene family within the Nematoda. Nematology, 2009, 11, 355-364.	0.6	47

#	Article	IF	CITATIONS
37	Only a small subset of the SPRY domain gene family in Globodera pallida is likely to encode effectors, two of which suppress host defences induced by the potato resistance gene Gpa2. Nematology, 2015, 17, 409-424.	0.6	46
38	Identification and Characterization of the Most Abundant Cellulases in Stylet Secretions from <i>Globodera rostochiensis</i> . Phytopathology, 2009, 99, 194-202.	2.2	44
39	The role of flavonoids produced in response to cyst nematode infection of Arabidopsis thaliana. Nematology, 2007, 9, 671-677.	0.6	41
40	A molecular analysis of desiccation tolerance mechanisms in the anhydrobiotic nematode Panagrolaimus superbus using expressed sequenced tags. BMC Research Notes, 2012, 5, 68.	1.4	41
41	Stage-specific gene expression in Teladorsagia circumcincta (Nematoda: Strongylida) infective larvae and early parasitic stages. International Journal for Parasitology, 2008, 38, 829-838.	3.1	40
42	The Transcriptome of Nacobbus aberrans Reveals Insights into the Evolution of Sedentary Endoparasitism in Plant-Parasitic Nematodes. Genome Biology and Evolution, 2014, 6, 2181-2194.	2.5	39
43	Functional Câ€TERMINALLY ENCODED PEPTIDE (CEP) plant hormone domains evolved <i>de novo</i> in the plant parasite <i>Rotylenchulus reniformis</i> . Molecular Plant Pathology, 2016, 17, 1265-1275.	4.2	38
44	Distribution and evolution of glycoside hydrolase family 45 cellulases in nematodes and fungi. BMC Evolutionary Biology, 2014, 14, 69.	3.2	37
45	Delivery of macromolecules to plant parasitic nematodes using a tobacco rattle virus vector. Plant Biotechnology Journal, 2007, 5, 827-834.	8.3	36
46	Mapping the H2 resistance effective against Globodera pallida pathotype Pa1 in tetraploid potato. Theoretical and Applied Genetics, 2019, 132, 1283-1294.	3.6	36
47	Rapid gene discovery in plant parasitic nematodes via Expressed Sequence Tags. Nematology, 2000, 2, 719-731.	0.6	34
48	Transcriptional and morphological changes in the transition from mycetophagous to phytophagous phase in the plantâ€parasitic nematode <i>Bursaphelenchus xylophilus</i> . Molecular Plant Pathology, 2016, 17, 77-83.	4.2	33
49	Potato cyst nematodes <i>Globodera rostochiensis</i> and <i>G</i> .Â <i>pallida</i> . Molecular Plant Pathology, 2021, 22, 495-507.	4.2	33
50	Analysis of expressed sequence tags and identification of genes encoding cell-wall-degrading enzymes from the fungivorous nematode Aphelenchus avenae. BMC Genomics, 2009, 10, 525.	2.8	32
51	SXP/RAL-2 proteins of the potato cyst nematode Globodera rostochiensis: secreted proteins of the hypodermis and amphids. Nematology, 2000, 2, 887-893.	0.6	31
52	The Globodera pallida SPRYSEC Effector GpSPRY-414-2 That Suppresses Plant Defenses Targets a Regulatory Component of the Dynamic Microtubule Network. Frontiers in Plant Science, 2018, 9, 1019.	3.6	31
53	Resisting Potato Cyst Nematodes With Resistance. Frontiers in Plant Science, 2021, 12, 661194.	3.6	28
54	Analysis of expressed sequence tags from the ectoparasitic nematode Xiphinema index. Nematology, 2005, 7, 95-104.	0.6	26

#	Article	IF	CITATIONS
55	Characterisation of the cellulose-binding protein Mj-cbp-1 of the root knotÂnematode, Meloidogyne javanica. Physiological and Molecular Plant Pathology, 2008, 72, 21-28.	2.5	26
56	STATAWAARS: a promoter motif associated with spatial expression in the major effector-producing tissues of the plant-parasitic nematode Bursaphelenchus xylophilus. BMC Genomics, 2018, 19, 553.	2.8	26
57	Suppression of Plant Defences by Plant-Parasitic Nematodes. Advances in Botanical Research, 2015, , 325-337.	1.1	24
58	Horizontal transfer of a bacterial gene involved in polyglutamate biosynthesis to the plant-parasitic nematodeMeloidogyne artiellia. FEBS Letters, 2001, 508, 470-474.	2.8	23
59	A metagenetic approach to determine the diversity and distribution of cyst nematodes at the level of the country, the field and the individual. Molecular Ecology, 2015, 24, 5842-5851.	3.9	22
60	Characterization of glutathione S-transferases from theÂpineÂwoodÂnematode, Bursaphelenchus xylophilus. Nematology, 2016, 18, 697-709.	0.6	20
61	A polygalacturonaseâ€inhibiting protein with a role in pea defence against the cyst nematode <i>Heterodera goettingiana</i> . Molecular Plant Pathology, 2011, 12, 275-287.	4.2	19
62	The Transcriptomes of Xiphinema index and Longidorus elongatus Suggest Independent Acquisition of Some Plant Parasitism Genes by Horizontal Gene Transfer in Early-Branching Nematodes. Genes, 2017, 8, 287.	2.4	19
63	Activation of transcription during the hatching process of the potato cyst nematode Globodera rostochiensis. Nematology, 1999, 1, 103-111.	0.6	14
64	Comparison of transcript profiles in different life stages of the nematode <i>Globodera pallida</i> under different host potato genotypes. Molecular Plant Pathology, 2012, 13, 1120-1134.	4.2	14
65	Characterisation of the transcriptome of Aphelenchoides besseyi and identification of a GHF 45 cellulase. Nematology, 2014, 16, 99-107.	0.6	14
66	Functional Characterization of Nematode Effectors in Plants. Methods in Molecular Biology, 2014, 1127, 113-124.	0.9	14
67	Plant-parasitic nematode feeding tubes and plugs: newÂperspectives on function. Nematology, 2015, 17, 1-9.	0.6	14
68	The Feeding Tube of Cyst Nematodes: Characterisation of Protein Exclusion. PLoS ONE, 2014, 9, e87289.	2.5	14
69	Identification of gene expression differences between Globodera pallida and G. â€ [~] mexicana ' by suppression subtractive hybridization. Molecular Plant Pathology, 2002, 3, 217-226.	4.2	13
70	Plant Nematode Surfaces. , 2011, , 115-144.		13
71	Translational biology of nematode effectors. Or, to put it another way, functional analysis of effectors – what's the point?. Nematology, 2017, 19, 251-261.	0.6	13
72	An unconventionally secreted effector from the root knot nematode <i>Meloidogyne incognita</i> , Miâ€ISCâ€1, promotes parasitism by disrupting salicylic acid biosynthesis in host plants. Molecular Plant Pathology, 2022, 23, 516-529.	4.2	13

#	Article	IF	CITATIONS
73	Activation of hatching in diapaused and quiescent <i>Clobodera pallida</i> . Parasitology, 2013, 140, 445-454.	1.5	12
74	Characterisation of a collagen gene subfamily from the potato cyst nematode Globodera pallida. Gene, 2001, 263, 67-75.	2.2	9
75	Signatures of adaptation to a monocot host in the plantâ€parasitic cyst nematode Heterodera sacchari. Plant Journal, 2020, 103, 1263-1274.	5.7	9
76	Toward genetic modification of plant-parasitic nematodes: delivery of macromolecules to adults and expression of exogenous mRNA in second stage juveniles. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	9
77	Osmotic responses of different strains of Steinernema carpocapsae. Nematology, 2011, 13, 845-851.	0.6	8
78	The Genomic Impact of Selection for Virulence against Resistance in the Potato Cyst Nematode, Globodera pallida. Genes, 2020, 11, 1429.	2.4	8
79	Gene expression changes in diapause or quiescent potato cyst nematode, <i>Globodera pallida </i> , eggs after hydration or exposure to tomato root diffusate. PeerJ, 2016, 4, e1654.	2.0	8
80	Capture of nematodes using antiserum and lectin-coated magnetised beads. Nematology, 2001, 3, 593-601.	0.6	7
81	Sex: Not all that it's cracked up to be?. PLoS Genetics, 2018, 14, e1007160.	3.5	7
82	The GpIA7 effector from the potato cyst nematode <i>Globodera pallida</i> targets potato EBP1 and interferes with the plant cell cycle. Journal of Experimental Botany, 2021, 72, 7301-7315.	4.8	4
83	Novel primers for the amplification of nuclear DNA introns in the entomopathogenic nematode <i>Heterorhabditis bacteriophora</i> and their crossâ€amplification in seven other <i>Heterorhabditis</i> species. Molecular Ecology Resources, 2009, 9, 421-424.	4.8	3
84	In vitro life cycle of Heterodera sacchari on Pluronic gel. Nematology, 2019, 21, 573-579.	0.6	2
85	Production and characterisation of monoclonal antibodies to antigens from Xiphinema index. Nematology, 2003, 5, 359-366.	0.6	1
86	Bioinformatic Analysis of Expression Data to Identify Effector Candidates. Methods in Molecular Biology, 2014, 1127, 17-27.	0.9	1
87	Surface coat proteins of the potato cyst nematode, GloboderaÂrostochiensis. Nematology, 2020, 23, 113-123.	0.6	0