
Melyssa Negri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8172948/publications.pdf Version: 2024-02-01

MELVSSA NECDI

#	Article	IF	CITATIONS
1	<i>Candida glabrata, Candida parapsilosis</i> and <i>Candida tropicalis</i> : biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiology Reviews, 2012, 36, 288-305.	8.6	714
2	Adherence and biofilm formation of non-Candida albicans Candida species. Trends in Microbiology, 2011, 19, 241-247.	7.7	208
3	Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms of <i>Candida albicans</i> albicansand <i>Candida glabrata</i> . Biofouling, 2011, 27, 711-719.	2.2	186
4	Silver nanoparticles: influence of stabilizing agent and diameter on antifungal activity against Candida albicans and Candida glabrata biofilms. Letters in Applied Microbiology, 2012, 54, 383-391.	2.2	94
5	Antifungal activity of silver nanoparticles in combination with nystatin and chlorhexidine digluconate against <i><scp>C</scp>andida albicans</i> and <i><scp>C</scp>andida glabrata</i> biofilms. Mycoses, 2013, 56, 672-680.	4.0	83
6	Examination of Potential Virulence Factors of Candida tropicalis Clinical Isolates From Hospitalized Patients. Mycopathologia, 2010, 169, 175-182.	3.1	82
7	Early State Research on Antifungal Natural Products. Molecules, 2014, 19, 2925-2956.	3.8	74
8	The effect of silver nanoparticles and nystatin on mixed biofilms of <i>Candida glabrata</i> and <i>Candida albicans</i> on acrylic. Medical Mycology, 2013, 51, 178-184.	0.7	72
9	Silicone colonization by non-Candida albicans Candida species in the presence of urine. Journal of Medical Microbiology, 2010, 59, 747-754.	1.8	68
10	Can intrauterine contraceptive devices be a Candida albicans reservoir?. Contraception, 2008, 77, 355-359.	1.5	62
11	Propolis Is an Efficient Fungicide and Inhibitor of Biofilm Production by Vaginal <i>Candida albicans</i> . Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-9.	1.2	60
12	Propolis Extract for Onychomycosis Topical Treatment: From Bench to Clinic. Frontiers in Microbiology, 2018, 9, 779.	3.5	57
13	Silver colloidal nanoparticles: effect on matrix composition and structure of <i>Candida albicans</i> and <i>Candida glabrata</i> biofilms. Journal of Applied Microbiology, 2013, 114, 1175-1183.	3.1	54
14	Propolis: a potential natural product to fight <i>Candida</i> species infections. Future Microbiology, 2016, 11, 1035-1046.	2.0	53
15	Î ² -Glucan Induces Reactive Oxygen Species Production in Human Neutrophils to Improve the Killing of Candida albicans and Candida glabrata Isolates from Vulvovaginal Candidiasis. PLoS ONE, 2014, 9, e107805.	2.5	36
16	Propolis extract has bioactivity on the wall and cell membrane of Candida albicans. Journal of Ethnopharmacology, 2020, 256, 112791.	4.1	34
17	<i>Candida tropicalis</i> biofilms: artificial urine, urinary catheters and flow model. Medical Mycology, 2011, 49, 1-9.	0.7	33
18	Correlation between Etest [®] , disk diffusion, and microdilution methods for antifungal susceptibility testing of <i>Candida</i> species from infection and colonization. Journal of Clinical Laboratory Analysis, 2009, 23, 324-330.	2.1	30

MELYSSA NEGRI

#	Article	IF	CITATIONS
19	Antibiofilm activity of propolis extract on <i>Fusarium</i> species from onychomycosis. Future Microbiology, 2017, 12, 1311-1321.	2.0	30
20	Fusarium spp. is able to grow and invade healthy human nails as a single source of nutrients. European Journal of Clinical Microbiology and Infectious Diseases, 2015, 34, 1767-1772.	2.9	27
21	Targeting Candida spp. to develop antifungal agents. Drug Discovery Today, 2018, 23, 802-814.	6.4	26
22	The ability of farnesol to prevent adhesion and disrupt Fusarium keratoplasticum biofilm. Applied Microbiology and Biotechnology, 2020, 104, 377-389.	3.6	25
23	Candida tropicalis biofilms: Effect on urinary epithelial cells. Microbial Pathogenesis, 2012, 53, 95-99.	2.9	24
24	Overview of β-Glucans from Laminaria spp.: Immunomodulation Properties and Applications on Biologic Models. International Journal of Molecular Sciences, 2017, 18, 1629.	4.1	24
25	Silver nanoparticles stabilized with propolis show reduced toxicity and potential activity against fungal infections. Future Microbiology, 2020, 15, 521-539.	2.0	24
26	Candida tropicalis Biofilms: Biomass, Metabolic Activity and Secreted Aspartyl Proteinase Production. Mycopathologia, 2016, 181, 217-224.	3.1	22
27	<i>Fusarium oxysporum</i> is an onychomycosis etiopathogenic agent. Future Microbiology, 2018, 13, 1745-1756.	2.0	22
28	Adhesion of Candida biofilm cells to human epithelial cells and polystyrene after treatment with silver nanoparticles. Colloids and Surfaces B: Biointerfaces, 2014, 114, 410-412.	5.0	17
29	An in vitro evaluation of Candida tropicalis infectivity using human cell monolayers. Journal of Medical Microbiology, 2011, 60, 1270-1275.	1.8	16
30	Yeasts from skin colonization are able to cross the acellular dermal matrix. Microbial Pathogenesis, 2018, 117, 1-6.	2.9	15
31	A new small-molecule KRE2 inhibitor against invasive <i>Candida parapsilosis</i> infection. Future Microbiology, 2017, 12, 1283-1295.	2.0	14
32	Adhesión de Pseudomonas aeruginosa y Candida albicans a catéteres urinarios. Revista Iberoamericana De Micologia, 2008, 25, 173-175.	0.9	13
33	Virulence factors and genetic variability of vaginal Candida albicans isolates from HIV-infected women in the post-highly active antiretroviral era. Revista Do Instituto De Medicina Tropical De Sao Paulo, 2017, 59, e44.	1.1	11
34	Characterization of a biofilm formed by <i>Fusarium oxysporum</i> on the human nails. International Journal of Dermatology, 2022, 61, 191-198.	1.0	10
35	Microbiological and virulence aspects of. EXCLI Journal, 2020, 19, 687-704.	0.7	10
36	Relevant insights into onychomycosis' pathogenesis related to the effectiveness topical treatment. Microbial Pathogenesis, 2022, 169, 105640.	2.9	10

MELYSSA NEGRI

#	Article	IF	CITATIONS
37	In vitro interaction of Candida tropicalis biofilm formed on catheter with human cells. Microbial Pathogenesis, 2018, 125, 177-182.	2.9	9
38	Murine model for the evaluation of candiduria caused by Candida tropicalis from biofilm. Microbial Pathogenesis, 2018, 117, 170-174.	2.9	8
39	Adhesion and biofilm formation in artificial saliva and susceptibility of yeasts isolated from chronic kidney patients undergoing haemodialysis. Journal of Medical Microbiology, 2015, 64, 960-966.	1.8	8
40	Synthesis, structural characterization, and prospects for new cobalt (II) complexes with thiocarbamoyl-pyrazoline ligands as promising antifungal agents. Journal of Inorganic Biochemistry, 2020, 213, 111277.	3.5	7
41	Propolis for the Treatment of Onychomycosis. Indian Journal of Dermatology, 2018, 63, 515-517.	0.3	7
42	Candida parapsilosis isolates from burn wounds can penetrate an acellular dermal matrix. Microbial Pathogenesis, 2018, 118, 330-335.	2.9	5
43	Antiproliferative activity and energy calculations of a new triterpene isolated from the palm tree Acrocomia totai. Natural Product Research, 2019, 35, 1-10.	1.8	5
44	Produção de biofilme por leveduras isoladas de cavidade bucal de usuários de prótese dentária. Acta Scientiarum - Health Sciences, 2005, 27, 37.	0.2	4
45	Animal models for the effective development of atrophic vaginitis therapies: possibilities and limitations. Expert Opinion on Drug Discovery, 2014, 9, 269-281.	5.0	4
46	Phytochemical and biological studies of Gomesa recurva R. Br. (Orchidaceae): Chemotaxonomic significance of the presence of phenanthrenoids. Biochemical Systematics and Ecology, 2018, 80, 11-13.	1.3	4
47	Effects of intratracheal Fusarium solani inoculation in immunocompetent mice. Microbial Pathogenesis, 2019, 128, 317-322.	2.9	4
48	Implications of the presence of yeasts in tracheobronchial secretions of critically ill intubated patients. EXCLI Journal, 2019, 18, 801-811.	0.7	4
49	Rhodotorula sp. and Trichosporon sp. are more Virulent After a Mixed Biofilm. Mycopathologia, 2021, , 1.	3.1	4
50	Occurrence of dermatophytoses in patients from the Sistema Único de Saúde. Anais Brasileiros De Dermatologia, 2019, 94, 293-297.	1.1	3
51	The Success of Topical Treatment of Onychomycosis Seems to Be Influenced by Fungal Features. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-7.	1.2	3
52	In Vitro Control of Uropathogenic Microorganisms with the Ethanolic Extract from the Leaves of Cochlospermum regium (Schrank) Pilger. Evidence-based Complementary and Alternative Medicine, 2017, 2017, 1-8.	1.2	2
53	Myracrodruon urundeuva All. aqueous extract: A promising mouthwash for the prevention of oral candidiasis in HIV/AIDS patients. Industrial Crops and Products, 2020, 145, 111950.	5.2	2
54	Different expression levels of <i>ALS</i> and <i>SAP</i> genes contribute to recurrent vulvovaginal candidiasis by <i>Candida albicans</i> . Future Microbiology, 2021, 16, 211-219.	2.0	2

MELYSSA NEGRI

#	Article	IF	CITATIONS
55	Effect of Silicon dioxide coating of acrylic resin surfaces on Candida albicans adhesion. Brazilian Oral Research, 2020, 34, e110.	1.4	2
56	Standardization of resazurin use in susceptibility testing of natural products against yeasts in planktonic cells and in biofilms formation. Acta Scientiarum - Biological Sciences, 0, 43, e55700.	0.3	2
57	Diagnosis and management of a fatal case of sepsis caused by Candida parapsilosis sensu stricto in a neonate with omphalocele. Medical Mycology Case Reports, 2018, 20, 10-14.	1.3	1
58	Cytotoxicity, mutagenicity and acute oral toxicity of aqueous <i>Ocotea minarum</i> leaf extracts. Natural Product Research, 2022, 36, 1138-1142.	1.8	1
59	Human Nails Permeation of an Antifungal Candidate Hydroalcoholic Extract from the Plant Sapindus saponaria L. Rich in Saponins. Molecules, 2021, 26, 236.	3.8	1
60	Antimicrobial and Antibiofilm Activities of 4,5-Dihydro-1H-pyrazole-1-carboximidamide Hydrochloride against Salmonella spp Journal of Chemistry, 2021, 2021, 1-9.	1.9	1
61	First Study of Naturally Formed Fungal Biofilms on the Surface of Intragastric Balloons. Obesity Surgery, 2021, 31, 5348-5357.	2.1	1
62	General and genetic toxicology studies of Aleurites moluccana (L.) Willd. seeds in vitro and in vivo assays. Journal of Ethnopharmacology, 2021, 280, 114478.	4.1	1
63	Insight into the antifungals used to address human infection due to <i>Trichosporon</i> spp.: a scoping review. Future Microbiology, 2021, 16, 1277-1288.	2.0	1
64	Silver Nanoparticles to Fight Candida Coinfection in the Oral Cavity. , 2015, , 283-295.		0
65	NanopartÃculas de prata biossintetizadas por Mikania glomerata Sprengel inibem o crescimento de Candida albicans e Staphylococcus aureus. Arquivos De Ciências Da Saúde, 2018, 25, 46.	0.3	0
66	Evaluation of biofilm formation on acrylic resin surfaces coated with silicon dioxide: an in situ study. Brazilian Oral Research, 2022, 36, e007.	1.4	0