Kjell Sergeant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8172702/publications.pdf

Version: 2024-02-01

117625 133252 4,037 91 34 59 citations h-index g-index papers 93 93 93 5571 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Insights into the molecular regulation of monolignol-derived product biosynthesis in the growing hemp hypocotyl. BMC Plant Biology, $2018,18,1.$	3.6	368
2	Reactive oxygen species and heavy metal stress in plants: Impact on the cell wall and secondary metabolism. Environmental and Experimental Botany, 2019, 161, 98-106.	4.2	302
3	Target or barrier? The cell wall of early- and later-diverging plants vs cadmium toxicity: differences in the response mechanisms. Frontiers in Plant Science, 2015, 6, 133.	3.6	286
4	Copper Trafficking in Plants and Its Implication on Cell Wall Dynamics. Frontiers in Plant Science, 2016, 7, 601.	3.6	254
5	Proteome analysis of nonâ€model plants: A challenging but powerful approach. Mass Spectrometry Reviews, 2008, 27, 354-377.	5. 4	180
6	Gel-Based and Gel-Free Quantitative Proteomics Approaches at a Glance. International Journal of Plant Genomics, 2012, 2012, 1-17.	2.2	148
7	Acute metal stress in <i>Populus tremula</i> × <i>P. alba</i> (717â€1B4 genotype): Leaf and cambial proteome changes induced by cadmium ²⁺ . Proteomics, 2010, 10, 349-368.	2.2	94
8	Matrix-assisted laser desorption ionisation-time-of of-flight mass spectrometry of intact cells allows rapid identification of Burkholderia cepacia complex. Journal of Microbiological Methods, 2008, 75, 279-286.	1.6	92
9	Prolyl oligopeptidase stimulates the aggregation of α-synuclein. Peptides, 2008, 29, 1472-1478.	2.4	76
10	The Roots of Plant Frost Hardiness and Tolerance. Plant and Cell Physiology, 2020, 61, 3-20.	3.1	67
11	The impact of atmospheric composition on plants: A case study of ozone and poplar. Mass Spectrometry Reviews, 2009, 28, 495-516.	5. 4	64
12	Identification of a gene coding for a deglycosylating enzyme in <i>Hypocrea jecorina</i> . FEMS Microbiology Letters, 2010, 303, 9-17.	1.8	57
13	Does long-term cadmium exposure influence the composition of pectic polysaccharides in the cell wall of Medicago sativa stems?. BMC Plant Biology, 2019, 19, 271.	3.6	56
14	Multiplicity of aspartic proteinases from Cynara cardunculus L Planta, 2009, 230, 429-439.	3.2	54
15	Longâ€term cadmium exposure influences the abundance of proteins that impact the cell wall structure in <i>Medicago sativa</i> stems. Plant Biology, 2018, 20, 1023-1035.	3.8	54
16	Human Muscle Proteome Modifications after Acute or Repeated Eccentric Exercises. Medicine and Science in Sports and Exercise, 2011, 43, 2281-2296.	0.4	52
17	Functional Proteome Analysis of the Banana Plant (Musa spp.) Using de Novo Sequence Analysis of Derivatized Peptides. Journal of Proteome Research, 2007, 6, 70-80.	3.7	49
18	One dry summer: A leaf proteome study on the response of oak to drought exposure. Journal of Proteomics, 2011, 74, 1385-1395.	2.4	49

#	Article	IF	CITATIONS
19	A case study of de novo sequence analysis of N-sulfonated peptides by MALDI TOF/TOF mass spectrometry. Journal of the American Society for Mass Spectrometry, 2004, 15, 1838-1852.	2.8	48
20	Exploring chloroplastic changes related to chilling and freezing tolerance during cold acclimation of pea (Pisum sativum L.). Journal of Proteomics, 2013, 80, 145-159.	2.4	48
21	Potato (Solanum tuberosum L.) tuber ageing induces changes in the proteome and antioxidants associated with the sprouting pattern. Journal of Experimental Botany, 2009, 60, 1273-1288.	4.8	47
22	Integrated -Omics: A Powerful Approach to Understanding the Heterogeneous Lignification of Fibre Crops. International Journal of Molecular Sciences, 2013, 14, 10958-10978.	4.1	47
23	Poplar under drought: Comparison of leaf and cambial proteomic responses. Journal of Proteomics, 2011, 74, 1396-1410.	2.4	46
24	Changes in sugar content and proteome of potato in response to cold and dehydration stress and their implications for cryopreservation. Journal of Proteomics, 2014, 98, 99-111.	2.4	46
25	A new method for C-terminal sequence analysis in the proteomic era. Nature Methods, 2005, 2, 193-200.	19.0	45
26	The mTOR target 4Eâ€BP1 contributes to differential protein expression during normoxia and hypoxia through changes in mRNA translation efficiency. Proteomics, 2008, 8, 1019-1028.	2.2	45
27	Pollen development and function under heat stress: from effects to responses. Acta Physiologiae Plantarum, 2019, 41, 1.	2.1	45
28	Wood biosynthesis and typologies: a molecular rhapsody. Tree Physiology, 2014, 34, 839-855.	3.1	44
29	Unravelling the effect of sucrose and cold pretreatment on cryopreservation of potato through sugar analysis and proteomics. Cryobiology, 2015, 71, 432-441.	0.7	43
30	Changes in the Proteome of Medicago sativa Leaves in Response to Long-Term Cadmium Exposure Using a Cell-Wall Targeted Approach. International Journal of Molecular Sciences, 2018, 19, 2498.	4.1	41
31	Identification of the aquaporin gene family in Cannabis sativa and evidence for the accumulation of silicon in its tissues. Plant Science, 2019, 287, 110167.	3.6	41
32	Proteomic changes in leaves of poplar exposed to both cadmium and low-temperature. Environmental and Experimental Botany, 2014, 106, 112-123.	4.2	40
33	Molecular insights into plant desiccation tolerance: transcriptomics, proteomics and targeted metabolite profiling in <i>Craterostigma plantagineum</i> . Plant Journal, 2021, 107, 377-398.	5.7	40
34	Activation, Proteolytic Processing, and Peptide Specificity of Recombinant Cardosin A. Journal of Biological Chemistry, 2005, 280, 13047-13054.	3.4	39
35	Proteomic evaluation of woundâ€healing processes in potato (<i>Solanum tuberosum</i> L.) tuber tissue. Proteomics, 2009, 9, 4154-4175.	2.2	39
36	Differential Protein Expression in Response to Abiotic Stress in Two Potato Species: Solanum commersonii Dun and Solanum tuberosum L International Journal of Molecular Sciences, 2013, 14, 4912-4933.	4.1	39

#	Article	IF	CITATIONS
37	Proteomic changes in rat hippocampus and adrenals following short-term sleep deprivation. Proteome Science, 2008, $6,14.$	1.7	38
38	Pathogenic Leptospires Modulate Protein Expression and Post-translational Modifications in Response to Mammalian Host Signals. Frontiers in Cellular and Infection Microbiology, 2017, 7, 362.	3.9	36
39	MALDI-TOF/TOFde novo sequence analysis of 2-D PAGE-separated proteins fromHalorhodospira halophila, a bacterium with unsequenced genome. Electrophoresis, 2006, 27, 2702-2711.	2.4	35
40	Alteration of plasma membrane-bound redox systems of iron deficient pea roots by chitosan. Journal of Proteomics, 2011, 74, 1437-1449.	2.4	35
41	Proteins associated with cork formation in Quercus suber L. stem tissues. Journal of Proteomics, 2011, 74, 1266-1278.	2.4	35
42	Comparative proteomic analysis of Salmonella tolerance to the biocide active agent triclosan. Journal of Proteomics, 2012, 75, 4505-4519.	2.4	35
43	Optimization of iTRAQ labelling coupled to OFFGEL fractionation as a proteomic workflow to the analysis of microsomal proteins of Medicago truncatula roots. Proteome Science, 2012, 10, 37.	1.7	34
44	Proteomic changes associated with freezeâ€ŧhaw injury and postâ€ŧhaw recovery in onion (<i>Allium) Tj ETQq0</i>	0	Ovgrlock 10 ⁻
45	The use of 2D-electrophoresis and de novo sequencing to characterize inter- and intra-cultivar protein polymorphisms in an allopolyploid crop. Phytochemistry, 2011, 72, 1243-1250.	2.9	33
46	An improved protocol to study the plant cell wall proteome. Frontiers in Plant Science, 2015, 6, 237.	3.6	33
47	Transglutaminase-mediated Intramolecular Cross-linking of Membrane-bound α-Synuclein Promotes Amyloid Formation in Lewy Bodies. Journal of Biological Chemistry, 2009, 284, 27252-27264.	3.4	32
48	Differential impact of chronic ozone exposure on expanding and fully expanded poplar leaves. Tree Physiology, 2010, 30, 1415-1432.	3.1	30
49	De novo sequence analysis of N-terminal sulfonated peptides after in-gel guanidination. Proteomics, 2005, 5, 2369-2380.	2.2	28
50	A physiological and proteomic study of poplar leaves during ozone exposure combined with mild drought. Proteomics, 2013, 13, 1737-1754.	2.2	27
51	Plant Biotic Stress and Proteomics. Current Proteomics, 2010, 7, 275-297.	0.3	24
52	Proteomic and phenotypic analysis of triclosan tolerant verocytotoxigenic Escherichia coli O157:H19. Journal of Proteomics, 2013, 80, 78-90.	2.4	23
53	Combining -Omics to Unravel the Impact of Copper Nutrition on Alfalfa (<i>Medicago sativa</i>) Stem Metabolism. Plant and Cell Physiology, 2016, 57, 407-422.	3.1	23
54	Two Traditional Maize Inbred Lines of Contrasting Technological Abilities Are Discriminated by the Seed Flour Proteome. Journal of Proteome Research, 2013, 12, 3152-3165.	3.7	22

#	Article	IF	CITATIONS
55	Physiological and Proteomic Responses of Different Willow Clones (<i>Salix fragilis</i> X <i>alba</i>) Exposed to Dredged Sediment Contaminated by Heavy Metals. International Journal of Phytoremediation, 2014, 16, 1148-1169.	3.1	22
56	Proteomic analysis of gene expression following hypoxia and reoxygenation reveals proteins involved in the recovery from endoplasmic reticulum and oxidative stress. Radiotherapy and Oncology, 2007, 83, 340-345.	0.6	21
57	A Difference Gel Electrophoresis Study on Thylakoids Isolated from Poplar Leaves Reveals a Negative Impact of Ozone Exposure on Membrane Proteins. Journal of Proteome Research, 2011, 10, 3003-3011.	3.7	20
58	Comparative analysis of Salmonella susceptibility and tolerance to the biocide chlorhexidine identifies a complex cellular defense network. Frontiers in Microbiology, 2014, 5, 373.	3.5	20
59	A multiple-level study of metal tolerance in Salix fragilis and Salix aurita clones. Journal of Proteomics, 2014, 101, 113-129.	2.4	20
60	A method for C-terminal sequence analysis in the proteomic era (proteins cleaved with cyanogen) Tj ETQq0 0 0 r	gBT/Qver 12:0	lock 10 Tf 50
61	From Tolerance to Acute Metabolic Deregulation: Contribution of Proteomics To Dig into the Molecular Response of Alder Species under a Polymetallic Exposure. Journal of Proteome Research, 2013, 12, 5160-5179.	3.7	17
62	Taking Advantage of Nonspecific Trypsin Cleavages for the Identification of Seed Storage Proteins in Cereals. Journal of Proteome Research, 2009, 8, 3182-3190.	3.7	16
63	The Dynamics of the Cell Wall Proteome of Developing Alfalfa Stems. Biology, 2019, 8, 60.	2.8	16
64	Screening for changes in leaf and cambial proteome of Populus tremula×P. alba under different heat constraints. Journal of Plant Physiology, 2012, 169, 1698-1718.	3.5	15
65	Physiological and proteome study of sunflowers exposed to a polymetallic constraint. Proteomics, 2013, 13, 1993-2015.	2.2	15
66	Changes in the proteome and water state in bark and xylem of Hydrangea paniculata during loss of freezing tolerance. Environmental and Experimental Botany, 2014, 106, 99-111.	4.2	15
67	Comparative proteomic analysis of lung tissue from guinea pigs with leptospiral pulmonary haemorrhage syndrome (LPHS) reveals a decrease in abundance of host proteins involved in cytoskeletal and cellular organization. Journal of Proteomics, 2015, 122, 55-72.	2.4	15
68	Large expert-curated database for benchmarking document similarity detection in biomedical literature search. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	3.0	15
69	Abiotic Stress Tolerance in Plants. , 2014, , 23-68.		14
70	Long-Term Cd Exposure Alters the Metabolite Profile in Stem Tissue of Medicago sativa. Cells, 2020, 9, 2707.	4.1	14
71	Novel Insights from Comparative In Silico Analysis of Green Microalgal Cellulases. International Journal of Molecular Sciences, 2018, 19, 1782.	4.1	12
72	Selection of Appropriate Reference Genes for Gene Expression Analysis under Abiotic Stresses in Salix viminalis. International Journal of Molecular Sciences, 2019, 20, 4210.	4.1	12

#	Article	IF	Citations
73	A new chemical approach to differentiate carboxy terminal peptide fragments in cyanogen bromide digests of proteins. Journal of Proteomics, 2010, 73, 1454-1460.	2.4	11
74	Genomic and phenotypic comparison of Bacillus fumarioli isolates from geothermal Antarctic soil and gelatine. Research in Microbiology, 2004, 155, 483-490.	2.1	10
75	Ups and downs in alfalfa: Proteomic and metabolic changes occurring in the growing stem. Plant Science, 2015, 238, 13-25.	3.6	10
76	Repair of sub-lethal freezing damage in leaves of Arabidopsis thaliana. BMC Plant Biology, 2020, 20, 35.	3.6	8
77	Molecular and Biochemical Insights Into Early Responses of Hemp to Cd and Zn Exposure and the Potential Effect of Si on Stress Response. Frontiers in Plant Science, 2021, 12, 711853.	3.6	8
78	Description of the mechanisms underlying geosmin production in Penicillium expansum using proteomics. Journal of Proteomics, 2014, 96, 13-28.	2.4	7
79	Didehydrophenylalanine, an abundant modification in the beta subunit of plant polygalacturonases. PLoS ONE, 2017, 12, e0171990.	2.5	7
80	De novo transcriptome assembly of textile hemp from datasets on hypocotyls and adult plants. Data in Brief, 2019, 27, 104790.	1.0	5
81	Gene expression and metabolite analysis in barley inoculated with net blotch fungus and plant growth-promoting rhizobacteria. Plant Physiology and Biochemistry, 2021, 168, 488-500.	5.8	5
82	A proteome map of the pituitary melanotrope cell activated by blackâ€background adaptation of <i>Xenopus laevis</i> . Proteomics, 2010, 10, 574-580.	2.2	4
83	Systems Biology of Metal Tolerance in Plants: A Case Study on the Effects of Cd Exposure on Two Model Plants. , 2019, , 23-37.		4
84	The Cell Wall Proteome of Craterostigma plantagineum Cell Cultures Habituated to Dichlobenil and Isoxaben. Cells, 2021, 10, 2295.	4.1	4
85	de Novo Sequence Analysis of N-Terminal Sulfonated Peptides After in-Gel Guanidination. Methods in Molecular Biology, 2009, 519, 495-506.	0.9	3
86	151 Identification of Burkholderia cepacia complex using MALDI-TOF mass spectrometry. Journal of Cystic Fibrosis, 2006, 5, S34.	0.7	2
87	Physiological manipulation of cellular activity tunes protein and ultrastructural profiles in a neuroendocrine cell. Journal of Endocrinology, 2008, 198, 607-616.	2.6	2
88	Proteomics as a Toolbox to Study the Metabolic Adjustment of Trees During Exposure to Metal Trace Elements., 2012,, 143-164.		2
89	Automation of C-terminal sequence analysis of 2D-PAGE separated proteins. EuPA Open Proteomics, 2014, 3, 250-261.	2.5	2
90	A 2-D guinea pig lung proteome map. Data in Brief, 2015, 4, 140-145.	1.0	2

 #	Article	IF	CITATIONS
91	C-Terminal Sequence Analysis of 2DE-Separated Proteins. Methods in Molecular Biology, 2009, 519, 469-482.	0.9	0