
Martyn Tranter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8172678/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Monitoring a changing Arctic: Recent advancements in the study of sea ice microbial communities. Ambio, 2022, 51, 318-332.	5.5	12
2	Dissolved Nitrogen Speciation and Concentration During Spring Thaw in the Greenland Ice Sheet Dark Zone: Evidence for Microbial Activity. Frontiers in Earth Science, 2022, 10, .	1.8	2
3	Temporal Variability of Surface Reflectance Supersedes Spatial Resolution in Defining Greenland's Bare-Ice Albedo. Remote Sensing, 2022, 14, 62.	4.0	4
4	Measuring <scp>pH</scp> in low ionic strength glacial meltwaters using ion selective field effect transistor (ISFET) technology. Limnology and Oceanography: Methods, 2021, 19, 222-233.	2.0	10
5	Scientific access into Mercer Subglacial Lake: scientific objectives, drilling operations and initial observations. Annals of Glaciology, 2021, 62, 340-352.	1.4	29
6	Subglacial erosion has the potential to sustain microbial processes in Subglacial Lake Whillans, Antarctica. Communications Earth & Environment, 2021, 2, .	6.8	9
7	Macro-Nutrient Stoichiometry of Glacier Algae From the Southwestern Margin of the Greenland Ice Sheet. Frontiers in Plant Science, 2021, 12, 673614.	3.6	8
8	Mineral phosphorus drives glacier algal blooms on the Greenland Ice Sheet. Nature Communications, 2021, 12, 570.	12.8	50
9	A ferrous wheel beneath the Antarctic Ice Sheet. , 2021, , .		0
10	Enhanced trace element mobilization by Earth's ice sheets. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31648-31659.	7.1	40
11	Physiological Capabilities of Cryoconite Hole Microorganisms. Frontiers in Microbiology, 2020, 11, 1783.	3.5	18
12	Over Winter Microbial Processes in a Svalbard Snow Pack: An Experimental Approach. Frontiers in Microbiology, 2020, 11, 1029.	3.5	4
13	Algal photophysiology drives darkening and melt of the Greenland Ice Sheet. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5694-5705.	7.1	81
14	Algal growth and weathering crust state drive variability in western Greenland Ice Sheet ice albedo. Cryosphere, 2020, 14, 521-538.	3.9	38
15	Glacier algae accelerate melt rates on the south-western Greenland Ice Sheet. Cryosphere, 2020, 14, 309-330.	3.9	78
16	Environmentally clean access to Antarctic subglacial aquatic environments. Antarctic Science, 2020, 32, 329-340.	0.9	13
17	Aerosols and Albedo: Links between Airborne Particulate Matter and Melting of the Greenland Ice Sheet. , 2020, , .		0
18	Dissolved organic nutrients dominate melting surface ice of the Dark Zone (Greenland Ice Sheet). Biogeosciences, 2019, 16, 3283-3296.	3.3	33

#	Article	IF	CITATIONS
19	Switch in chemical weathering caused by the mass balance variability in a Himalayan glacierized basin: a case of Chhota Shigri Glacier. Hydrological Sciences Journal, 2019, 64, 179-189.	2.6	10
20	Bacterial Dynamics in Supraglacial Habitats of the Greenland Ice Sheet. Frontiers in Microbiology, 2019, 10, 1366.	3.5	23
21	Spatial Variability of Antarctic Surface Snow Bacterial Communities. Frontiers in Microbiology, 2019, 10, 461.	3.5	20
22	Darkening of the Greenland Ice Sheet: Fungal Abundance and Diversity Are Associated With Algal Bloom. Frontiers in Microbiology, 2019, 10, 557.	3.5	58
23	Iron in Glacial Systems: Speciation, Reactivity, Freezing Behavior, and Alteration During Transport. Frontiers in Earth Science, 2018, 6, .	1.8	39
24	Rapid development of anoxic niches in supraglacial ecosystems. Arctic, Antarctic, and Alpine Research, 2018, 50, .	1.1	20
25	Tracer-based estimation of temporal variation of water sources: an insight from supra- and subglacial environments. Hydrological Sciences Journal, 2018, 63, 1717-1732.	2.6	6
26	Biolabile ferrous iron bearing nanoparticles in glacial sediments. Earth and Planetary Science Letters, 2018, 493, 92-101.	4.4	53
27	The silicon cycle impacted by past ice sheets. Nature Communications, 2018, 9, 3210.	12.8	29
28	Metagenomic insights into diazotrophic communities across Arctic glacier forefields. FEMS Microbiology Ecology, 2018, 94, .	2.7	36
29	Ice sheets as a missing source of silica to the polar oceans. Nature Communications, 2017, 8, 14198.	12.8	122
30	Trickle or treat: The dynamics of nutrient export from polar glaciers. Hydrological Processes, 2017, 31, 1776-1789.	2.6	27
31	Microbially driven export of labile organic carbon from the Greenland ice sheet. Nature Geoscience, 2017, 10, 360-365.	12.9	75
32	High-Resolution in Situ Measurement of Nitrate in Runoff from the Greenland Ice Sheet. Environmental Science & Technology, 2017, 51, 12518-12527.	10.0	35
33	Glacier shrinkage driving global changes in downstream systems. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9770-9778.	7.1	381
34	Algae Drive Enhanced Darkening of Bare Ice on the Greenland Ice Sheet. Geophysical Research Letters, 2017, 44, 11,463.	4.0	101
35	Dark ice dynamics of the south-west Greenland Ice Sheet. Cryosphere, 2017, 11, 2491-2506.	3.9	58
36	Quantifying bioalbedo: a new physically based model and discussion of empirical methods for characterising biological influence on ice and snow albedo. Cryosphere, 2017, 11, 2611-2632.	3.9	61

#	Article	IF	CITATIONS
37	Microbiology of Subglacial Environments. , 2017, , 83-110.		37
38	Glacier Biogeochemistry. Geochemical Perspectives, 2017, , 173-339.	4.5	10
39	Identification and analysis of low-molecular-weight dissolved organic carbon in subglacial basal ice ecosystems by ion chromatography. Biogeosciences, 2016, 13, 3833-3846.	3.3	11
40	Potentially bioavailable iron delivery by iceberg-hosted sediments and atmospheric dust to the polar oceans. Biogeosciences, 2016, 13, 3887-3900.	3.3	65
41	Microbial dynamics in a High Arctic glacier forefield: a combined field, laboratory, and modelling approach. Biogeosciences, 2016, 13, 5677-5696.	3.3	36
42	Sources, cycling and export of nitrogen on the Greenland Ice Sheet. Biogeosciences, 2016, 13, 6339-6352.	3.3	64
43	Source of Lake Vostok Cations Constrained with Strontium Isotopes. Frontiers in Earth Science, 2016, 4, .	1.8	5
44	Chemical sensors for in situ data collection in the cryosphere. TrAC - Trends in Analytical Chemistry, 2016, 82, 348-357.	11.4	15
45	Microbiology: lessons from a first attempt at Lake Ellsworth. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20140291.	3.4	15
46	Clean subglacial access: prospects for future deep hot-water drilling. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20140304.	3.4	19
47	The Greenland Ice Sheet as a hot spot of phosphorus weathering and export in the Arctic. Global Biogeochemical Cycles, 2016, 30, 191-210.	4.9	137
48	Response of Antarctic cryoconite microbial communities to light. FEMS Microbiology Ecology, 2016, 92, fiw076.	2.7	24
49	Subglacial Lake Whillans microbial biogeochemistry: a synthesis of current knowledge. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20140290.	3.4	64
50	Grand challenge for low temperature and pressure geochemistry—sparks in the dark, on Earth, Mars, and throughout the Galaxy. Frontiers in Earth Science, 2015, 3, .	1.8	5
51	Cryospheric ecosystems: a synthesis of snowpack and glacial research. Environmental Research Letters, 2015, 10, 110201.	5.2	45
52	Stable microbial community composition on the Greenland Ice Sheet. Frontiers in Microbiology, 2015, 6, 193.	3.5	56
53	Rock comminution as a source of hydrogen for subglacial ecosystems. Nature Geoscience, 2015, 8, 851-855.	12.9	82
54	What Darkens the Greenland Ice Sheet?. Eos, 2015, 96, .	0.1	11

#	Article	IF	CITATIONS
55	Greenland Ice Sheet exports labile organic carbon to the Arctic oceans. Biogeosciences, 2014, 11, 4015-4028.	3.3	107
56	Antarctic ice sheet fertilises the Southern Ocean. Biogeosciences, 2014, 11, 2635-2643.	3.3	88
57	Biological impact on Greenland's albedo. Nature Geoscience, 2014, 7, 691-691.	12.9	51
58	Spring thaw ionic pulses boost nutrient availability and microbial growth in entombed Antarctic Dry Valley cryoconite holes. Frontiers in Microbiology, 2014, 5, 694.	3.5	44
59	Glacial flours as a potential source of Fe(II) and Fe(III) to polar waters. Biogeochemistry, 2014, 118, 443-452.	3.5	20
60	Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nature Communications, 2014, 5, 3929.	12.8	208
61	Microbes eat rock under ice. Nature, 2014, 512, 256-257.	27.8	5
62	A microbial driver of chemical weathering in glaciated systems. Geology, 2013, 41, 215-218.	4.4	95
63	Do Cryoconite Holes have the Potential to be Significant Sources of C, N, and P to Downstream Depauperate Ecosystems of Taylor Valley, Antarctica?. Arctic, Antarctic, and Alpine Research, 2013, 45, 440-454.	1.1	67
64	A Pb isotope tracer of ocean-ice sheet interaction: the record from the NE Atlantic during the Last Glacial/Interglacial cycle. Quaternary Science Reviews, 2013, 82, 133-144.	3.0	12
65	Viral impacts on bacterial communities in Arctic cryoconite. Environmental Research Letters, 2013, 8, 045021.	5.2	43
66	Environmental factors influencing diatom communities in Antarctic cryoconite holes. Environmental Research Letters, 2013, 8, 045006.	5.2	36
67	The potential role of the Antarctic Ice Sheet in global biogeochemical cycles. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2013, 104, 55-67.	0.3	65
68	Drainageâ€system development in consecutive melt seasons at a polythermal, Arctic glacier, evaluated by flowâ€recession analysis and linearâ€reservoir simulation. Water Resources Research, 2013, 49, 4230-4243.	4.2	8
69	Ancient organics reign on glaciers. Nature Geoscience, 2012, 5, 167-168.	12.9	0
70	Controls on the autochthonous production and respiration of organic matter in cryoconite holes on high Arctic glaciers. Journal of Geophysical Research, 2012, 117, .	3.3	51
71	Methanogenic potential of Arctic and Antarctic subglacial environments with contrasting organic carbon sources. Global Change Biology, 2012, 18, 3332-3345.	9.5	82
72	Limitations to a microbial iron cycle on Mars. Planetary and Space Science, 2012, 72, 116-128.	1.7	32

#	Article	IF	CITATIONS
73	Continental weathering fluxes during the last glacial/interglacial cycle: insights from the marine sedimentary Pb isotope record at Orphan Knoll, NW Atlantic. Quaternary Science Reviews, 2012, 38, 89-99.	3.0	30
74	Theoretical framework and diagnostic criteria for the identification of palaeo-subglacial lakes. Quaternary Science Reviews, 2012, 53, 88-110.	3.0	35
75	Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet. ISME Journal, 2012, 6, 2302-2313.	9.8	190
76	Potential methane reservoirs beneath Antarctica. Nature, 2012, 488, 633-637.	27.8	184
77	Microbial nitrogen cycling on the Greenland Ice Sheet. Biogeosciences, 2012, 9, 2431-2442.	3.3	59
78	Clean access, measurement, and sampling of Ellsworth Subglacial Lake: A method for exploring deep Antarctic subglacial lake environments. Reviews of Geophysics, 2012, 50, .	23.0	63
79	Determination of Dissolved Oxygen in the Cryosphere: A Comprehensive Laboratory and Field Evaluation of Fiber Optic Sensors. Environmental Science & Technology, 2011, 45, 700-705.	10.0	18
80	Nitrogen fixation on Arctic glaciers, Svalbard. Journal of Geophysical Research, 2011, 116, .	3.3	91
81	The hydrology of the proglacial zone of a high-Arctic glacier(Finsterwalderbreen, Svalbard): Sub-surface water fluxes and complete water budget. Journal of Hydrology, 2011, 406, 88-96.	5.4	22
82	Highâ€resolution monitoring reveals dissolved oxygen dynamics in an Antarctic cryoconite hole. Hydrological Processes, 2011, 25, 2868-2877.	2.6	25
83	Subglacial environments and the search for life beyond the Earth. Geophysical Monograph Series, 2011, , 129-148.	0.1	10
84	Solute in Glacial Meltwaters. Encyclopedia of Earth Sciences Series, 2011, , 1074-1077.	0.1	0
85	Hydrochemistry of ice stream beds—evaporitic or microbial effects?. Hydrological Processes, 2010, 24, 517-523.	2.6	19
86	Dynamic behaviour of supraglacial lakes on cold polar glaciers: Canada Glacier, McMurdo Dry Valleys, Antarctica. Journal of Glaciology, 2010, 56, 366-368.	2.2	19
87	Carbon fluxes through bacterial communities on glacier surfaces. Annals of Glaciology, 2010, 51, 32-40.	1.4	104
88	Phosphatase activity and organic phosphorus turnover on a high Arctic glacier. Biogeosciences, 2009, 6, 913-922.	3.3	41
89	The hydrology of the proglacial zone of a high-Arctic glacier (Finsterwalderbreen, Svalbard): Atmospheric and surface water fluxes. Journal of Hydrology, 2009, 378, 150-160.	5.4	24
90	Schwertmannite in wet, acid, and oxic microenvironments beneath polar and polythermal glaciers. Geology, 2009, 37, 431-434.	4.4	46

#	Article	IF	CITATIONS
91	Speciation, phase association and potential bioavailability of phosphorus on a Svalbard glacier. Biogeochemistry, 2008, 90, 1-13.	3.5	52
92	Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt. Geochemical Transactions, 2008, 9, 7.	0.7	194
93	Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input. Environmental Microbiology, 2008, 10, 2172-2178.	3.8	119
94	Bacteria in Subglacial Environments. , 2008, , 51-71.		40
95	Inputs of glacially derived dissolved and colloidal iron to the coastal ocean and implications for primary productivity. Global Biogeochemical Cycles, 2008, 22, .	4.9	109
96	Temporal variations in physical and chemical features of cryoconite holes on Canada Glacier, McMurdo Dry Valleys, Antarctica. Journal of Geophysical Research, 2008, 113, .	3.3	57
97	Introduction to special section on Microcosms in Ice: The Biogeochemistry of Cryoconite Holes. Journal of Geophysical Research, 2008, 113, .	3.3	9
98	GLACIAL ECOSYSTEMS. Ecological Monographs, 2008, 78, 41-67.	5.4	435
99	Nanoparticulate bioavailable iron minerals in icebergs and glaciers. Mineralogical Magazine, 2008, 72, 345-348.	1.4	33
100	Evidence for widespread anoxia in the proglacial zone of an Arctic glacier. Chemical Geology, 2007, 243, 1-15.	3.3	38
101	Laboratory investigation of inorganic carbon uptake by cryoconite debris from Werenskioldbreen, Svalbard. Journal of Geophysical Research, 2007, 112, .	3.3	41
102	Biogeochemical evolution of cryoconite holes on Canada Glacier, Taylor Valley, Antarctica. Journal of Geophysical Research, 2007, 112, .	3.3	70
103	Contributions from glacially derived sediment to the global iron (oxyhydr)oxide cycle: Implications for iron delivery to the oceans. Geochimica Et Cosmochimica Acta, 2006, 70, 2765-2780.	3.9	216
104	Limnological conditions in Subglacial Lake Vostok, Antarctica. Limnology and Oceanography, 2006, 51, 2485-2501.	3.1	169
105	Incorporation of particulates into accreted ice above subglacial Vostok lake, Antarctica. Annals of Glaciology, 2005, 40, 145-150.	1.4	19
106	The chemical composition of runoff from Canada Glacier, Antarctica: implications for glacier hydrology duringa cool summer. Annals of Glaciology, 2005, 40, 15-19.	1.4	12
107	Interannual variability in the spatial distribution of winter accumulation at a high-Arctic glacier (Finsterwalderbreen, Svalbard), and its relationship with topography. Annals of Glaciology, 2005, 42, 243-248.	1.4	19
108	Hydrological controls on microbial communities in subglacial environments. Hydrological Processes, 2005, 19, 995-998.	2.6	121

#	Article	IF	CITATIONS
109	The Geochemistry of Supraglacial Streams of Canada Glacier, Taylor Valley (Antarctica), and their Evolution into Proglacial Waters. Aquatic Geochemistry, 2005, 11, 391-412.	1.3	59
110	The Biodiversity and Biogeochemistry of Cryoconite Holes from McMurdo Dry Valley Glaciers, Antarctica. Arctic, Antarctic, and Alpine Research, 2004, 36, 84-91.	1.1	154
111	The characteristics and formation of a highâ€arctic proglacial icing. Geografiska Annaler, Series A: Physical Geography, 2004, 86, 265-275.	1.5	30
112	Extreme hydrochemical conditions in natural microcosms entombed within Antarctic ice. Hydrological Processes, 2004, 18, 379-387.	2.6	113
113	Kinetic isotopic fractionation during carbonate dissolution in laboratory experiments: Implications for detection of microbial CO2 signatures using l´13C-DIC. Geochimica Et Cosmochimica Acta, 2004, 68, 4309-4317.	3.9	48
114	Stable isotope evidence for microbial sulphate reduction at the bed of a polythermal high Arctic glacier. Earth and Planetary Science Letters, 2004, 219, 341-355.	4.4	118
115	Evolution of cryoconite holes and their contribution to meltwater runoff from glaciers in the McMurdo Dry Valleys, Antarctica. Journal of Glaciology, 2004, 50, 35-45.	2.2	168
116	Is Vostok lake in steady state?. Annals of Glaciology, 2004, 39, 490-494.	1.4	7
117	The hydrochemistry of Lake Vostok and the potential for life in Antarctic subglacial lakes. Hydrological Processes, 2003, 17, 795-814.	2.6	68
118	Suspended sediment fluxes in a high-Arctic glacierised catchment: implications for fluvial sediment storage. Sedimentary Geology, 2003, 162, 105-117.	2.1	70
119	Direct effect of ice sheets on terrestrial bicarbonate, sulphate and base cation fluxes during the last glacial cycle: minimal impact on atmospheric CO2 concentrations. Chemical Geology, 2002, 190, 33-44.	3.3	56
120	The hydrochemistry of Bayelva, a high Arctic proglacial stream in Svalbard. Journal of Hydrology, 2002, 257, 91-114.	5.4	79
121	Groundwater hydrochemistry in the active layer of the proglacial zone, Finsterwalderbreen, Svalbard. Journal of Hydrology, 2002, 269, 208-223.	5.4	88
122	Modelled glacial and non-glacial HCO3â^', Si and Ge fluxes since the LGM: little potential for impact on atmospheric CO2 concentrations and a potential proxy of continental chemical erosion, the marine Ge/Si ratio. Global and Planetary Change, 2002, 33, 139-153.	3.5	38
123	Sulphide oxidation under partially anoxic conditions at the bed of the Haut Glacier d'Arolla, Switzerland. Hydrological Processes, 2002, 16, 2363-2368.	2.6	110
124	Geochemical weathering at the bed of Haut Glacier d'Arolla, Switzerland?a new model. Hydrological Processes, 2002, 16, 959-993.	2.6	232
125	The Mcmurdo Dry Valleys Longâ€Term Ecological Rsearch Program: New understanding of the biogeochemistry of the Dry Valley Lakes: A review1. Polar Geography, 2001, 25, 202-217.	1.9	16
126	Evidence for seasonal subglacial outburst events at a polythermal glacier, Finsterwalderbreen, Svalbard. Hydrological Processes, 2001, 15, 2259-2280.	2.6	41

#	Article	IF	CITATIONS
127	Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature, 2001, 414, 603-609.	27.8	240
128	Enhancement of glacial solute fluxes in the proglacial zone of a polythermal glacier. Journal of Glaciology, 2001, 47, 378-386.	2.2	50
129	Contemporary rates of chemical denudation and atmospheric CO2 sequestration in glacier basins: an Arctic perspective. Earth Surface Processes and Landforms, 2000, 25, 1447-1471.	2.5	122
130	Hydrochemistry of meltwaters draining a polythermal-based, high-Arctic glacier, south Svalbard: II. Winter and early Spring. Hydrological Processes, 2000, 14, 1767-1786.	2.6	55
131	Prediction of episodic acidification in North-eastern USA: an empirical/mechanistic approach. Hydrological Processes, 1999, 13, 1181-1195.	2.6	17
132	Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling. Geology, 1999, 27, 107.	4.4	236
133	Suspended sediment yield and transfer processes in a small High-Arctic glacier basin, Svalbard. , 1998, 12, 73-86.		70
134	Solute in high arctic glacier snow cover and its impact on runoff chemistry. Annals of Glaciology, 1998, 26, 156-160.	1.4	6
135	Solute in high arctic glacier snow cover and its impact on runoff chemistry. Annals of Glaciology, 1998, 26, 156-160.	1.4	13
136	Snowmelt modelling on signy island, South Orkney Islands. Annals of Glaciology, 1998, 26, 161-166.	1.4	6
137	Snowmelt modelling on signy island, South Orkney Islands. Annals of Glaciology, 1998, 26, 161-166.	1.4	4
138	VARIABILITY IN THE CHEMICAL COMPOSITION OFIN SITU SUBGLACIAL MELTWATERS. Hydrological Processes, 1997, 11, 59-77.	2.6	77
139	The rate of chemical weathering beneath a quiescent, surge-type, polythermal-based glacier, southern Spitsbergen, Svalbard. Annals of Glaciology, 1997, 24, 27-31.	1.4	9
140	The weathering of aeolian dusts in alpine snows. Atmospheric Environment, 1996, 30, 1317-1325.	4.1	22
141	Use of factor analysis to investigate processes controlling the chemical composition of four streams in the Adirondack Mountains, New York. Journal of Hydrology, 1996, 185, 297-316.	5.4	60
142	Comment on "The Episodic Acidification of Adirondack Lakes During Snowmelt―by Douglas A. Schaefer et al. Water Resources Research, 1996, 32, 491-493.	4.2	2
143	HYDROCHEMISTRY AS AN INDICATOR OF SUBGLACIAL DRAINAGE SYSTEM STRUCTURE: A COMPARISON OF ALPINE AND SUB-POLAR ENVIRONMENTS. Hydrological Processes, 1996, 10, 541-556.	2.6	82
144	HYDROCHEMISTRY AS AN INDICATOR OF SUBGLACIAL DRAINAGE SYSTEM STRUCTURE: A COMPARISON OF ALPINE AND SUBâ€₽OLAR ENVIRONMENTS. Hydrological Processes, 1996, 10, 541-556.	2.6	1

#	Article	IF	CITATIONS
145	Comments on the use of chemically based mixing models in glacier hydrology. Journal of Glaciology, 1995, 41, 241-246.	2.2	4
146	Rates of chemical denudation and CO drawdown in a glacier-covered alpine catchment. Geology, 1995, 23, 61.	4.4	167
147	Comments on the use of chemically based mixing models in glacier hydrology. Journal of Glaciology, 1995, 41, 241-246.	2.2	50
148	A Two-Component Mixing Model for Predicting Regional Episodic Acidification of Surface Waters During Spring Snowmelt Periods. Water Resources Research, 1995, 31, 1011-1021.	4.2	30
149	Episodic acidification of freshwater systems in Canada — Physical and geochemical processes. Water, Air, and Soil Pollution, 1994, 72, 19-39.	2.4	19
150	Dissolved oxygen variations in alpine glacial meltwaters. Earth Surface Processes and Landforms, 1994, 19, 247-253.	2.5	19
151	Sampling strategy to describe the temporal hydrochemical characteristics of an alpine proglacial stream. Hydrological Processes, 1994, 8, 1-25.	2.6	20
152	Impact of post-mixing chemical reactions on the major ion chemistry of bulk meltwaters draining the haut glacier d'arolla, valais, Switzerland. Hydrological Processes, 1994, 8, 465-480.	2.6	85
153	Estuarine mixing of clay minerals in the Solent region, southern England. Sedimentary Geology, 1994, 92, 241-255.	2.1	7
154	Distribution and Transport of Chemical Constituents in the Clyde Estuary. Estuarine, Coastal and Shelf Science, 1994, 39, 105-126.	2.1	36
155	Multi-element geochemical analysis of snow samples: Use of discriminant analysis in interpreting the results. Environmental Monitoring and Assessment, 1993, 27, 159-174.	2.7	0
156	The character and causes of a pronounced snowmelt-induced â€~acidic episode' in a stream in a Scottish subarctic catchment. Journal of Hydrology, 1993, 146, 267-300.	5.4	19
157	A conceptual model of solute acquisition by Alpine glacial meltwaters. Journal of Glaciology, 1993, 39, 573-581.	2.2	191
158	A conceptual model of solute acquisition by Alpine glacial meltwaters. Journal of Glaciology, 1993, 39, 573-581.	2.2	43
159	Use of electrothermal vaporization inductively coupled plasma mass spectrometry for single-element and multi-element determinations. Analytical Proceedings, 1992, 29, 284-296.	0.4	11
160	Trace elements in snow samples from the Scottish Highlands: Sources and dissolved/particulate distributions. Atmospheric Environment Part A General Topics, 1992, 26, 393-401.	1.3	44
161	Heavily-contaminated snowfalls in the remote Scottish Highlands: A consequence of regional-scale mixing and transport. Atmospheric Environment Part A General Topics, 1992, 26, 95-112.	1.3	22
162	â€~Acidic episodes' in surface waters in Europe. Journal of Hydrology, 1992, 132, 25-69.	5.4	68

#	Article	IF	CITATIONS
163	A laboratory investigation of the leaching of solute from snowpack by rainfall. Hydrological Processes, 1992, 6, 169-178.	2.6	24
164	The composition of the englacial and subglacial component in bulk meltwaters draining the Gornergletscher, Switzerland. Journal of Glaciology, 1991, 37, 59-66.	2.2	57
165	Controls on the Composition of Snowmelt. , 1991, , 241-271.		28
166	The composition of the englacial and subglacial component in bulk meltwaters draining the Gornergletscher, Switzerland. Journal of Glaciology, 1991, 37, 59-66.	2.2	6
167	Trace Metal and Rare Earth Content of Black Precipitation Events. Energy Sources Part A Recovery, Utilization, and Environmental Effects, 1990, 12, 363-369.	0.5	1
168	The solute and particulate chemistry of background versus a polluted, black snowfall on the Cairngorm mountains, Scotland. Atmospheric Environment, 1989, 23, 395-401.	1.0	9
169	Geochemical studies in a remote scottish upland catchment II. Streamwater chemistry during snow-melt. Water, Air, and Soil Pollution, 1989, 43, 231-248.	2.4	21
170	Trace-element studies in a remote scottish upland catchment. Water, Air, and Soil Pollution, 1988, 37, 255-271.	2.4	17
171	The impact of a single black snowfall on streamwater chemistry in the Scottish Highlands. Nature, 1988, 332, 826-829.	27.8	29
172	The loss of halide and sulphate ions from melting ice. Water Research, 1988, 22, 693-700.	11.3	19
173	Observations of the preferential loss of major ions from melting snow and laboratory ice. Water Research, 1987, 21, 1279-1286.	11.3	67
174	The composition of acidic meltwaters during snowmelt in the Scottish Highlands. Water, Air, and Soil Pollution, 1987, 36, 75-90.	2.4	26
175	Spatial variability in the chemical composition of snowcover in a small, remote, scottish catchment. Atmospheric Environment, 1987, 21, 853-862.	1.0	33
176	The composition of snowfall, snowpack and meltwater in the Scottish highlands-evidence for preferential elution. Atmospheric Environment, 1986, 20, 517-525.	1.0	120
177	Nineteenth century black Scottish showers. Atmospheric Environment, 1986, 20, 1053-1057.	1.0	6
178	The chemical composition of snow at a rural upland site in mid-wales. Atmospheric Environment, 1985, 19, 841.	1.0	0
179	Black acidic snow in the remote Scottish Highlands. Nature, 1984, 312, 58-61.	27.8	73
180	The biogeochemistry and hydrology of McMurdo Dry Valley glaciers: is there life on martian ice now?. , 0, , 195-220.		7

11

#	Article	IF	CITATIONS
181	Glacial Chemical Weathering, Runoff Composition and Solute Fluxes. , 0, , 71-75.		4
182	Greenland Ice Sheet Surfaces Colonized by Microbial Communities Emit Volatile Organic Compounds. Frontiers in Microbiology, 0, 13, .	3.5	1