Simon C O Glover

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/817256/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The "Maggie―filament: Physical properties of a giant atomic cloud. Astronomy and Astrophysics, 2022, 657, A1.	5.1	8
2	PHANCS–MUSE: The Hâ€ [–] II region luminosity function of local star-forming galaxies. Astronomy and Astrophysics, 2022, 658, A188.	5.1	34
3	Planetary nebula luminosity function distances for 19 galaxies observed by PHANGS–MUSE. Monthly Notices of the Royal Astronomical Society, 2022, 511, 6087-6109.	4.4	15
4	The PHANGS-MUSE survey. Astronomy and Astrophysics, 2022, 659, A191.	5.1	96
5	A CO isotopologue Line Atlas within the Whirlpool galaxy Survey (CLAWS). Astronomy and Astrophysics, 2022, 662, A89.	5.1	9
6	Emission-line diagnostics of H <scp>ii</scp> regions using conditional invertible neural networks. Monthly Notices of the Royal Astronomical Society, 2022, 512, 617-647.	4.4	8
7	The PHANGS-HST Survey: Physics at High Angular Resolution in Nearby Galaxies with the Hubble Space Telescope. Astrophysical Journal, Supplement Series, 2022, 258, 10.	7.7	58
8	A tale of two DIGs: The relative role of Hâ€II regions and low-mass hot evolved stars in powering the diffuse ionised gas (DIG) in PHANGS–MUSE galaxies. Astronomy and Astrophysics, 2022, 659, A26.	5.1	51
9	Trapping of H <scp>ii</scp> regions in Population III star formation. Monthly Notices of the Royal Astronomical Society, 2022, 512, 116-136.	4.4	16
10	The Gas–Star Formation Cycle in Nearby Star-forming Galaxies. II. Resolved Distributions of CO and Hα Emission for 49 PHANGS Galaxies. Astrophysical Journal, 2022, 927, 9.	4.5	19
11	Low-J CO Line Ratios from Single-dish CO Mapping Surveys and PHANGS-ALMA. Astrophysical Journal, 2022, 927, 149.	4.5	46
12	Tracing stars in Milky Way satellites with <scp>a-sloth</scp> . Monthly Notices of the Royal Astronomical Society, 2022, 513, 934-950.	4.4	10
13	Is the molecular KS relationship universal down to low metallicities?. Monthly Notices of the Royal Astronomical Society, 2022, 510, 4146-4165.	4.4	5
14	Fragmentation-induced starvation in Population III star formation: a resolution study. Monthly Notices of the Royal Astronomical Society, 2022, 510, 4019-4030.	4.4	17
15	Metal Mixing in Minihalos: The Descendants of Pair-instability Supernovae. Astrophysical Journal, 2022, 929, 119.	4.5	12
16	The Galactic dynamics revealed by the filamentary structure in atomic hydrogen emission. Astronomy and Astrophysics, 2022, 662, A96.	5.1	15
17	Linking stellar populations to H II regions across nearby galaxies. Astronomy and Astrophysics, 2022, 662, L6.	5.1	11
18	Effect of the cosmological transition to metal-enriched star formation on the hydrogen 21-cm signal. Monthly Notices of the Royal Astronomical Society, 2022, 514, 4433-4449.	4.4	18

#	Article	IF	CITATIONS
19	The signature of large-scale turbulence driving on the structure of the interstellar medium. Monthly Notices of the Royal Astronomical Society, 2022, 514, 3670-3684.	4.4	7
20	Molecular Cloud Populations in the Context of Their Host Galaxy Environments: A Multiwavelength Perspective. Astronomical Journal, 2022, 164, 43.	4.7	31
21	Distances to PHANGS galaxies: New tip of the red giant branch measurements and adopted distances. Monthly Notices of the Royal Astronomical Society, 2021, 501, 3621-3639.	4.4	106
22	On the duration of the embedded phase of star formation. Monthly Notices of the Royal Astronomical Society, 2021, 504, 487-509.	4.4	61
23	SILCC VI – Multiphase ISM structure, stellar clustering, and outflows with supernovae, stellar winds, ionizing radiation, and cosmic rays. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1039-1061.	4.4	61
24	Applying the Tremaine–Weinberg Method to Nearby Galaxies: Stellar-mass-based Pattern Speeds and Comparisons with ISM Kinematics. Astronomical Journal, 2021, 161, 185.	4.7	23
25	FirstLight IV: diversity in sub-L* galaxies at cosmic dawn. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4472-4480.	4.4	4
26	Star formation scaling relations at â^1⁄4100 pc from PHANGS: Impact of completeness and spatial scale. Astronomy and Astrophysics, 2021, 650, A134.	5.1	50
27	The Organization of Cloud-scale Gas Density Structure: High-resolution CO versus 3.6 μm Brightness Contrasts in Nearby Galaxies. Astrophysical Journal, 2021, 913, 113.	4.5	10
28	Dense molecular gas properties on 100Âpc scales across the disc of NGCÂ3627. Monthly Notices of the Royal Astronomical Society, 2021, 506, 963-988.	4.4	24
29	Simulations of the star-forming molecular gas in an interacting M51-like galaxy: cloud population statistics. Monthly Notices of the Royal Astronomical Society, 2021, 505, 5438-5459.	4.4	14
30	The filamentary structures in the CO emission toward the Milky Way disk. Astronomy and Astrophysics, 2021, 651, L4.	5.1	6
31	The influence of streaming velocities and Lyman–Werner radiation on the formation of the first stars. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1775-1787.	4.4	39
32	PHANGS–ALMA Data Processing and Pipeline. Astrophysical Journal, Supplement Series, 2021, 255, 19.	7.7	79
33	Stellar structures, molecular gas, and star formation across the PHANGS sample of nearby galaxies. Astronomy and Astrophysics, 2021, 656, A133.	5.1	53
34	Giant molecular cloud catalogues for PHANGS-ALMA: methods and initial results. Monthly Notices of the Royal Astronomical Society, 2021, 502, 1218-1245.	4.4	75
35	The 2D metallicity distribution and mixing scales of nearby galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 509, 1303-1322.	4.4	22
36	Comparing the pre-SNe feedback and environmental pressures for 6000 H <scp>ii</scp> regions across 19 nearby spiral galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5362-5389.	4.4	27

#	Article	IF	CITATIONS
37	Pre-supernova feedback mechanisms drive the destruction of molecular clouds in nearby star-forming disc galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 509, 272-288.	4.4	65
38	Globular Clusters and Streaming Velocities: Testing the New Formation Channel in High-resolution Cosmological Simulations. Astrophysical Journal, 2021, 922, 193.	4.5	8
39	PHANCS–ALMA: Arcsecond CO(2–1) Imaging of Nearby Star-forming Galaxies. Astrophysical Journal, Supplement Series, 2021, 257, 43.	7.7	161
40	Bright, relatively isolated star clusters in PHANGS– <i>HST</i> galaxies: Aperture corrections, quantitative morphologies, and comparison with synthetic stellar population models. Monthly Notices of the Royal Astronomical Society, 2021, 510, 32-53.	4.4	16
41	Dynamically Driven Inflow onto the Galactic Center and its Effect upon Molecular Clouds. Astrophysical Journal, 2021, 922, 79.	4.5	16
42	PHANCS-HST: new methods for star cluster identification in nearby galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 509, 4094-4127.	4.4	25
43	The lifecycle of molecular clouds in nearby star-forming disc galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 493, 2872-2909.	4.4	178
44	The Cloud Factory I: Generating resolved filamentary molecular clouds from galactic-scale forces. Monthly Notices of the Royal Astronomical Society, 2020, 492, 1594-1613.	4.4	67
45	A minimum dilution scenario for supernovae and consequences for extremely metal-poor stars. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3703-3712.	4.4	25
46	Measuring the mixing scale of the ISM within nearby spiral galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 499, 193-209.	4.4	44
47	The role of galactic dynamics in shaping the physical properties of giant molecular clouds in Milky Way-like galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 498, 385-429.	4.4	35
48	warpfield population synthesis: the physics of (extra-)Galactic star formation and feedback-driven cloud structure and emission from sub-to-kpc scales. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3193-3214.	4.4	21
49	Shape and spin of minihaloes – II. The effect of streaming velocities. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4839-4852.	4.4	7
50	SPRAI-II: multifrequency radiative transfer for variable gas densities. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3594-3609.	4.4	6
51	LECO – II. A 3 mm molecular line study covering 100 pc of one of the most actively star-forming portions within the Milky Way disc. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1972-2001.	4.4	30
52	Simulations of the Milky Way's Central Molecular Zone – II. Star formation. Monthly Notices of the Royal Astronomical Society, 2020, 497, 5024-5040.	4.4	48
53	Less than the sum of its parts: the dust-corrected H <i>α</i> luminosity of star-forming galaxies explored at different spatial resolutions with MaNGA and MUSE. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4205-4221.	4.4	9
54	Physical Processes in Star Formation. Space Science Reviews, 2020, 216, 1.	8.1	43

#	Article	IF	CITATIONS
55	A Model for the Onset of Self-gravitation and Star Formation in Molecular Gas Governed by Galactic Forces. II. The Bottleneck to Collapse Set by Cloud–Environment Decoupling. Astrophysical Journal, 2020, 892, 73.	4.5	27
56	When Gas Dynamics Decouples from Galactic Rotation: Characterizing ISM Circulation in Disk Galaxies. Astrophysical Journal, 2020, 892, 94.	4.5	7
57	WARPFIELD-EMP: The self-consistent prediction of emission lines from evolving H ii regions in dense molecular clouds. Monthly Notices of the Royal Astronomical Society, 2020, 496, 339-363.	4.4	29
58	The headlight cloud in NGC 628: An extreme giant molecular cloud in a typical galaxy disk. Astronomy and Astrophysics, 2020, 634, A121.	5.1	32
59	Ubiquitous velocity fluctuations throughout the molecular interstellar medium. Nature Astronomy, 2020, 4, 1064-1071.	10.1	38
60	Formation sites of PopulationÂIII star formation: The effects of different levels of rotation and turbulence on the fragmentation behaviour of primordial gas. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1871-1893.	4.4	52
61	Cloud formation in the atomic and molecular phase: H†I self absorption (HISA) towards a giant molecular filament. Astronomy and Astrophysics, 2020, 634, A139.	5.1	27
62	Simulations of the star-forming molecular gas in an interacting M51-like galaxy. Monthly Notices of the Royal Astronomical Society, 2020, 492, 2973-2995.	4.4	51
63	Efficacy of early stellar feedback in low gas surface density environments. Monthly Notices of the Royal Astronomical Society, 2020, 491, 2088-2103.	4.4	28
64	Dynamical Equilibrium in the Molecular ISM in 28 Nearby Star-forming Galaxies. Astrophysical Journal, 2020, 892, 148.	4.5	88
65	The HI/OH/Recombination line survey of the inner Milky Way (THOR): data release 2 and Hâ€I overview. Astronomy and Astrophysics, 2020, 634, A83.	5.1	52
66	Synthetic observations of spiral arm tracers of a simulated Milky Way analog. Astronomy and Astrophysics, 2020, 642, A201.	5.1	9
67	Dynamical cloud formation traced by atomic and molecular gas. Astronomy and Astrophysics, 2020, 638, A44.	5.1	16
68	The history of dynamics and stellar feedback revealed by the Hâ€I filamentary structure in the disk of the Milky Way. Astronomy and Astrophysics, 2020, 642, A163.	5.1	29
69	Simulations of the Milky Way's central molecular zone – I. Gas dynamics. Monthly Notices of the Royal Astronomical Society, 2020, 499, 4455-4478.	4.4	57
70	The Cloud Factory II: gravoturbulent kinematics of resolved molecular clouds in a galactic potential. Monthly Notices of the Royal Astronomical Society, 2020, 500, 5268-5296.	4.4	9
71	PHANGS CO Kinematics: Disk Orientations and Rotation Curves at 150 pc Resolution. Astrophysical Journal, 2020, 897, 122.	4.5	77
72	A SOFIA Survey of [C ii] in the Galaxy M51. II. [C ii] and CO Kinematics across the Spiral Arms. Astrophysical Journal, 2020, 900, 132.	4.5	6

#	Article	IF	CITATIONS
73	Molecular Gas Properties on Cloud Scales across the Local Star-forming Galaxy Population. Astrophysical Journal Letters, 2020, 901, L8.	8.3	85
74	Atomic and molecular gas properties during cloud formation. Astronomy and Astrophysics, 2020, 642, A68.	5.1	10
75	Unusual Galactic H ii Regions at the Intersection of the Central Molecular Zone and the Far Dust Lane. Astrophysical Journal, 2020, 901, 51.	4.5	4
76	Titans of the early Universe: The Prato statement on the origin of the first supermassive black holes. Publications of the Astronomical Society of Australia, 2019, 36, .	3.4	114
77	The geometry of the gas surrounding the Central Molecular Zone: on the origin of localized molecular clouds with extreme velocity dispersions. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4663-4673.	4.4	28
78	On the detection of supermassive primordial stars – II. Blue supergiants. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3995-4003.	4.4	19
79	<scp>warpfield</scp> 2.0: feedback-regulated minimum star formation efficiencies of giant molecular clouds. Monthly Notices of the Royal Astronomical Society, 2019, 483, 2547-2560.	4.4	52
80	Observational constraints on the survival of pristine stars. Monthly Notices of the Royal Astronomical Society, 2019, 487, 486-490.	4.4	28
81	Tracing the formation of molecular clouds via [C ii], [C i], and CO emission. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4622-4637.	4.4	53
82	Non-equilibrium chemistry and destruction of CO by X-ray flares. Monthly Notices of the Royal Astronomical Society, 2019, 486, 1094-1122.	4.4	21
83	The influence of streaming velocities on the formation of the first stars. Monthly Notices of the Royal Astronomical Society, 2019, 484, 3510-3521.	4.4	64
84	On the resolution requirements for modelling molecular gas formation in solar neighbourhood conditions. Monthly Notices of the Royal Astronomical Society, 2019, 484, 1735-1755.	4.4	22
85	FirstLight III: rest-frame UV-optical spectral energy distributions of simulated galaxies at cosmic dawn. Monthly Notices of the Royal Astronomical Society, 2019, 484, 1366-1377.	4.4	26
86	Dense gas is not enough: environmental variations in the star formation efficiency of dense molecular gas at 100 pc scales in M 51. Astronomy and Astrophysics, 2019, 625, A19.	5.1	47
87	Feedback in W49A diagnosed with radio recombination lines and models. Astronomy and Astrophysics, 2019, 622, A48.	5.1	20
88	Histogram of oriented gradients: a technique for the study of molecular cloud formation. Astronomy and Astrophysics, 2019, 622, A166.	5.1	30
89	Strong Excess Faraday Rotation on the Inside of the Sagittarius Spiral Arm. Astrophysical Journal Letters, 2019, 887, L7.	8.3	24
90	Mapping Metallicity Variations across Nearby Galaxy Disks. Astrophysical Journal, 2019, 887, 80.	4.5	103

#	Article	IF	CITATIONS
91	OH maser emission in the THOR survey of the northern Milky Way. Astronomy and Astrophysics, 2019, 628, A90.	5.1	20
92	The Gas–Star Formation Cycle in Nearby Star-forming Galaxies. I. Assessment of Multi-scale Variations. Astrophysical Journal, 2019, 887, 49.	4.5	57
93	Relations between Molecular Cloud Structure Sizes and Line Widths in the Large Magellanic Cloud. Astrophysical Journal, 2019, 885, 50.	4.5	24
94	Mapping Electron Temperature Variations across a Spiral Arm in NGC 1672. Astrophysical Journal Letters, 2019, 885, L31.	8.3	17
95	CO line ratios in molecular clouds: the impact of environment. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1508-1520.	4.4	30
96	The parsec–scale relationship between ICO and AV in local molecular clouds. Monthly Notices of the Royal Astronomical Society, 2018, 474, 4672-4708.	4.4	16
97	A theoretical explanation for the Central Molecular Zone asymmetry. Monthly Notices of the Royal Astronomical Society, 2018, 475, 2383-2402.	4.4	64
98	sprai: coupling of radiative feedback and primordial chemistry in moving mesh hydrodynamics. Monthly Notices of the Royal Astronomical Society, 2018, 475, 2822-2834.	4.4	13
99	Forming clusters within clusters: how 30 Doradus recollapsed and gave birth again. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 473, L11-L15.	3.3	29
100	A dynamical mechanism for the origin of nuclear rings. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2-19.	4.4	38
101	OH absorption in the first quadrant of the Milky Way as seen by THOR. Astronomy and Astrophysics, 2018, 618, A159.	5.1	20
102	The SILCC project – V. The impact of magnetic fields on the chemistry and the formation of molecular clouds. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3511-3540.	4.4	42
103	Do Spectroscopic Dense Gas Fractions Track Molecular Cloud Surface Densities?. Astrophysical Journal Letters, 2018, 868, L38.	8.3	27
104	On the Detection of Supermassive Primordial Stars. Astrophysical Journal Letters, 2018, 869, L39.	8.3	23
105	A SOFIA Survey of [C ii] in the Galaxy M51. I. [C ii] as a Tracer of Star Formation. Astrophysical Journal Letters, 2018, 869, L30.	8.3	14
106	Shape and spin of minihaloes: from large scales to the centres. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3266-3277.	4.4	6
107	Synthetic [C ii] emission maps of a simulated molecular cloud in formation. Monthly Notices of the Royal Astronomical Society, 2018, 481, 4277-4299.	4.4	25
108	<scp>Phantom</scp> : A Smoothed Particle Hydrodynamics and Magnetohydrodynamics Code for Astrophysics. Publications of the Astronomical Society of Australia, 2018, 35, .	3.4	267

#	Article	IF	CITATIONS
109	Predicting the locations of possible long-lived low-mass first stars: importance of satellite dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 473, 5308-5323.	4.4	47
110	Descendants of the first stars: the distinct chemical signature of second-generation stars. Monthly Notices of the Royal Astronomical Society, 2018, 478, 1795-1810.	4.4	77
111	Radio continuum emission in the northern Galactic plane: Sources and spectral indices from the THOR survey. Astronomy and Astrophysics, 2018, 619, A124.	5.1	32
112	The turbulent life of dust grains in the supernova-driven, multiphase interstellar medium. Monthly Notices of the Royal Astronomical Society, 2017, 467, 4322-4342.	4.4	13
113	Using CO line ratios to trace the physical properties of molecular clouds. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2277-2285.	4.4	36
114	Galactic supernova remnant candidates discovered by THOR. Astronomy and Astrophysics, 2017, 605, A58.	5.1	63
115	How the First Stars Regulated Star Formation. II. Enrichment by Nearby Supernovae. Astrophysical Journal, 2017, 844, 111.	4.5	25
116	The Survey of Lines in M31 (SLIM): The Drivers of the [C ii]/TIR Variation. Astrophysical Journal, 2017, 842, 128.	4.5	12
117	A simple method to convert sink particles into stars. Monthly Notices of the Royal Astronomical Society, 2017, 466, 407-412.	4.4	42
118	The SILCC project – III. Regulation of star formation and outflows by stellar winds and supernovae. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1903-1924.	4.4	149
119	The SILCC project – IV. Impact of dissociating and ionizing radiation on the interstellar medium and Hα emission as a tracer of the star formation rate. Monthly Notices of the Royal Astronomical Society, 2017, 466, 3293-3308.	4.4	86
120	grackle: a chemistry and cooling library for astrophysics. Monthly Notices of the Royal Astronomical Society, 2017, 466, 2217-2234.	4.4	201
121	Introducing the FirstLight project: UV luminosity function and scaling relations of primeval galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 470, 2791-2798.	4.4	52
122	Winds and radiation in unison: a new semi-analytic feedback model for cloud dissolution. Monthly Notices of the Royal Astronomical Society, 2017, 470, 4453-4472.	4.4	102
123	The formation of direct collapse black holes under the influence of streaming velocities. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4878-4884.	4.4	70
124	New ALMA constraints on the star-forming interstellar medium at low metallicity: a 50Âpc view of the blue compact dwarf galaxy SBSÂ0335â~'052. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 468, L87-L91.	3.3	12
125	SILCC-Zoom: the dynamic and chemical evolution of molecular clouds. Monthly Notices of the Royal Astronomical Society, 2017, 472, 4797-4818.	4.4	89
126	Effects of binary stellar populations on direct collapse black hole formation. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 468, L82-L86.	3.3	6

#	Article	IF	CITATIONS
127	The impact of magnetic fields on the chemical evolution of the supernova-driven ISM. Monthly Notices of the Royal Astronomical Society, 2017, 465, 4611-4633.	4.4	12
128	Variable interstellar radiation fields in simulated dwarf galaxies: supernovae versus photoelectric heating. Monthly Notices of the Royal Astronomical Society, 2017, 471, 2151-2173.	4.4	89
129	Lyman–Werner escape fractions from the first galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 467, 2288-2300.	4.4	29
130	The HI/OH/Recombination line survey of the inner Milky Way (THOR). Astronomy and Astrophysics, 2016, 595, A32.	5.1	118
131	New constraints on direct collapse black hole formation in the early Universe. Monthly Notices of the Royal Astronomical Society, 2016, 459, 4209-4217.	4.4	63
132	Star formation and molecular hydrogen in dwarf galaxies: a non-equilibrium view. Monthly Notices of the Royal Astronomical Society, 2016, 458, 3528-3553.	4.4	109
133	Synthetic observations of molecular clouds in a galactic centre environment – I. Studying maps of column density and integrated intensity. Monthly Notices of the Royal Astronomical Society, 2016, 455, 3763-3778.	4.4	16
134	Exploring the nature of the Lyman-Î \pm emitter CR7. Monthly Notices of the Royal Astronomical Society, 2016, 462, 2184-2202.	4.4	38
135	THE ROLE OF COSMIC-RAY PRESSURE IN ACCELERATING GALACTIC OUTFLOWS. Astrophysical Journal Letters, 2016, 827, L29.	8.3	113
136	CO-dark gas and molecular filaments in Milky Way-type galaxies – II. The temperature distribution of the gas. Monthly Notices of the Royal Astronomical Society, 2016, 462, 3011-3025.	4.4	35
137	A new statistical model for Population III supernova rates: discriminating between ĥCDM and WDM cosmologies. Monthly Notices of the Royal Astronomical Society, 2016, 462, 3591-3601.	4.4	35
138	The IMF as a function of supersonic turbulence. Monthly Notices of the Royal Astronomical Society, 2016, 462, 4171-4182.	4.4	23
139	The SILCC (SImulating the LifeCycle of molecular Clouds) project – II. Dynamical evolution of the supernova-driven ISM and the launching of outflows. Monthly Notices of the Royal Astronomical Society, 2016, 456, 3432-3455.	4.4	166
140	Is atomic carbon a good tracer of molecular gas in metal-poor galaxies?. Monthly Notices of the Royal Astronomical Society, 2016, 456, 3596-3609.	4.4	76
141	How well does CO emission measure the H _{2} mass of MCs?. Monthly Notices of the Royal Astronomical Society, 2016, 460, 82-102.	4.4	33
142	On the nature of star-forming filaments – II. Subfilaments and velocities. Monthly Notices of the Royal Astronomical Society, 2016, 455, 3640-3655.	4.4	96
143	LAUNCHING COSMIC-RAY-DRIVEN OUTFLOWS FROM THE MAGNETIZED INTERSTELLAR MEDIUM. Astrophysical Journal Letters, 2016, 816, L19.	8.3	163
144	Physical Processes in the Interstellar Medium. Saas-Fee Advanced Course, 2016, , 85-249.	1.1	126

#	Article	IF	CITATIONS
145	Continuum sources from the THOR survey between 1 and 2 GHz. Astronomy and Astrophysics, 2016, 588, A97.	5.1	41
146	IMPACT OF SUPERNOVA AND COSMIC-RAY DRIVING ON THE SURFACE BRIGHTNESS OF THE GALACTIC HALO IN SOFT X-RAYS. Astrophysical Journal Letters, 2015, 813, L27.	8.3	20
147	THOR: The H i, OH, Recombination line survey of the Milky Way. Astronomy and Astrophysics, 2015, 580, A112.	5.1	51
148	Does the CO-to-H ₂ conversion factor depend on the star formation rate?. Monthly Notices of the Royal Astronomical Society, 2015, 452, 2057-2070.	4.4	41
149	The SILCC (SImulating the LifeCycle of molecular Clouds) project – I. Chemical evolution of the supernova-driven ISM. Monthly Notices of the Royal Astronomical Society, 2015, 454, 246-276.	4.4	255
150	TOPoS. Astronomy and Astrophysics, 2015, 579, A28.	5.1	141
151	Star formation efficiencies of molecular clouds in a galactic centre environment. Monthly Notices of the Royal Astronomical Society, 2015, 451, 3679-3692.	4.4	21
152	Modelling the supernova-driven ISM in different environments. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1057-1075.	4.4	128
153	Structure analysis of simulated molecular clouds with the Δ-variance. Monthly Notices of the Royal Astronomical Society, 2015, 451, 196-209.	4.4	9
154	<tt>Fervent</tt> : chemistry-coupled, ionizing and non-ionizing radiative feedback in hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2015, 454, 380-411.	4.4	39
155	Lyman–Werner UV escape fractions from primordial haloes. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2441-2450.	4.4	40
156	Simulating the formation of massive seed black holes in the early Universe – I. An improved chemical model. Monthly Notices of the Royal Astronomical Society, 2015, 451, 2082-2096.	4.4	60
157	A NEW APPROACH TO DETERMINE OPTICALLY THICK H ₂ COOLING AND ITS EFFECT ON PRIMORDIAL STAR FORMATION. Astrophysical Journal, 2015, 799, 114.	4.5	25
158	How an improved implementation of H ₂ self-shielding influences the formation of massive stars and black holes. Monthly Notices of the Royal Astronomical Society, 2015, 452, 1233-1244.	4.4	42
159	Constraining the primordial initial mass function with stellar archaeology. Monthly Notices of the Royal Astronomical Society, 2015, 447, 3892-3908.	4.4	81
160	Modelling [C i] emission from turbulent molecular clouds. Monthly Notices of the Royal Astronomical Society, 2015, 448, 1607-1627.	4.4	65
161	Centroid velocity statistics of molecular clouds. Monthly Notices of the Royal Astronomical Society, 2015, 446, 3777-3787.	4.4	13
162	Simulating the formation of massive seed black holes in the early Universe – II. Impact of rate coefficient uncertainties. Monthly Notices of the Royal Astronomical Society, 2015, 453, 2902-2919.	4.4	49

#	Article	IF	CITATIONS
163	Statistical properties of dark matter mini-haloes at zÂ≥ 15. Monthly Notices of the Royal Astronomical Society, 2014, 442, 1942-1955.	4.4	15
164	On column density thresholds and the star formation rate. Monthly Notices of the Royal Astronomical Society, 2014, 444, 2396-2414.	4.4	53
165	The 12CO/13CO ratio in turbulent molecular clouds. Monthly Notices of the Royal Astronomical Society, 2014, 445, 4055-4072.	4.4	53
166	On the nature of star-forming filaments – I. Filament morphologies. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2900-2917.	4.4	137
167	THE CO-TO-H ₂ CONVERSION FACTOR ACROSS THE PERSEUS MOLECULAR CLOUD. Astrophysical Journal, 2014, 784, 80.	4.5	47
168	THE IDENTIFICATION OF FILAMENTS ON FAR-INFRARED AND SUBMILLIMITER IMAGES: MORPHOLOGY, PHYSICAL CONDITIONS AND RELATION WITH STAR FORMATION OF FILAMENTARY STRUCTURE. Astrophysical Journal, 2014, 791, 27.	4.5	99
169	Principal component analysis of molecular clouds: can CO reveal the dynamics?. Monthly Notices of the Royal Astronomical Society, 2014, 440, 465-475.	4.4	12
170	Molecular cooling in the diffuse interstellar medium. Monthly Notices of the Royal Astronomical Society, 2014, 437, 9-20.	4.4	30
171	DUST AND GAS IN THE MAGELLANIC CLOUDS FROM THE HERITAGE HERSCHEL KEY PROJECT. II. GAS-TO-DUST RATIO VARIATIONS ACROSS INTERSTELLAR MEDIUM PHASES. Astrophysical Journal, 2014, 797, 86.	4.5	112
172	CO-dark gas and molecular filaments in Milky Way-type galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 441, 1628-1645.	4.4	153
173	QUANTIFYING OBSERVATIONAL PROJECTION EFFECTS USING MOLECULAR CLOUD SIMULATIONS. Astrophysical Journal, 2013, 777, 173.	4.5	75
174	Cloud formation in colliding flows: influence of the choice of cooling function. Monthly Notices of the Royal Astronomical Society, 2013, 432, 626-636.	4.4	25
175	ON THE INITIAL MASS FUNCTION OF LOW-METALLICITY STARS: THE IMPORTANCE OF DUST COOLING. Astrophysical Journal, 2013, 766, 103.	4.5	110
176	ON THE TEMPERATURE STRUCTURE OF THE GALACTIC CENTER CLOUD G0.253+0.016. Astrophysical Journal Letters, 2013, 768, L34.	8.3	55
177	The First Stars. Astrophysics and Space Science Library, 2013, , 103-174.	2.7	45
178	THE ABUNDANCE OF MOLECULAR HYDROGEN AND ITS CORRELATION WITH MIDPLANE PRESSURE IN GALAXIES: NON-EQUILIBRIUM, TURBULENT, CHEMICAL MODELS. Astrophysical Journal, 2012, 746, 135.	4.5	42
179	WEAKLY INTERACTING MASSIVE PARTICLE DARK MATTER AND FIRST STARS: SUPPRESSION OF FRAGMENTATION IN PRIMORDIAL STAR FORMATION. Astrophysical Journal, 2012, 761, 154.	4.5	30
180	THE FIRST GALAXIES: ASSEMBLY WITH BLACK HOLE FEEDBACK. Astrophysical Journal, 2012, 754, 34.	4.5	100

#	Article	IF	CITATIONS
181	Star formation in metal-poor gas clouds. Monthly Notices of the Royal Astronomical Society, 2012, 426, 377-388.	4.4	106
182	THE SMALL-SCALE DYNAMO AND NON-IDEAL MAGNETOHYDRODYNAMICS IN PRIMORDIAL STAR FORMATION. Astrophysical Journal, 2012, 754, 99.	4.5	119
183	TreeCol: a novel approach to estimating column densities in astrophysical simulations. Monthly Notices of the Royal Astronomical Society, 2012, 420, 745-756.	4.4	123
184	Is molecular gas necessary for star formation?. Monthly Notices of the Royal Astronomical Society, 2012, , no-no.	4.4	92
185	Approximations for modelling CO chemistry in giant molecular clouds: a comparison of approaches. Monthly Notices of the Royal Astronomical Society, 2012, , no-no.	4.4	66
186	Modelling H2 formation in the turbulent interstellar medium: solenoidal versus compressive turbulent forcing. Monthly Notices of the Royal Astronomical Society, 2012, 421, 2531-2542.	4.4	47
187	On the formation of very metal poor stars: the case of SDSS J1029151+172927. Monthly Notices of the Royal Astronomical Society, 2012, 421, 3217-3221.	4.4	46
188	The density variance-Mach number relation in supersonic turbulence - I. Isothermal, magnetized gas. Monthly Notices of the Royal Astronomical Society, 2012, 423, 2680-2689.	4.4	179
189	Variable accretion rates and fluffy first stars. Monthly Notices of the Royal Astronomical Society, 2012, 424, 457-463.	4.4	47
190	Formation and evolution of primordial protostellar systems. Monthly Notices of the Royal Astronomical Society, 2012, 424, 399-415.	4.4	271
191	How long does it take to form a molecular cloud?. Monthly Notices of the Royal Astronomical Society, 2012, 424, 2599-2613.	4.4	107
192	The Formation and Fragmentation of Disks Around Primordial Protostars. Science, 2011, 331, 1040-1042.	12.6	320
193	The Chemistry of the Early Universe. Proceedings of the International Astronomical Union, 2011, 7, 313-324.	0.0	4
194	THE EFFECT OF DUST COOLING ON LOW-METALLICITY STAR-FORMING CLOUDS. Astrophysical Journal Letters, 2011, 729, L3.	8.3	70
195	EFFECTS OF VARYING THE THREE-BODY MOLECULAR HYDROGEN FORMATION RATE IN PRIMORDIAL STAR FORMATION. Astrophysical Journal, 2011, 726, 55.	4.5	58
196	A quantification of the non-spherical geometry and accretion of collapsing cores. Monthly Notices of the Royal Astronomical Society, 2011, 411, 1354-1366.	4.4	33
197	On the relationship between molecular hydrogen and carbon monoxide abundances in molecular clouds. Monthly Notices of the Royal Astronomical Society, 2011, 412, 337-350.	4.4	205
198	The effects of accretion luminosity upon fragmentation in the early universe. Monthly Notices of the Royal Astronomical Society, 2011, 414, 3633-3644.	4.4	98

#	Article	IF	CITATIONS
199	GRAVITATIONAL FRAGMENTATION IN TURBULENT PRIMORDIAL GAS AND THE INITIAL MASS FUNCTION OF POPULATION III STARS. Astrophysical Journal, 2011, 727, 110.	4.5	240
200	SIMULATIONS ON A MOVING MESH: THE CLUSTERED FORMATION OF POPULATION III PROTOSTARS. Astrophysical Journal, 2011, 737, 75.	4.5	375
201	Fragmentation in turbulent primordial gas. Proceedings of the International Astronomical Union, 2010, 6, 499-502.	0.0	2
202	THE FIRST GALAXIES: CHEMICAL ENRICHMENT, MIXING, AND STAR FORMATION. Astrophysical Journal, 2010, 716, 510-520.	4.5	208
203	Laboratory Simulations of Molecular Hydrogen Formation in the Early Universe: A Progress Report. , 2010, , .		Ο
204	BLACK HOLE FORMATION IN PRIMORDIAL GALAXIES: CHEMICAL AND RADIATIVE CONDITIONS. Astrophysical Journal Letters, 2010, 712, L69-L72.	8.3	73
205	Modelling CO formation in the turbulent interstellar medium. Monthly Notices of the Royal Astronomical Society, 2010, , .	4.4	126
206	Experimental Results for H ₂ Formation from H ^{â^`} and H and Implications for First Star Formation. Science, 2010, 329, 69-71.	12.6	113
207	THE INFLUENCE OF MAGNETIC FIELDS ON THE THERMODYNAMICS OF PRIMORDIAL STAR FORMATION. Astrophysical Journal, 2009, 703, 1096-1106.	4.5	56
208	STAR FORMATION AT VERY LOW METALLICITY. V. THE GREATER IMPORTANCE OF INITIAL CONDITIONS COMPARED TO METALLICITY THRESHOLDS. Astrophysical Journal, 2009, 694, 1161-1170.	4.5	49
209	Is H ⁺ ₃ cooling ever important in primordial gas?. Monthly Notices of the Royal Astronomical Society, 2009, 393, 911-948.	4.4	78
210	Chemical mixing in smoothed particle hydrodynamics simulations. Monthly Notices of the Royal Astronomical Society, 2009, 392, 1381-1387.	4.4	58
211	Uncertainties in H ₂ and HD chemistry and cooling and their role in early structure formation. Monthly Notices of the Royal Astronomical Society, 2008, 388, 1627-1651.	4.4	224
212	The ISM in spiral galaxies: can cooling in spiral shocks produce molecular clouds?. Monthly Notices of the Royal Astronomical Society, 2008, 389, 1097-1110.	4.4	85
213	The First Stellar Cluster. Astrophysical Journal, 2008, 672, 757-764.	4.5	180
214	Turbulent mixing in the interstellar medium: an application for Lagrangian tracer particles. Physica Scripta, 2008, T132, 014025.	2.5	38
215	Simulating the Formation of Molecular Clouds. I. Slow Formation by Gravitational Collapse from Static Initial Conditions. Astrophysical Journal, Supplement Series, 2007, 169, 239-268.	7.7	243
216	Star Formation at Very Low Metallicity. II. On the Insignificance of Metal‣ine Cooling During the Early Stages of Gravitational Collapse. Astrophysical Journal, 2007, 660, 1332-1343.	4.5	53

#	Article	IF	CITATIONS
217	Star Formation at Very Low Metallicity. I. Chemistry and Cooling at Low Densities. Astrophysical Journal, 2007, 666, 1-19.	4.5	156
218	Simulating the Formation of Molecular Clouds. II. Rapid Formation from Turbulent Initial Conditions. Astrophysical Journal, 2007, 659, 1317-1337.	4.5	223
219	Radiative feedback from ionized gas. Monthly Notices of the Royal Astronomical Society, 2007, 379, 1352-1358.	4.4	11
220	cooling in primordial gas. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 3107-3112.	3.4	14
221	The Formation Of The First Stars In The Universe. Space Science Reviews, 2005, 117, 445-508.	8.1	109
222	Radiative feedback from an early X-ray background. Monthly Notices of the Royal Astronomical Society, 2003, 340, 210-226.	4.4	102
223	Comparing Gasâ€Phase and Grainâ€eatalyzed H2Formation. Astrophysical Journal, 2003, 584, 331-338.	4.5	46
224	On the photodissociation of H2 by the first stars. Monthly Notices of the Royal Astronomical Society, 2001, 321, 385-397.	4.4	77
225	FirstLight II: Star formation rates of primeval galaxies from z=5-15. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	28