Jeremy S Webb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8171487/publications.pdf

Version: 2024-02-01

81900 76900 7,957 74 39 74 citations g-index h-index papers 79 79 79 8472 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An in vitro biofilm model system to facilitate study of microbial communities of the human oral cavity. Letters in Applied Microbiology, 2022, 74, 302-310.	2.2	6
2	Role of the flagellar hook in the structural development and antibiotic tolerance of <i>Pseudomonas aeruginosa</i> biofilms. ISME Journal, 2022, 16, 1176-1186.	9.8	18
3	Multi-Excitation Raman Spectroscopy for Label-Free, Strain-Level Characterization of Bacterial Pathogens in Artificial Sputum Media. Analytical Chemistry, 2022, 94, 669-677.	6.5	13
4	Economic significance of biofilms: a multidisciplinary and cross-sectoral challenge. Npj Biofilms and Microbiomes, 2022, 8, .	6.4	86
5	Phylogenetic Analysis with Prediction of Cofactor or Ligand Binding for Pseudomonas aeruginosa PAS and Cache Domains. Microbiology Spectrum, 2021, 9, e0102621.	3.0	4
6	Evaluation of a Bioengineered Honey and Its Synthetic Equivalent as Novel Staphylococcus aureus Biofilm-Targeted Topical Therapies in Chronic Rhinosinusitis. American Journal of Rhinology and Allergy, 2020, 34, 80-86.	2.0	6
7	Ultrasoundâ€mediated therapies for the treatment of biofilms in chronic wounds: a review of present knowledge. Microbial Biotechnology, 2020, 13, 613-628.	4.2	53
8	Cephalosporin nitric oxide-donor prodrug DEA-C3D disperses biofilms formed by clinical cystic fibrosis isolates of Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy, 2020, 75, 117-125.	3.0	35
9	Minimum information guideline for spectrophotometric and fluorometric methods to assess biofilm formation in microplates. Biofilm, 2020, 2, 100010.	3.8	50
10	Optimization of nitric oxide donors for investigating biofilm dispersal response in Pseudomonas aeruginosa clinical isolates. Applied Microbiology and Biotechnology, 2020, 104, 8859-8869.	3.6	29
11	An integrated model system to gain mechanistic insights into biofilm-associated antimicrobial resistance in Pseudomonas aeruginosa MPAO1. Npj Biofilms and Microbiomes, 2020, 6, 46.	6.4	31
12	An improved bind-n-seq strategy to determine protein-DNA interactions validated using the bacterial transcriptional regulator YipR. BMC Microbiology, 2020, 20, 1.	3.3	162
13	Discovery of Cephalosporin-3′-Diazeniumdiolates That Show Dual Antibacterial and Antibiofilm Effects against <i>Pseudomonas aeruginosa</i> Clinical Cystic Fibrosis Isolates and Efficacy in a Murine Respiratory Infection Model. ACS Infectious Diseases, 2020, 6, 1460-1479.	3.8	18
14	Differential impact on motility and biofilm dispersal of closely related phosphodiesterases in Pseudomonas aeruginosa. Scientific Reports, 2020, 10, 6232.	3.3	26
15	Structure and Regulation of EAL Domain Proteins. , 2020, , 27-48.		О
16	Pulsed vibro-acoustic method for assessment of osteoporosis & osteopenia: A feasibility study on human subjects. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 97, 187-197.	3.1	5
17	Acoustoelasticity Analysis of Transient Waves for Non-Invasive In Vivo Assessment of Urinary Bladder. Scientific Reports, 2019, 9, 2441.	3.3	10
18	A novel application of Gini coefficient for the quantitative measurement of bacterial aggregation. Scientific Reports, 2019, 9, 19002.	3.3	9

#	Article	IF	Citations
19	Diagnosis and treatment of biofilm infections in children. Current Opinion in Infectious Diseases, 2019, 32, 505-509.	3.1	2
20	Microbial epidemiology and carriage studies for the evaluation of vaccines. Journal of Medical Microbiology, 2019, 68, 1408-1418.	1.8	4
21	Rhizosphere Bacterial Communities Differ According to Fertilizer Regimes and Cabbage (Brassica) Tj ETQq1 1 0	.784314 rş 3.5	gBT /Overloce 38
22	Cephalosporin- $3\hat{a}\in^2$ -Diazeniumdiolate NO Donor Prodrug PYRRO-C3D Enhances Azithromycin Susceptibility of Nontypeable Haemophilus influenzae Biofilms. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	26
23	Cephalosporin-NO-donor prodrug PYRRO-C3D shows Î ² -lactam - mediated activity against Streptococcus pneumoniae biofilms. Nitric Oxide - Biology and Chemistry, 2017, 65, 43-49.	2.7	21
24	Current and future therapies for Pseudomonas aeruginosa infection in patients with cystic fibrosis. FEMS Microbiology Letters, 2017, 364, .	1.8	85
25	Prevention of Propionibacterium acnes biofilm formation in prosthetic infections in vitro. Journal of Shoulder and Elbow Surgery, 2017, 26, 553-563.	2.6	19
26	Low-Dose Nitric Oxide as Targeted Anti-biofilm Adjunctive Therapy to Treat Chronic Pseudomonas aeruginosa Infection in Cystic Fibrosis. Molecular Therapy, 2017, 25, 2104-2116.	8.2	149
27	Dimerisation induced formation of the active site and the identification of three metal sites in EAL-phosphodiesterases. Scientific Reports, 2017, 7, 42166.	3.3	20
28	Correlation of ultrasound bladder vibrometry assessment of bladder compliance with urodynamic study results. PLoS ONE, 2017, 12, e0179598.	2.5	32
29	Parallel Evolution inStreptococcus pneumoniaeBiofilms. Genome Biology and Evolution, 2016, 8, 1316-1326.	2.5	8
30	<i>Pseudomonas aeruginosa</i> infection in cystic fibrosis: pathophysiological mechanisms and therapeutic approaches. Expert Review of Respiratory Medicine, 2016, 10, 685-697.	2.5	114
31	Comparative Genomics of Carriage and Disease Isolates of <i>Streptococcus pneumoniae </i> Serotype 22F Reveals Lineage-Specific Divergence and Niche Adaptation. Genome Biology and Evolution, 2016, 8, 1243-1251.	2.5	8
32	Low Concentrations of Nitric Oxide Modulate Streptococcus pneumoniae Biofilm Metabolism and Antibiotic Tolerance. Antimicrobial Agents and Chemotherapy, 2016, 60, 2456-2466.	3.2	27
33	Intracellular residency of Staphylococcus aureus within mast cells in nasal polyps: A novel observation. Journal of Allergy and Clinical Immunology, 2015, 135, 1648-1651.e5.	2.9	39
34	Removal of Dental Biofilms with an Ultrasonically Activated Water Stream. Journal of Dental Research, 2015, 94, 1303-1309.	5.2	43
35	Strain-specific parallel evolution drives short-term diversification during <i>Pseudomonas aeruginosa</i> biofilm formation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1419-27.	7.1	81
36	Pronounced Metabolic Changes in Adaptation to Biofilm Growth by Streptococcus pneumoniae. PLoS ONE, 2014, 9, e107015.	2.5	42

#	Article	IF	Citations
37	Biofilm dispersal cells of a cystic fibrosis <i>Pseudomonas aeruginosa</i> isolate exhibit variability in functional traits likely to contribute to persistent infection. FEMS Immunology and Medical Microbiology, 2012, 66, 251-264.	2.7	27
38	Cephalosporinâ€3â€2â€diazeniumdiolates: Targeted NOâ€Donor Prodrugs for Dispersing Bacterial Biofilms. Angewandte Chemie - International Edition, 2012, 51, 9057-9060.	13.8	137
39	Can Simpson's paradox explain co-operation in <i>Pseudomonas aeruginosa</i> biofilms?. FEMS Immunology and Medical Microbiology, 2012, 65, 226-235.	2.7	19
40	Dynamic modelling of cell death during biofilm development. Journal of Theoretical Biology, 2012, 295, 23-36.	1.7	48
41	Risk of Red Queen dynamics in pneumococcal vaccine strategy. Trends in Microbiology, 2011, 19, 377-381.	7.7	26
42	Down-Regulation of DNA Mismatch Repair Enhances Initiation and Growth of Neuroblastoma and Brain Tumour Multicellular Spheroids. PLoS ONE, 2011, 6, e28123.	2.5	7
43	Ability of Pseudoalteromonas tunicata to colonize natural biofilms and its effect on microbial community structure. FEMS Microbiology Ecology, 2010, 73, no-no.	2.7	24
44	Pseudomonas aeruginosa PAO1 Preferentially Grows as Aggregates in Liquid Batch Cultures and Disperses upon Starvation. PLoS ONE, 2009, 4, e5513.	2.5	175
45	Role of Mutation in Pseudomonas aeruginosa Biofilm Development. PLoS ONE, 2009, 4, e6289.	2.5	99
46	Nitric Oxide Signaling in <i>Pseudomonas aeruginosa</i> Biofilms Mediates Phosphodiesterase Activity, Decreased Cyclic Di-GMP Levels, and Enhanced Dispersal. Journal of Bacteriology, 2009, 191, 7333-7342.	2.2	432
47	Nitric oxideâ€mediated dispersal in single―and multiâ€species biofilms of clinically and industrially relevant microorganisms. Microbial Biotechnology, 2009, 2, 370-378.	4.2	240
48	The biofilm life cycle and virulence of <i>Pseudomonas aeruginosa</i> are dependent on a filamentous prophage. ISME Journal, 2009, 3, 271-282.	9.8	296
49	Gene expression characteristics of a cystic fibrosis epidemic strain of <i>Pseudomonas aeruginosa < /i> during biofilm and planktonic growth. FEMS Microbiology Letters, 2009, 292, 107-114.</i>	1.8	40
50	Hydrogen Peroxide Linked to Lysine Oxidase Activity Facilitates Biofilm Differentiation and Dispersal in Several Gram-Negative Bacteria. Journal of Bacteriology, 2008, 190, 5493-5501.	2.2	119
51	Transcriptome analyses and biofilm-forming characteristics of a clonal Pseudomonas aeruginosa from the cystic fibrosis lung. Journal of Medical Microbiology, 2008, 57, 1454-1465.	1.8	50
52	Proteomic, Microarray, and Signature-Tagged Mutagenesis Analyses of Anaerobic <i>Pseudomonas aeruginosa</i> at pH 6.5, Likely Representing Chronic, Late-Stage Cystic Fibrosis Airway Conditions. Journal of Bacteriology, 2008, 190, 2739-2758.	2.2	86
53	Marine Biofilm Bacteria Evade Eukaryotic Predation by Targeted Chemical Defense. PLoS ONE, 2008, 3, e2744.	2.5	176
54	Low Densities of Epiphytic Bacteria from the Marine Alga <i>Ulva australis</i> Inhibit Settlement of Fouling Organisms. Applied and Environmental Microbiology, 2007, 73, 7844-7852.	3.1	152

#	Article	lF	CITATIONS
55	Biofilm differentiation and dispersal in mucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Microbiology (United Kingdom), 2007, 153, 3264-3274.	1.8	96
56	Involvement of Nitric Oxide in Biofilm Dispersal of Pseudomonas aeruginosa. Journal of Bacteriology, 2006, 188, 7344-7353.	2.2	666
57	A characterization of DNA release in <i>Pseudomonas aeruginosa</i> cultures and biofilms. Molecular Microbiology, 2006, 59, 1114-1128.	2.5	851
58	A mannose-sensitive haemagglutinin (MSHA)-like pilus promotes attachment of Pseudoalteromonas tunicata cells to the surface of the green alga Ulva australis. Microbiology (United Kingdom), 2006, 152, 2875-2883.	1.8	31
59	Enhanced Benzaldehyde Tolerance in Zymomonas mobilis Biofilms and the Potential of Biofilm Applications in Fine-Chemical Production. Applied and Environmental Microbiology, 2006, 72, 1639-1644.	3.1	82
60	Ecological Advantages of Autolysis during the Development and Dispersal of Pseudoalteromonas tunicata Biofilms. Applied and Environmental Microbiology, 2006, 72, 5414-5420.	3.1	77
61	Microbial Colonization and Competition on the Marine Alga Ulva australis. Applied and Environmental Microbiology, 2006, 72, 5547-5555.	3.1	110
62	Enhanced Biofilm Formation and Increased Resistance to Antimicrobial Agents and Bacterial Invasion Are Caused by Synergistic Interactions in Multispecies Biofilms. Applied and Environmental Microbiology, 2006, 72, 3916-3923.	3.1	572
63	Expression of the psl Operon in Pseudomonas aeruginosa PAO1 Biofilms: PslA Performs an Essential Function in Biofilm Formation. Applied and Environmental Microbiology, 2005, 71, 4407-4413.	3.1	78
64	Competitive Interactions in Mixed-Species Biofilms Containing the Marine Bacterium Pseudoalteromonas tunicata. Applied and Environmental Microbiology, 2005, 71, 1729-1736.	3.1	251
65	The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiology (United) Tj ETQq1 1 0.78431	.4 ng8T /O	ver las k 10 Tf
66	Bacteriophage and Phenotypic Variation in <i>Pseudomonas aeruginosa</i> Biofilm Development. Journal of Bacteriology, 2004, 186, 8066-8073.	2.2	245
67	Biofilm Development and Cell Death in the Marine Bacterium Pseudoalteromonas tunicata. Applied and Environmental Microbiology, 2004, 70, 3232-3238.	3.1	120
68	The alternative sigma factor RpoN regulates the quorum sensing generhllinPseudomonas aeruginosa. FEMS Microbiology Letters, 2003, 220, 187-195.	1.8	85
69	Bacterial biofilms: prokaryotic adventures in multicellularity. Current Opinion in Microbiology, 2003, 6, 578-585.	5.1	251
70	Cell Death in Pseudomonas aeruginosa Biofilm Development. Journal of Bacteriology, 2003, 185, 4585-4592.	2.2	526
71	Green Fluorescent Protein as a Novel Indicator of Antimicrobial Susceptibility in <i>Aureobasidium pullulans</i> . Applied and Environmental Microbiology, 2001, 67, 5614-5620.	3.1	39
72	Fungal Colonization and Biodeterioration of Plasticized Polyvinyl Chloride. Applied and Environmental Microbiology, 2000, 66, 3194-3200.	3.1	164

#	Article	IF	CITATIONS
73	Plasticizers Increase Adhesion of the Deteriogenic Fungus <i>Aureobasidium pullulans</i> to Polyvinyl Chloride. Applied and Environmental Microbiology, 1999, 65, 3575-3581.	3.1	68
74	Influence of surfaces on sulphidogenic bacteria. Biofouling, 1996, 10, 95-109.	2.2	8