Heather R Thiessen-Philbrook

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8170636/publications.pdf

Version: 2024-02-01

115 5,831 39 73
papers citations h-index g-index

117 117 117 5962

docs citations

all docs

117 5962 times ranked citing authors

#	Article	IF	CITATIONS
1	Prognostic Significance of Urinary Biomarkers in Patients Hospitalized With COVID-19. American Journal of Kidney Diseases, 2022, 79, 257-267.e1.	1.9	30
2	Angiopoietins as Prognostic Markers for Future Kidney Disease and Heart Failure Events after Acute Kidney Injury. Journal of the American Society of Nephrology: JASN, 2022, 33, 613-627.	6.1	16
3	Clinically adjudicated deceased donor acute kidney injury and graft outcomes. PLoS ONE, 2022, 17, e0264329.	2.5	3
4	Longitudinal TNFR1 and TNFR2 and Kidney Outcomes: Results from AASK and VA NEPHRON-D. Journal of the American Society of Nephrology: JASN, 2022, 33, 996-1010.	6.1	16
5	Considerations in Controlling for Urine Concentration for Biomarkers of Kidney Disease Progression After Acute Kidney Injury. Kidney International Reports, 2022, 7, 1502-1513.	0.8	5
6	Trends in the procurement and discard of kidneys from deceased donors with acute kidney injury. American Journal of Transplantation, 2022, 22, 898-908.	4.7	11
7	Cardiac Biomarkers for Risk Stratification of Acute Kidney Injury After Pediatric Cardiac Surgery. Annals of Thoracic Surgery, 2021, 111, 191-198.	1.3	16
8	Results from the TRIBE-AKI Study found associations between post-operative blood biomarkers and risk of chronic kidney disease after cardiac surgery. Kidney International, 2021, 99, 716-724.	5.2	35
9	24-hour ambulatory blood pressure monitoring 9 years after pediatric cardiac surgery: a pilot and feasibility study. Pediatric Nephrology, 2021, 36, 1533-1541.	1.7	3
10	Contemporary incidence and risk factors of post transplant Erythrocytosis in deceased donor kidney transplantation. BMC Nephrology, 2021, 22, 26.	1.8	6
11	Biomarkers of inflammation and repair in kidney disease progression. Journal of Clinical Investigation, 2021, 131, .	8.2	95
12	Deceased-Donor Acute Kidney Injury and BK Polyomavirus in Kidney Transplant Recipients. Clinical Journal of the American Society of Nephrology: CJASN, 2021, 16, 765-775.	4.5	4
13	Long-term Risk of Hypertension After Surgical Repair of Congenital Heart Disease in Children. JAMA Network Open, 2021, 4, e215237.	5.9	12
14	Urinary EGF and MCP-1 and risk of CKD after cardiac surgery. JCI Insight, 2021, 6, .	5.0	16
15	Post-transplant Diabetes Mellitus in Kidney Transplant Recipients: A Multicenter Study. Kidney360, 2021, 2, 1296-1307.	2.1	9
16	Comparison of proteomic methods in evaluating biomarker-AKI associations in cardiac surgery patients. Translational Research, 2021, 238, 49-62.	5.0	20
17	Sample Processing and Stability for Urine Biomarker Studies. journal of applied laboratory medicine, The, 2021, 6, 1628-1634.	1.3	7
18	Urine Alpha-1-Microglobulin Levels and Acute Kidney Injury, Mortality, and Cardiovascular Events following Cardiac Surgery. American Journal of Nephrology, 2021, 52, 673-683.	3.1	4

#	Article	IF	Citations
19	Improving the prediction of longâ€ŧerm readmission and mortality using a novel biomarker panel. Journal of Cardiac Surgery, 2021, 36, 4213-4223.	0.7	6
20	Uromodulin to Osteopontin Ratio in Deceased Donor Urine Is Associated With Kidney Graft Outcomes. Transplantation, 2021, 105, 876-885.	1.0	10
21	Kidney Biomarkers of Injury and Repair as Predictors of Contrast-Associated AKI: A Substudy of the PRESERVE Trial. American Journal of Kidney Diseases, 2020, 75, 187-194.	1.9	40
22	Urine Injury Biomarkers Are Not Associated With Kidney Transplant Failure. Transplantation, 2020, 104, 1272-1279.	1.0	9
23	Association of plasma-soluble ST2 and galectin-3 with cardiovascular events and mortality following cardiac surgery. American Heart Journal, 2020, 220, 253-263.	2.7	10
24	BioPETsurv: Methodology and open source software to evaluate biomarkers for prognostic enrichment of time-to-event clinical trials. PLoS ONE, 2020, 15, e0239486.	2.5	4
25	Postangiography Increases in Serum Creatinine and Biomarkers of Injury and Repair. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 1240-1250.	4.5	12
26	Improving Care for Patients after Hospitalization with AKI. Journal of the American Society of Nephrology: JASN, 2020, 31, 2237-2241.	6.1	24
27	ST2 Predicts Risk of Unplanned Readmission Within 1 Year After Pediatric Congenital Heart Surgery. Annals of Thoracic Surgery, 2020, 110, 2070-2075.	1.3	4
28	Title is missing!. , 2020, 15, e0239486.		0
29	Title is missing!. , 2020, 15, e0239486.		0
30	Title is missing!. , 2020, 15, e0239486.		0
31	Title is missing!. , 2020, 15, e0239486.		0
32	Title is missing!. , 2020, 15, e0239486.		0
33	Title is missing!. , 2020, 15, e0239486.		0
34	The Association Between Cardiac Biomarker NT-proBNP and 30-Day Readmission or Mortality After Pediatric Congenital Heart Surgery. World Journal for Pediatric & Engenital Heart Surgery, 2019, 10, 446-453.	0.8	7
35	The authors reply. Kidney International, 2019, 96, 520-521.	5.2	0
36	Developing Biomarker Panels to Predict Progression of Acute Kidney Injury After Cardiac Surgery. Kidney International Reports, 2019, 4, 1677-1688.	0.8	3

#	Article	IF	CITATIONS
37	Association of T Cell–Derived Inflammatory Cytokines With Acute Kidney Injury andÂMortality After Cardiac Surgery. Kidney International Reports, 2019, 4, 1689-1697.	0.8	22
38	Incidence of ESKD and Mortality among Children with Congenital Heart Disease after Cardiac Surgery. Clinical Journal of the American Society of Nephrology: CJASN, 2019, 14, 1450-1457.	4.5	29
39	Comparison of Urine and Plasma Biomarker Concentrations Measured by Aptamer-Based versus Immunoassay Methods in Cardiac Surgery Patients. journal of applied laboratory medicine, The, 2019, 4, 331-342.	1.3	18
40	Are Urinary Biomarkers Better Than Acute Kidney Injury Duration for Predicting Readmission?. Annals of Thoracic Surgery, 2019, 107, 1699-1705.	1.3	9
41	The Association of Angiogenesis Markers With Acute Kidney Injury and Mortality After Cardiac Surgery. American Journal of Kidney Diseases, 2019, 74, 36-46.	1.9	38
42	Biomarkers associated with 30â€day readmission and mortality after pediatric congenital heart surgery. Journal of Cardiac Surgery, 2019, 34, 329-336.	0.7	17
43	Donor Urinary C5a Levels Independently Correlate With Posttransplant Delayed Graft Function. Transplantation, 2019, 103, e29-e35.	1.0	25
44	Quantifying Donor Effects on Transplant Outcomes Using Kidney Pairs from Deceased Donors. Clinical Journal of the American Society of Nephrology: CJASN, 2019, 14, 1781-1787.	4.5	8
45	Deceased-donor acute kidney injury is not associated with kidney allograft failure. Kidney International, 2019, 95, 199-209.	5.2	62
46	Kidney injury biomarkers 5Âyears after AKI due to pediatric cardiac surgery. Pediatric Nephrology, 2018, 33, 1069-1077.	1.7	16
47	Biomarkers of AKI Progression after Pediatric Cardiac Surgery. Journal of the American Society of Nephrology: JASN, 2018, 29, 1549-1556.	6.1	54
48	Reply. Annals of Thoracic Surgery, 2018, 106, 641.	1.3	3
49	The association of discharge decisions after deceased donor kidney transplantation with the risk of early readmission: Results from the deceased donor study. Clinical Transplantation, 2018, 32, e13215.	1.6	10
50	IL-33 deficiency slows cancer growth but does not protect against cisplatin-induced AKI in mice with cancer. American Journal of Physiology - Renal Physiology, 2018, 314, F356-F366.	2.7	11
51	Utility of Biomarkers to Improve Prediction of Readmission or Mortality After Cardiac Surgery. Annals of Thoracic Surgery, 2018, 106, 1294-1301.	1.3	27
52	Reliability of deceasedâ€donor procurement kidney biopsy images uploaded in United Network for Organ Sharing. Clinical Transplantation, 2018, 32, e13441.	1.6	8
53	Elevated preoperative Galectin-3 is associated with acute kidney injury after cardiac surgery. BMC Nephrology, 2018, 19, 280.	1.8	10
54	The Association Between Novel Biomarkers and 1-Year Readmission or Mortality After Cardiac Surgery. Annals of Thoracic Surgery, 2018, 106, 1122-1128.	1.3	14

#	Article	IF	CITATIONS
55	Preoperative serum ST2 level predicts acute kidney injury after adult cardiac surgery. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, 1114-1123.e2.	0.8	19
56	Perioperative heart-type fatty acid binding protein concentration cutoffs for the identification of severe acute kidney injury in patients undergoing cardiac surgery. Clinical Chemistry and Laboratory Medicine, 2018, 57, e8-e10.	2.3	2
57	Predictive Ability of Novel Cardiac Biomarkers ST2, Galectinâ€3, and NTâ€ProBNP Before Cardiac Surgery. Journal of the American Heart Association, 2018, 7, .	3.7	19
58	Procurement Biopsy Findings Versus Kidney Donor Risk Index for Predicting Renal Allograft Survival. Transplantation Direct, 2018, 4, e373.	1.6	18
59	Plasma Monocyte Chemotactic Protein-1 Is Associated With Acute Kidney Injury and Death After Cardiac Operations. Annals of Thoracic Surgery, 2017, 104, 613-620.	1.3	52
60	Delayed Graft Function Phenotypes and 12-Month Kidney Transplant Outcomes. Transplantation, 2017, 101, 1913-1923.	1.0	41
61	Surfaceâ€enhanced Raman scattering analysis of urine from deceased donors as a prognostic tool for kidney transplant outcome. Journal of Biophotonics, 2017, 10, 1743-1755.	2.3	12
62	Utility of Applying Quality Assessment Tools for Kidneys With KDPI ≥80. Transplantation, 2017, 101, 1125-1133.	1.0	15
63	Performance of Serum Creatinine and Kidney Injury Biomarkers for Diagnosing Histologic Acute Tubular Injury. American Journal of Kidney Diseases, 2017, 70, 807-816.	1.9	83
64	Interleukin-8 and Tumor Necrosis Factor Predict Acute Kidney Injury After Pediatric Cardiac Surgery. Annals of Thoracic Surgery, 2017, 104, 2072-2079.	1.3	49
65	Relationship of Kidney Injury Biomarkers with Long-Term Cardiovascular Outcomes after Cardiac Surgery. Journal of the American Society of Nephrology: JASN, 2017, 28, 3699-3707.	6.1	59
66	Group analysis identifies differentially elevated biomarkers with distinct outcomes for advanced acute kidney injury in cardiac surgery. Biomarkers in Medicine, 2017, 11, 1091-1102.	1.4	5
67	A Genome-Wide Association Study to Identify Single-Nucleotide Polymorphisms for Acute Kidney Injury. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 482-490.	5.6	31
68	YKL-40 Associates with Renal Recovery in Deceased Donor Kidney Transplantation. Journal of the American Society of Nephrology: JASN, 2017, 28, 661-670.	6.1	50
69	Evaluating biomarkers for prognostic enrichment of clinical trials. Clinical Trials, 2017, 14, 629-638.	1.6	28
70	Urinalysis findings and urinary kidney injury biomarker concentrations. BMC Nephrology, 2017, 18, 218.	1.8	17
71	Elevated urinary CRELD2 is associated with endoplasmic reticulum stress–mediated kidney disease. JCI Insight, 2017, 2, .	5.0	32
72	First Post-Operative Urinary Kidney Injury Biomarkers and Association with the Duration of AKI in the TRIBE-AKI Cohort. PLoS ONE, 2016, 11, e0161098.	2.5	42

#	Article	IF	Citations
73	Application of new acute kidney injury biomarkers in human randomized controlled trials. Kidney International, 2016, 89, 1372-1379.	5.2	65
74	Kidney Outcomes 5 Years After Pediatric Cardiac Surgery. JAMA Pediatrics, 2016, 170, 1071.	6.2	112
75	Use of urine biomarker-derived clusters to predict the risk of chronic kidney disease and all-cause mortality in HIV-infected women. Nephrology Dialysis Transplantation, 2016, 31, 1478-1485.	0.7	16
76	Effect of Lowering the Dialysate Temperature in Chronic Hemodialysis. Clinical Journal of the American Society of Nephrology: CJASN, 2016, 11, 442-457.	4.5	91
77	Validating Early Post–Transplant Outcomes Reported for Recipients of Deceased Donor Kidney Transplants. Clinical Journal of the American Society of Nephrology: CJASN, 2016, 11, 324-331.	4.5	22
78	Associations between Deceased-Donor Urine Injury Biomarkers and Kidney Transplant Outcomes. Journal of the American Society of Nephrology: JASN, 2016, 27, 1534-1543.	6.1	89
79	Methodological issues in current practice may leadÂto bias in the development of biomarker combinations for predicting acute kidney injury. Kidney International, 2016, 89, 429-438.	5.2	18
80	Association of Perioperative Plasma Neutrophil Gelatinase-Associated Lipocalin Levels with 3-Year Mortality after Cardiac Surgery: A Prospective Observational Cohort Study. PLoS ONE, 2015, 10, e0129619.	2.5	17
81	RiGoR: reporting guidelines to address common sources of bias in risk model development. Biomarker Research, 2015, 3, 2.	6.8	21
82	Interleukin-6 and interleukin-10 as acute kidney injury biomarkers in pediatric cardiac surgery. Pediatric Nephrology, 2015, 30, 1519-1527.	1.7	62
83	Association of Definition of Acute Kidney Injury by Cystatin C Rise With Biomarkers and Clinical Outcomes in Children Undergoing Cardiac Surgery. JAMA Pediatrics, 2015, 169, 583.	6.2	65
84	Cardiac Biomarkers and Acute Kidney Injury After Cardiac Surgery. Pediatrics, 2015, 135, e945-e956.	2.1	53
85	Plasma IL-6 and IL-10 Concentrations Predict AKI and Long-Term Mortality in Adults after Cardiac Surgery. Journal of the American Society of Nephrology: JASN, 2015, 26, 3123-3132.	6.1	144
86	Urine Biomarkers and Perioperative Acute Kidney Injury: TheÂlmpact of Preoperative Estimated GFR. American Journal of Kidney Diseases, 2015, 66, 1006-1014.	1.9	16
87	Key Concepts and Limitations of Statistical Methods for Evaluating Biomarkers of Kidney Disease. Journal of the American Society of Nephrology: JASN, 2014, 25, 1621-1629.	6.1	49
88	Urinary Biomarkers of AKI and Mortality 3 Years after Cardiac Surgery. Journal of the American Society of Nephrology: JASN, 2014, 25, 1063-1071.	6.1	144
89	Serum Brain Natriuretic Peptide and Risk of Acute Kidney Injury After Cardiac Operations in Children. Annals of Thoracic Surgery, 2014, 97, 2142-2147.	1.3	16
90	Developing Risk Prediction Models for Kidney Injury and Assessing Incremental Value for Novel Biomarkers. Clinical Journal of the American Society of Nephrology: CJASN, 2014, 9, 1488-1496.	4.5	28

#	Article	lF	Citations
91	Urinary Biomarkers and Progression of AKI in Patients with Cirrhosis. Clinical Journal of the American Society of Nephrology: CJASN, 2014, 9, 1857-1867.	4.5	79
92	Kidney biomarkers and differential diagnosis of patients with cirrhosis and acute kidney injury. Hepatology, 2014, 60, 622-632.	7.3	259
93	Association Between Preoperative Statin Use andÂAcute Kidney Injury Biomarkers in Cardiac Surgical Procedures. Annals of Thoracic Surgery, 2014, 97, 2081-2087.	1.3	41
94	Non-biologic disease-modifying antirheumatic drugs (DMARDs) improve pain in inflammatory arthritis (IA): a systematic literature review of randomized controlled trials. Rheumatology International, 2013, 33, 1105-1120.	3 . 0	23
95	Urinary Cystatin C and Acute Kidney Injury After Cardiac Surgery. American Journal of Kidney Diseases, 2013, 61, 730-738.	1.9	45
96	Preoperative angiotensin-converting enzyme inhibitors and angiotensin receptor blocker use and acute kidney injury in patients undergoing cardiac surgery. Nephrology Dialysis Transplantation, 2013, 28, 2787-2799.	0.7	93
97	Performance of Kidney Injury Molecule-1 and Liver Fatty Acid-Binding Protein and Combined Biomarkers of AKI after Cardiac Surgery. Clinical Journal of the American Society of Nephrology: CJASN, 2013, 8, 1079-1088.	4.5	194
98	Association between Peritransplant Kidney Injury Biomarkers and 1-Year Allograft Outcomes. Clinical Journal of the American Society of Nephrology: CJASN, 2012, 7, 1224-1233.	4.5	35
99	Preoperative Serum Brain Natriuretic Peptide and Risk of Acute Kidney Injury After Cardiac Surgery. Circulation, 2012, 125, 1347-1355.	1.6	81
100	Serum Cystatin C– Versus Creatinine-Based Definitions of Acute Kidney Injury Following Cardiac Surgery: A Prospective Cohort Study. American Journal of Kidney Diseases, 2012, 60, 922-929.	1.9	91
101	Biomarkers Predict Progression of Acute Kidney Injury after Cardiac Surgery. Journal of the American Society of Nephrology: JASN, 2012, 23, 905-914.	6.1	244
102	Presurgical Serum Cystatin C and Risk of Acute Kidney Injury After Cardiac Surgery. American Journal of Kidney Diseases, 2011, 58, 366-373.	1.9	75
103	Incidence, risk factors, and outcomes of acute kidney injury after pediatric cardiac surgery: A prospective multicenter study*. Critical Care Medicine, 2011, 39, 1493-1499.	0.9	401
104	Early postoperative serum cystatin C predicts severe acute kidney injury following pediatric cardiac surgery. Kidney International, 2011, 80, 655-662.	5.2	114
105	Postoperative Biomarkers Predict Acute Kidney Injury and Poor Outcomes after Adult Cardiac Surgery. Journal of the American Society of Nephrology: JASN, 2011, 22, 1748-1757.	6.1	575
106	Postoperative Biomarkers Predict Acute Kidney Injury and Poor Outcomes after Pediatric Cardiac Surgery. Journal of the American Society of Nephrology: JASN, 2011, 22, 1737-1747.	6.1	327
107	Impaired vascular function in asymptomatic young adult survivors of Hodgkin Lymphoma following mediastinal radiation. Journal of Cancer Survivorship, 2010, 4, 218-224.	2.9	15
108	Albuminuria and Estimated GFR 5 Years After Escherichia coli O157 Hemolytic Uremic Syndrome: An Update. American Journal of Kidney Diseases, 2008, 51, 435-444.	1.9	41

#	Article	IF	CITATIONS
109	Impaired Endothelial Function in Adolescents with Type 1 Diabetes Mellitus. Journal of Pediatrics, 2008, 152, 557-562.	1.8	46
110	Need for Quality Improvement in Renal Systematic Reviews. Clinical Journal of the American Society of Nephrology: CJASN, 2008, 3, 1102-1114.	4.5	27
111	Can Extracellular Fluid Volume Expansion in Hemodialysis Patients Be Safely Reduced Using the Hemocontrol Biofeedback Algorithm? A Randomized Trial. ASAIO Journal, 2008, 54, 270-274.	1.6	25
112	Campylobacter Reactive Arthritis: A Systematic Review. Seminars in Arthritis and Rheumatism, 2007, 37, 48-55.	3.4	156
113	A gradient of acute gastroenteritis was characterized, to assess risk of long-term health sequelae after drinking bacterial-contaminated water. Journal of Clinical Epidemiology, 2006, 59, 421-428.	5.0	34
114	Meta-Analysis: Risk for Hypertension in Living Kidney Donors. Annals of Internal Medicine, 2006, 145, 185.	3.9	341
115	Diabetes During Diarrhea-Associated Hemolytic Uremic Syndrome: A systematic review and meta-analysis. Diabetes Care, 2005, 28, 2556-2562.	8.6	48