Kevin P Campbell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8170415/publications.pdf

Version: 2024-02-01

389 papers 51,455 citations

121 h-index 212 g-index

400 all docs

400 docs citations

400 times ranked

22050 citing authors

#	Article	IF	CITATIONS
1	Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature, 1992, 355, 696-702.	13.7	1,321
2	A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. Journal of Cell Biology, 1993, 122, 809-823.	2.3	1,263
3	Membrane organization of the dystrophin-glycoprotein complex. Cell, 1991, 66, 1121-1131.	13.5	1,247
4	Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature, 1990, 345, 315-319.	13.7	979
5	Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature, 2003, 423, 168-172.	13.7	869
6	Nomenclature of Voltage-Gated Calcium Channels. Neuron, 2000, 25, 533-535.	3.8	868
7	Three muscular dystrophies: Loss of cytoskeleton-extracellular matrix linkage. Cell, 1995, 80, 675-679.	13.5	806
8	Post-translational disruption of dystroglycan–ligand interactions in congenital muscular dystrophies. Nature, 2002, 418, 417-421.	13.7	747
9	Association of dystrophin and an integral membrane glycoprotein. Nature, 1989, 338, 259-262.	13.7	689
10	Calcium channel β-subunit binds to a conserved motif in the I–II cytoplasmic linker of the α1-subunit. Nature, 1994, 368, 67-70.	13.7	626
11	Identification of -Dystroglycan as a Receptor for Lymphocytic Choriomeningitis Virus and Lassa Fever Virus., 1998, 282, 2079-2081.		609
12	Cell Therapy of Â-Sarcoglycan Null Dystrophic Mice Through Intra-Arterial Delivery of Mesoangioblasts. Science, 2003, 301, 487-492.	6.0	593
13	Sequence and Expression of mRNAs Encoding the $\hat{l}\pm 1$ and $\hat{l}\pm 2$ Subunits of a DHP-Sensitive Calcium Channel. Science, 1988, 241, 1661-1664.	6.0	565
14	The mouse stargazer gene encodes a neuronal Ca2+-channel \hat{l}^3 subunit. Nature Genetics, 1998, 19, 340-347.	9.4	558
15	Deletion of brain dystroglycan recapitulates aspects of congenital muscular dystrophy. Nature, 2002, 418, 422-425.	13.7	532
16	Enteroviral protease 2A cleaves dystrophin: Evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nature Medicine, 1999, 5, 320-326.	15.2	519
17	Dystroglycan: from biosynthesis to pathogenesis of human disease. Journal of Cell Science, 2006, 119, 199-207.	1.2	511
18	Dystroglycan Is Essential for Early Embryonic Development: Disruption of Reichert's Membrane in Dag1-Null Mice. Human Molecular Genetics, 1997, 6, 831-841.	1.4	482

#	Article	IF	Citations
19	Purified ryanodine receptor from rabbit skeletal muscle is the calcium-release channel of sarcoplasmic reticulum Journal of General Physiology, 1988, 92, 1-26.	0.9	481
20	Association of dystrophin-related protein with dystrophin-associated proteins in mdx mouse muscle. Nature, 1992, 360, 588-591.	13.7	472
21	β–sarcoglycan: characterization and role in limb–girdle muscular dystrophy linked to 4q12. Nature Genetics, 1995, 11, 257-265.	9.4	469
22	Molecular basis of muscular dystrophies. Muscle and Nerve, 2000, 23, 1456-1471.	1.0	469
23	Missense mutations in the adhalin gene linked to autosomal recessive muscular dystrophy. Cell, 1994, 78, 625-633.	13.5	463
24	Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Current Opinion in Neurobiology, 2003, 13, 298-307.	2.0	452
25	Animal Models for Muscular Dystrophy Show Different Patterns of Sarcolemmal Disruption. Journal of Cell Biology, 1997, 139, 375-385.	2.3	441
26	Direct binding of G-protein βλ complex to voltage-dependent calcium channels. Nature, 1997, 385, 446-450.	13.7	409
27	Muscular dystrophies involving the dystrophin–glycoprotein complex: an overview of current mouse models. Current Opinion in Genetics and Development, 2002, 12, 349-361.	1.5	403
28	A stoichiometric complex of neurexins and dystroglycan in brain. Journal of Cell Biology, 2001, 154, 435-446.	2.3	389
29	Dystrophin-associated proteins are greatly reduced in skeletal muscle from mdx mice Journal of Cell Biology, 1991, 115, 1685-1694.	2.3	387
30	Dystrophin-Glycoprotein Complex: Post-translational Processing and Dystroglycan Function. Journal of Biological Chemistry, 2003, 278, 15457-15460.	1.6	380
31	The brain ryanodine receptor: A caffeine-sensitive calcium release channel. Neuron, 1991, 7, 17-25.	3.8	371
32	A Role for Dystroglycan in Basement Membrane Assembly. Cell, 1998, 95, 859-870.	13.5	367
33	A role for dystrophin-associated glycoproteins and utrophin in agrin-induced AChR clustering. Cell, 1994, 77, 663-674.	13.5	361
34	Dystrophin-related protein is localized to neuromuscular junctions of adult skeletal muscle. Neuron, 1991, 7, 499-508.	3.8	355
35	Disruption of the Sarcoglycan–Sarcospan Complex in Vascular Smooth Muscle. Cell, 1999, 98, 465-474.	13.5	352
36	Muscular dystrophies and the dystrophin–glycoprotein complex. Current Opinion in Neurology, 1997, 10, 168-175.	1.8	343

#	Article	IF	CITATIONS
37	The naming of voltage-gated calcium channels. Neuron, 1994, 13, 505-506.	3.8	331
38	Progressive Muscular Dystrophy in α-Sarcoglycan–deficient Mice. Journal of Cell Biology, 1998, 142, 1461-1471.	2.3	331
39	Subcellular fractionation of dystrophin to the triads of skeletal muscle. Nature, 1987, 330, 754-758.	13.7	318
40	Abnormal Coronary Function in Mice Deficient in $\hat{l}\pm 1$ HT-type Ca2+Channels. Science, 2003, 302, 1416-1418.	6.0	315
41	<i>O</i> -Mannosyl Phosphorylation of Alpha-Dystroglycan Is Required for Laminin Binding. Science, 2010, 327, 88-92.	6.0	312
42	The biochemistry and molecular biology of the dihydropyridine-sensitive calcium channel. Trends in Neurosciences, 1988, 11, 425-430.	4.2	309
43	PGC- $1\hat{A}$ regulates the neuromuscular junction program and ameliorates Duchenne muscular dystrophy. Genes and Development, 2007, 21, 770-783.	2.7	307
44	Induction of calcium currents by the expression of the $\hat{l}\pm 1$ -subunit of the dihydropyridine receptor from skeletal muscle. Nature, 1989, 340, 233-236.	13.7	302
45	Dystrophin-glycoprotein complex: Its role in the molecular pathogenesis of muscular dystrophies. Muscle and Nerve, 1994, 17, 2-15.	1.0	301
46	Identification and Characterization of the Dystrophin Anchoring Site on \hat{l}^2 -Dystroglycan. Journal of Biological Chemistry, 1995, 270, 27305-27310.	1.6	295
47	Dual Function of the Voltage-Dependent Ca2+ Channel $\hat{l}\pm2\hat{l}$ Subunit in Current Stimulation and Subunit Interaction. Neuron, 1996, 16, 431-440.	3.8	285
48	Dystrophin-glycoprotein complex is highly enriched in isolated skeletal muscle sarcolemma Journal of Cell Biology, 1991, 112, 135-148.	2.3	282
49	Dysferlin and muscle membrane repair. Current Opinion in Cell Biology, 2007, 19, 409-416.	2.6	282
50	Overexpression of dystrophin in transgenic mdx mice eliminates dystrophic symptoms without toxicity. Nature, 1993, 364, 725-729.	13.7	280
51	Immunosuppression and Resultant Viral Persistence by Specific Viral Targeting of Dendritic Cells. Journal of Experimental Medicine, 2000, 192, 1249-1260.	4.2	273
52	Dysferlin and the plasma membrane repair in muscular dystrophy. Trends in Cell Biology, 2004, 14, 206-213.	3.6	273
53	Dystroglycan inside and out. Current Opinion in Cell Biology, 1999, 11, 602-607.	2.6	270
54	Primary structure of the gamma subunit of the DHP-sensitive calcium channel from skeletal muscle. Science, 1990, 248, 490-492.	6.0	266

#	Article	IF	CITATIONS
55	Dystroglycan Function Requires Xylosyl- and Glucuronyltransferase Activities of LARGE. Science, 2012, 335, 93-96.	6.0	264
56	Maturation and Maintenance of the Neuromuscular Synapse. Neuron, 2000, 25, 279-293.	3.8	263
57	Deficiency of the 50K dystrophin-associated glycoprotein in severe childhood autosomal recessive muscular dystrophy. Nature, 1992, 359, 320-322.	13.7	262
58	Disruption of Dag1 in Differentiated Skeletal Muscle Reveals a Role for Dystroglycan in Muscle Regeneration. Cell, 2002, 110, 639-648.	13.5	260
59	Structural Analysis of the Voltage-Dependent Calcium Channel \hat{l}^2 Subunit Functional Core and Its Complex with the $\hat{l}\pm 1$ Interaction Domain. Neuron, 2004, 42, 387-399.	3.8	258
60	Subunit identification and reconstitution of the N-type Ca2+ channel complex purified from brain. Science, 1993, 261, 486-489.	6.0	255
61	Ca2+ channel regulation by a conserved \hat{l}^2 subunit domain. Neuron, 1994, 13, 495-503.	3.8	254
62	LARGE can functionally bypass \hat{l}_{\pm} -dystroglycan glycosylation defects in distinct congenital muscular dystrophies. Nature Medicine, 2004, 10, 696-703.	15.2	253
63	Sarcolemma-localized nNOS is required to maintain activity after mild exercise. Nature, 2008, 456, 511-515.	13.7	251
64	The Unfolded Protein Response Mediates Adaptation to Exercise in Skeletal Muscle through a PGC-1α/ATF6α Complex. Cell Metabolism, 2011, 13, 160-169.	7.2	250
65	A Dystroglycan Mutation Associated with Limb-Girdle Muscular Dystrophy. New England Journal of Medicine, 2011, 364, 939-946.	13.9	246
66	Molecular Recognition by LARGE Is Essential for Expression of Functional Dystroglycan. Cell, 2004, 117, 953-964.	13.5	243
67	Dystroglycan: an extracellular matrix receptor linked to the cytoskeleton. Current Opinion in Cell Biology, 1996, 8, 625-631.	2.6	240
68	Unique Role of Dystroglycan in Peripheral Nerve Myelination, Nodal Structure, and Sodium Channel Stabilization. Neuron, 2003, 38, 747-758.	3.8	230
69	Ryanodine receptor of skeletal muscle is a gap junction-type channel. Science, 1988, 242, 99-102.	6.0	229
70	SH3 Domain-mediated Interaction of Dystroglycan and Grb2. Journal of Biological Chemistry, 1995, 270, 11711-11714.	1.6	227
71	Human dystroglycan: skeletal muscle cDNA, genomic structure, origin of tissue specific isoforms and chromosomal localization. Human Molecular Genetics, 1993, 2, 1651-1657.	1.4	225
72	A neuronal ryanodine receptor mediates light-induced phase delays of the circadian clock. Nature, 1998, 394, 381-384.	13.7	214

#	Article	IF	CITATIONS
73	RIM1 confers sustained activity and neurotransmitter vesicle anchoring to presynaptic Ca2+ channels. Nature Neuroscience, 2007, 10, 691-701.	7.1	212
74	ISPD loss-of-function mutations disrupt dystroglycan O-mannosylation and cause Walker-Warburg syndrome. Nature Genetics, 2012, 44, 575-580.	9.4	212
75	Role of -Dystroglycan as a Schwann Cell Receptor for Mycobacterium leprae. , 1998, 282, 2076-2079.		210
76	C-terminal titin deletions cause a novel early-onset myopathy with fatal cardiomyopathy. Annals of Neurology, 2007, 61, 340-351.	2.8	209
77	Attenuated pain responses in mice lacking CaV3.2 T-type channels. Genes, Brain and Behavior, 2007, 6, 425-431.	1.1	205
78	Association of Triadin with the Ryanodine Receptor and Calsequestrin in the Lumen of the Sarcoplasmic Reticulum. Journal of Biological Chemistry, 1995, 270, 9027-9030.	1.6	203
79	Rapsyn may function as a link between the acetylcholine receptor and the agrin-binding dystrophin-associated glycoprotein complex. Neuron, 1995, 15, 115-126.	3.8	202
80	Assembly of the Dystrophin-Associated Protein Complex Does Not Require the Dystrophin Cooh-Terminal Domain. Journal of Cell Biology, 2000, 150, 1399-1410.	2.3	201
81	Mutations in GDP-Mannose Pyrophosphorylase B Cause Congenital and Limb-Girdle Muscular Dystrophies Associated with Hypoglycosylation of α-Dystroglycan. American Journal of Human Genetics, 2013, 93, 29-41.	2.6	197
82	SGK196 Is a Glycosylation-Specific <i>O</i> -Mannose Kinase Required for Dystroglycan Function. Science, 2013, 341, 896-899.	6.0	197
83	Matriglycan: a novel polysaccharide that links dystroglycan to the basement membrane. Glycobiology, 2015, 25, 702-713.	1.3	193
84	Primary adhalinopathy: a common cause of autosomal recessive muscular dystrophy of variable severity. Nature Genetics, 1995, 10, 243-245.	9.4	192
85	Disruption of the \hat{I}^2 -Sarcoglycan Gene Reveals Pathogenetic Complexity of Limb-Girdle Muscular Dystrophy Type 2E. Molecular Cell, 2000, 5, 141-151.	4.5	185
86	Cloning and tissue-specific expression of the brain calcium channel \hat{l}^2 -subunit. FEBS Letters, 1991, 291, 253-258.	1.3	181
87	Non-muscle alpha-dystroglycan is involved in epithelial development Journal of Cell Biology, 1995, 130, 79-91.	2.3	179
88	Transcriptional Upregulation of Ca _v 3.2 Mediates Epileptogenesis in the Pilocarpine Model of Epilepsy. Journal of Neuroscience, 2008, 28, 13341-13353.	1.7	179
89	Further characterization of light and heavy sarcoplasmic reticulum vesicles. Identification of the â€~sarcoplasmic reticulum feet' associated with heavy sarcoplasmic reticulum vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1980, 602, 97-116.	1.4	177
90	Minimum Requirements for Efficient Transduction of Dividing and Nondividing Cells by Feline Immunodeficiency Virus Vectors. Journal of Virology, 1999, 73, 4991-5000.	1.5	176

#	Article	IF	CITATIONS
91	New World Arenavirus Clade C, but Not Clade A and B Viruses, Utilizes α-Dystroglycan as Its Major Receptor. Journal of Virology, 2002, 76, 5140-5146.	1.5	172
92	Mutations in B3GALNT2 Cause Congenital Muscular Dystrophy and Hypoglycosylation of α-Dystroglycan. American Journal of Human Genetics, 2013, 92, 354-365.	2.6	172
93	Compositional Differences between Infant and Adult Human Corneal Basement Membranes., 2007, 48, 4989.		171
94	Forced expression of dystrophin deletion constructs reveals structure-function correlations Journal of Cell Biology, 1996, 134, 93-102.	2.3	170
95	Distribution of Dystroglycan in Normal Adult Mouse Tissues. Journal of Histochemistry and Cytochemistry, 1998, 46, 449-457.	1.3	170
96	Sarcospan, the 25-kDa Transmembrane Component of the Dystrophin-Glycoprotein Complex. Journal of Biological Chemistry, 1997, 272, 31221-31224.	1.6	165
97	Identification of a novel mutant transcript of laminin $\hat{l}\pm 2$ chain gene responsible for muscular dystrophy and dysmyelination in dy2J mice. Human Molecular Genetics, 1995, 4, 1055-1061.	1.4	162
98	Dissection of Functional Domains of the Voltage-Dependent Ca2+Channel $\hat{l}\pm2\hat{l}$ Subunit. Journal of Neuroscience, 1997, 17, 6884-6891.	1.7	160
99	Dystroglycan Is Selectively Associated with Inhibitory GABAergic Synapses But Is Dispensable for Their Differentiation. Journal of Neuroscience, 2002, 22, 4274-4285.	1.7	159
100	Dp71 can restore the dystrophin-associated glycoprotein complex in muscle but fails to prevent dystrophy. Nature Genetics, 1994, 8, 333-339.	9.4	156
101	Expression of human full-length and minidystrophin in transgenic mdx mice: implications for gene therapy of Duchenne muscular dystrophy. Human Molecular Genetics, 1995, 4, 1245-1250.	1.4	152
102	Biosynthesis of dystroglycan: processing of a precursor propeptide. FEBS Letters, 2000, 468, 79-83.	1.3	152
103	Differences in Affinity of Binding of Lymphocytic Choriomeningitis Virus Strains to the Cellular Receptor α-Dystroglycan Correlate with Viral Tropism and Disease Kinetics. Journal of Virology, 2001, 75, 448-457.	1.5	152
104	Molecular analysis of the interaction of LCMV with its cellular receptor \hat{l}_{\pm} -dystroglycan. Journal of Cell Biology, 2001, 155, 301-310.	2.3	152
105	Dysferlin-mediated membrane repair protects the heart from stress-induced left ventricular injury. Journal of Clinical Investigation, 2007, 117, 1805-1813.	3.9	152
106	Dystrophin and the membrane skeleton. Current Opinion in Cell Biology, 1993, 5, 82-87.	2.6	151
107	The Ca _V 3.2 T-Type Ca ²⁺ Channel Is Required for Pressure Overload–Induced Cardiac Hypertrophy in Mice. Circulation Research, 2009, 104, 522-530.	2.0	151
108	Limb-Girdle Muscular Dystrophy in the United States. Journal of Neuropathology and Experimental Neurology, 2006, 65, 995-1003.	0.9	144

#	Article	IF	CITATIONS
109	A \hat{l}^24 Isoform-specific Interaction Site in the Carboxyl-terminal Region of the Voltage-dependent Ca2+ Channel $\hat{l}\pm1A$ Subunit. Journal of Biological Chemistry, 1998, 273, 2361-2367.	1.6	143
110	An HMGA2-IGF2BP2 Axis Regulates Myoblast Proliferation and Myogenesis. Developmental Cell, 2012, 23, 1176-1188.	3.1	143
111	Fukutin gene mutations cause dilated cardiomyopathy with minimal muscle weakness. Annals of Neurology, 2006, 60, 597-602.	2.8	140
112	Identification of Three Subunits of the High Affinity ï‰-Conotoxin MVIIC-sensitive Ca2+ Channel. Journal of Biological Chemistry, 1996, 271, 13804-13810.	1.6	139
113	Dystroglycan is a binding protein of laminin and merosin in peripheral nerve. FEBS Letters, 1994, 352, 49-53.	1.3	138
114	Dystroglycan in development and disease. Current Opinion in Cell Biology, 1998, 10, 594-601.	2.6	138
115	Posttranslational Modification of α-Dystroglycan, the Cellular Receptor for Arenaviruses, by the Glycosyltransferase LARGE Is Critical for Virus Binding. Journal of Virology, 2005, 79, 14282-14296.	1.5	137
116	Dystroglycan in the Cerebellum is a Laminin $\hat{l}\pm 2$ -chain Binding Protein at the Glial-Vascular Interface and is Expressed in Purkinje cells. European Journal of Neuroscience, 1996, 8, 2739-2747.	1.2	135
117	Properties of the $\hat{l}\pm 1-\hat{l}^2$ Anchoring Site in Voltage-dependent Ca2+ Channels. Journal of Biological Chemistry, 1995, 270, 12056-12064.	1.6	132
118	Î ² Subunit Heterogeneity in N-type Ca2+ Channels. Journal of Biological Chemistry, 1996, 271, 3207-3212.	1.6	132
119	A \hat{I}^2 -subunit normalizes the electrophysiological properties of a cloned N-type CA2+ channel $\hat{I}\pm 1$ -subunit.		
	Neuropharmacology, 1993, 32, 1103-1116.	2.0	130
120	Neuropharmacology, 1993, 32, 1103-1116. The Ca2+-release channel/ryanodine receptor is localized in junctional and corbular sarcoplasmic reticulum in cardiac muscle Journal of Cell Biology, 1993, 120, 969-980.	2.0	130
120 121	Neuropharmacology, 1993, 32, 1103-1116. The Ca2+-release channel/ryanodine receptor is localized in junctional and corbular sarcoplasmic		
	Neuropharmacology, 1993, 32, 1103-1116. The Ca2+-release channel/ryanodine receptor is localized in junctional and corbular sarcoplasmic reticulum in cardiac muscle Journal of Cell Biology, 1993, 120, 969-980. Mild Congenital Muscular Dystrophy in Two Patients with an Internally Deleted Laminin Â2-Chain.	2.3	130
121	Neuropharmacology, 1993, 32, 1103-1116. The Ca2+-release channel/ryanodine receptor is localized in junctional and corbular sarcoplasmic reticulum in cardiac muscle Journal of Cell Biology, 1993, 120, 969-980. Mild Congenital Muscular Dystrophy in Two Patients with an Internally Deleted Laminin Â2-Chain. Human Molecular Genetics, 1997, 6, 747-752. Membrane Targeting and Stabilization of Sarcospan Is Mediated by the Sarcoglycan Subcomplex.	2.3	130
121 122	Neuropharmacology, 1993, 32, 1103-1116. The Ca2+-release channel/ryanodine receptor is localized in junctional and corbular sarcoplasmic reticulum in cardiac muscle Journal of Cell Biology, 1993, 120, 969-980. Mild Congenital Muscular Dystrophy in Two Patients with an Internally Deleted Laminin Â2-Chain. Human Molecular Genetics, 1997, 6, 747-752. Membrane Targeting and Stabilization of Sarcospan Is Mediated by the Sarcoglycan Subcomplex. Journal of Cell Biology, 1999, 145, 153-165. The sarcoglycan complex in limb–girdle muscular dystrophy. Current Opinion in Neurology, 1998, 11,	2.3 1.4 2.3	130 130 128
121 122 123	Neuropharmacology, 1993, 32, 1103-1116. The Ca2+-release channel/ryanodine receptor is localized in junctional and corbular sarcoplasmic reticulum in cardiac muscle Journal of Cell Biology, 1993, 120, 969-980. Mild Congenital Muscular Dystrophy in Two Patients with an Internally Deleted Laminin Â2-Chain. Human Molecular Genetics, 1997, 6, 747-752. Membrane Targeting and Stabilization of Sarcospan Is Mediated by the Sarcoglycan Subcomplex. Journal of Cell Biology, 1999, 145, 153-165. The sarcoglycan complex in limb–girdle muscular dystrophy. Current Opinion in Neurology, 1998, 11, 443-452. Subcellular distribution of the 1,4-dihydropyridine receptor in rabbit skeletal muscle in situ: an immunofluorescence and immunocolloidal gold-labeling study Journal of Cell Biology, 1989, 109,	2.3 1.4 2.3	130 130 128

#	Article	IF	CITATIONS
127	Identification of α-Syntrophin Binding to Syntrophin Triplet, Dystrophin, and Utrophin. Journal of Biological Chemistry, 1995, 270, 4975-4978.	1.6	121
128	Functional Rescue of the Sarcoglycan Complex in the BIO 14.6 Hamster Using \hat{l} -Sarcoglycan Gene Transfer. Molecular Cell, 1998, 1, 841-848.	4.5	120
129	Intracellular accumulation and reduced sarcolemmal expression of dysferlin in limb-girdle muscular dystrophies. Annals of Neurology, 2000, 48, 902-912.	2.8	119
130	Distinct Functions of Glial and Neuronal Dystroglycan in the Developing and Adult Mouse Brain. Journal of Neuroscience, 2010, 30, 14560-14572.	1.7	119
131	Ĵμ-Sarcoglycan Replaces Ĵ±-Sarcoglycan in Smooth Muscle to Form a Unique Dystrophin-Glycoprotein Complex. Journal of Biological Chemistry, 1999, 274, 27989-27996.	1.6	118
132	\hat{l}^2 Subunit Reshuffling Modifies N- and P/Q-Type Ca2+Channel Subunit Compositions in Lethargic Mouse Brain. Molecular and Cellular Neurosciences, 1999, 13, 293-311.	1.0	117
133	Cortical localization of a calcium release channel in sea urchin eggs Journal of Cell Biology, 1992, 116, 1111-1121.	2.3	113
134	LARGE glycans on dystroglycan function as a tunable matrix scaffold to prevent dystrophy. Nature, 2013, 503, 136-140.	13.7	112
135	Congenital muscular dystrophy with rigid spine syndrome: A clinical, pathological, radiological, and genetic study. Annals of Neurology, 2000, 47, 152-161.	2.8	111
136	Biochemical and Biophysical Evidence for $\hat{1}^3$ 2 Subunit Association with Neuronal Voltage-activated Ca2+Channels. Journal of Biological Chemistry, 2001, 276, 32917-32924.	1.6	110
137	Structural and Functional Diversity of Voltage-Activated Calcium Channels. , 1996, 4, 41-87.		109
138	Clustering and immobilization of acetylcholine receptors by the 43-kD protein: a possible role for dystrophin-related protein Journal of Cell Biology, 1993, 123, 729-740.	2.3	107
139	Expression and Subunit Interaction of Voltage-Dependent Ca ²⁺ Channels in PC12 Cells. Journal of Neuroscience, 1996, 16, 7557-7565.	1.7	107
140	Molecular Pathogenesis of Muscle Degeneration in the δ-Sarcoglycan-Deficient Hamster. American Journal of Pathology, 1998, 153, 1623-1630.	1.9	107
141	A Comparative Study of αâ€Dystroglycan Glycosylation in Dystroglycanopathies Suggests that the Hypoglycosylation of αâ€Dystroglycan Does Not Consistently Correlate with Clinical Severity. Brain Pathology, 2009, 19, 596-611.	2.1	107
142	Ultrastructural localization of calsequestrin in rat skeletal muscle by immunoferritin labeling of ultrathin frozen sections Journal of Cell Biology, 1983, 97, 1573-1581.	2.3	106
143	Assembly of the Sarcoglycan Complex. Journal of Biological Chemistry, 1998, 273, 34667-34670.	1.6	106
144	Extracellular Interaction of the Voltage-dependent Ca2+ Channel $\hat{l}\pm2\hat{l}'$ and $\hat{l}\pm1$ Subunits. Journal of Biological Chemistry, 1997, 272, 18508-18512.	1.6	101

#	Article	IF	CITATIONS
145	Both Laminin and Schwann Cell Dystroglycan Are Necessary for Proper Clustering of Sodium Channels at Nodes of Ranvier. Journal of Neuroscience, 2005, 25, 9418-9427.	1.7	101
146	Biochemical Characterization and Molecular Cloning of Cardiac Triadin. Journal of Biological Chemistry, 1996, 271, 458-465.	1.6	100
147	mdx muscle pathology is independent of nNOS perturbation. Human Molecular Genetics, 1998, 7, 823-829.	1.4	99
148	Characterization of Dystroglycanâ€Laminin Interaction in Peripheral Nerve. Journal of Neurochemistry, 1996, 66, 1518-1524.	2.1	99
149	Like-acetylglucosaminyltransferase (LARGE)-dependent modification of dystroglycan at Thr-317/319 is required for laminin binding and arenavirus infection. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17426-17431.	3.3	99
150	Ultrastructural localization of calsequestrin in adult rat atrial and ventricular muscle cells Journal of Cell Biology, 1985, 101, 257-268.	2.3	98
151	Proteolytic Enzymes and Altered Glycosylation Modulate Dystroglycan Function in Carcinoma Cells. Cancer Research, 2004, 64, 6152-6159.	0.4	98
152	Point mutation in the glycoprotein of lymphocytic choriomeningitis virus is necessary for receptor binding, dendritic cell infection, and long-term persistence. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2969-2974.	3.3	98
153	Prevention of cardiomyopathy in mouse models lacking the smooth muscle sarcoglycan-sarcospan complex. Journal of Clinical Investigation, 2001, 107, R1-R7.	3.9	98
154	The functional O-mannose glycan on \hat{l}_{\pm} -dystroglycan contains a phospho-ribitol primed for matriglycan addition. ELife, 2016, 5, .	2.8	98
155	Biochemical Characterization of the Epithelial Dystroglycan Complex. Journal of Biological Chemistry, 1999, 274, 26609-26616.	1.6	97
156	Subunit Stoichiometry of Human Muscle Chloride Channels. Journal of General Physiology, 1997, 109, 93-104.	0.9	96
157	Loss of α-Dystroglycan Laminin Binding in Epithelium-derived Cancers Is Caused by Silencing of LARGE. Journal of Biological Chemistry, 2009, 284, 11279-11284.	1.6	96
158	The glucuronyltransferase B4GAT1 is required for initiation of LARGE-mediated \hat{l}_{\pm} -dystroglycan functional glycosylation. ELife, 2014, 3, .	2.8	96
159	Linkage of the gene for cystinosis to markers on the short arm of chromosome 17. Nature Genetics, 1995, 10, 246-248.	9.4	95
160	A biochemical, genetic, and clinical survey of autosomal recessive limb girdle muscular dystrophies in Turkey. Annals of Neurology, 1997, 42, 222-229.	2.8	94
161	Evidence for a role of dystroglycan regulating the membrane architecture of astroglial endfeet. European Journal of Neuroscience, 2011, 33, 2179-2186.	1.2	94
162	A monoclonal antibody to the Ca2+ -ATPase of cardiac sarcoplasmic reticulum cross-reacts with slow type I but not with fast type II canine skeletal muscle fibers: An immunocytochemical and immunochemical study. Cytoskeleton, 1988, 9, 164-174.	4.4	93

#	Article	IF	CITATIONS
163	Reduced expression of dystroglycan in breast and prostate cancer. Human Pathology, 2001, 32, 791-795.	1.1	93
164	Centronuclear myopathy in mice lacking a novel muscle-specific protein kinase transcriptionally regulated by MEF2. Genes and Development, 2005, 19, 2066-2077.	2.7	93
165	Association of Native Ca2+ Channel \hat{l}^2 Subunits with the $\hat{l}\pm 1$ Subunit Interaction Domain. Journal of Biological Chemistry, 1995, 270, 18088-18093.	1.6	92
166	Abnormal expression of dystrophin-associated proteins in Fukuyama-type congenital muscular dystrophy. Lancet, The, 1993, 341, 521-522.	6.3	90
167	Dystroglycan loss disrupts polarity and \hat{l}^2 -casein induction in mammary epithelial cells by perturbing laminin anchoring. Journal of Cell Science, 2006, 119, 4047-4058.	1.2	90
168	Structural basis of laminin binding to the LARGE glycans on dystroglycan. Nature Chemical Biology, 2016, 12, 810-814.	3.9	88
169	Characterization of δ-Sarcoglycan, a Novel Component of the Oligomeric Sarcoglycan Complex Involved in Limb-Girdle Muscular Dystrophy. Journal of Biological Chemistry, 1996, 271, 32321-32329.	1.6	87
170	A Role of Dystroglycan in Schwannoma Cell Adhesion to Laminin. Journal of Biological Chemistry, 1997, 272, 13904-13910.	1.6	87
171	Dystroglycan expression in the wild type andmdx mouse neural retina: Synaptic colocalization with dystrophin, dystrophin-related protein but not laminin. Journal of Neuroscience Research, 1995, 42, 528-538.	1.3	86
172	Identification of critical amino acids involved in $\hat{l}\pm 1$ - \hat{l}^2 interaction in voltage-dependent Ca2+channels. FEBS Letters, 1996, 380, 272-276.	1.3	85
173	Prevention of dystrophic pathology in mdx mice by a truncated dystrophin isoform. Human Molecular Genetics, 1994, 3, 1725-1733.	1.4	84
174	Deficiency of a Dystrophin-Associated Glycoprotein (Adhalin) in a Patient with Muscular Dystrophy and Cardiomyopathy. New England Journal of Medicine, 1996, 334, 362-366.	13.9	84
175	Differential expression of aquaporin 8 in human colonic epithelial cells and colorectal tumors. BMC Physiology, $2001,1,1.$	3.6	84
176	CaV3.2 is the major molecular substrate for redox regulation of T-type Ca2+channels in the rat and mouse thalamus. Journal of Physiology, 2006, 574, 415-430.	1.3	81
177	Loss of sarcolemma nNOS in sarcoglycanâ€deficient muscle. FASEB Journal, 2002, 16, 1786-1791.	0.2	80
178	ISPD gene mutations are a common cause of congenital and limb-girdle muscular dystrophies. Brain, 2013, 136, 269-281.	3.7	80
179	Interactions of intermediate filament protein synemin with dystrophin and utrophin. Biochemical and Biophysical Research Communications, 2006, 346, 768-777.	1.0	79
180	Are voltage-dependent ion channels involved in the endothelial cell control of vasomotor tone?. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H1371-H1383.	1.5	79

#	Article	IF	CITATIONS
181	Glycomic Analyses of Mouse Models of Congenital Muscular Dystrophy. Journal of Biological Chemistry, 2011, 286, 21180-21190.	1.6	79
182	Â6Â4 Integrin and Dystroglycan Cooperate to Stabilize the Myelin Sheath. Journal of Neuroscience, 2008, 28, 6714-6719.	1.7	78
183	Dystroglycan on Radial Glia End Feet Is Required for Pial Basement Membrane Integrity and Columnar Organization of the Developing Cerebral Cortex. Journal of Neuropathology and Experimental Neurology, 2012, 71, 1047-1063.	0.9	78
184	Evidence for the presence of calsequestrin in two structurally different regions of myocardial sarcoplasmic reticulum Journal of Cell Biology, 1984, 98, 1597-1602.	2.3	77
185	Brain and Eye Malformations Resembling Walker–Warburg Syndrome Are Recapitulated in Mice by Dystroglycan Deletion in the Epiblast. Journal of Neuroscience, 2008, 28, 10567-10575.	1.7	77
186	Genetic ablation of complement C3 attenuates muscle pathology in dysferlin-deficient mice. Journal of Clinical Investigation, 2010, 120, 4366-4374.	3.9	77
187	The Voltage-dependent Calcium Channel \hat{l}^2 Subunit Contains Two Stable Interacting Domains. Journal of Biological Chemistry, 2003, 278, 52323-52332.	1.6	76
188	Residual laminin-binding activity and enhanced dystroglycan glycosylation by LARGE in novel model mice to dystroglycanopathy. Human Molecular Genetics, 2009, 18, 621-631.	1.4	76
189	A common missense mutation in the adhalin gene in three unrelated Brazilian families with a relatively mild form of autosomal recessive limb-girdle muscular dystrophy. Human Molecular Genetics, 1995, 4, 1163-1167.	1.4	75
190	Caveolin-3 is not an integral component of the dystrophin glycoprotein complex. FEBS Letters, 1998, 427, 279-282.	1.3	75
191	Decoding arenavirus pathogenesis: Essential roles for alpha-dystroglycan-virus interactions and the immune response. Virology, 2011, 411, 170-179.	1.1	75
192	Presence of Inositol 1,4,5-Trisphosphate Receptor, Calreticulin, and Calsequestrin in Eggs of Sea Urchins and Xenopus laevis. Developmental Biology, 1994, 161, 466-476.	0.9	74
193	The calcium signal and neutrophil activation. Clinical Biochemistry, 1990, 23, 159-166.	0.8	72
194	Specific association of calmodulin-dependent protein kinase and related substrates with the junctional sarcoplasmic reticulum of skeletal muscle. Biochemistry, 1990, 29, 5899-5905.	1.2	72
195	Dystroglycan binding to laminin $\hat{l}\pm 1LG4$ module influences epithelial morphogenesis of salivary gland and lung in vitro. Differentiation, 2001, 69, 121-134.	1.0	72
196	Congenital disorder of glycosylation due to DPM1 mutations presenting with dystroglycanopathy-type congenital muscular dystrophy. Molecular Genetics and Metabolism, 2013, 110, 345-351.	0.5	71
197	Quercetin inhibits Ca2+ uptake but not Ca2+ release by sarcoplasmic reticulum in skinned muscle fibers Proceedings of the National Academy of Sciences of the United States of America, 1980, 77, 4435-4438.	3.3	70
198	Dystrophin-glycoprotein complex. Current Opinion in Neurology, 1995, 8, 379-384.	1.8	69

#	Article	IF	Citations
199	Transmembrane Auxiliary Subunits of Voltage-dependent Ion Channels. Journal of Biological Chemistry, 1996, 271, 27975-27978.	1.6	68
200	Opposing Roles of Integrin $\hat{l}\pm 6A\hat{l}^21$ and Dystroglycan in Laminin-mediated Extracellular Signal-regulated Kinase Activation. Molecular Biology of the Cell, 2003, 14, 2088-2103.	0.9	68
201	Neuronal Dystroglycan Is Necessary for Formation and Maintenance of Functional CCK-Positive Basket Cell Terminals on Pyramidal Cells. Journal of Neuroscience, 2016, 36, 10296-10313.	1.7	68
202	Common pathological mechanisms in mouse models for muscular dystrophies. FASEB Journal, 2006, 20, 127-129.	0.2	67
203	Î ³ Subunit of Voltage-activated Calcium Channels. Journal of Biological Chemistry, 2003, 278, 21315-21318.	1.6	66
204	Old World and Clade C New World Arenaviruses Mimic the Molecular Mechanism of Receptor Recognition Used by î±-Dystroglycan's Host-Derived Ligands. Journal of Virology, 2007, 81, 5685-5695.	1.5	66
205	Differential expression of dystrophin, utrophin and dystrophin-associated proteins in peripheral nerve. FEBS Letters, 1993, 334, 281-285.	1.3	65
206	Distribution of alpha-dystroglycan during embryonic nerve-muscle synaptogenesis Journal of Cell Biology, 1995, 129, 1093-1101.	2.3	65
207	Contrast agent-enhanced magnetic resonance imaging of skeletal muscle damage in animal models of muscular dystrophy. Magnetic Resonance in Medicine, 2000, 44, 655-659.	1.9	65
208	Ca-ATPase isozyme expression in sarcoplasmic reticulum is altered by chronic stimulation of skeletal muscle. FEBS Letters, 1990, 259, 269-272.	1.3	63
209	Deficiency of dystrophin-associated proteins: A common mechanism leading to muscle cell necrosis in severe childhood muscular dystrophies. Neuromuscular Disorders, 1993, 3, 109-118.	0.3	63
210	Absence of the Skeletal Muscle Sarcolemma Chloride Channel ClC-1 in Myotonic Mice. Journal of Biological Chemistry, 1995, 270, 9035-9038.	1.6	63
211	Proteomic analysis of plasma membrane and secretory vesicles from human neutrophils. Proteome Science, 2007, 5, 12.	0.7	62
212	Sarcospan-Deficient Mice Maintain Normal Muscle Function. Molecular and Cellular Biology, 2000, 20, 1669-1677.	1.1	61
213	Skeletal Muscle Basement Membrane-Sarcolemma-Cytoskeleton Interaction Minireview Series. Journal of Biological Chemistry, 2003, 278, 12599-12600.	1.6	59
214	Mouse fukutin deletion impairs dystroglycan processing and recapitulates muscular dystrophy. Journal of Clinical Investigation, 2012, 122, 3330-3342.	3.9	57
215	Visual Impairment in the Absence of Dystroglycan. Journal of Neuroscience, 2009, 29, 13136-13146.	1.7	56
216	Laminin-6 assembles into multimolecular fibrillar complexes with perlecan and participates in mechanical-signal transduction via a dystroglycan-dependent, integrin-independent mechanism. Journal of Cell Science, 2005, 118, 2557-2566.	1.2	55

#	Article	IF	Citations
217	Xylosyl- and glucuronyltransferase functions of LARGE in $\hat{l}\pm$ -dystroglycan modification are conserved in LARGE2. Glycobiology, 2013, 23, 295-302.	1.3	55
218	Ca _v 3.2 T-type calcium channel is required for the NFAT-dependent Sox9 expression in tracheal cartilage. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1990-8.	3.3	55
219	The role of the dystrophin-glycoprotein complex in the molecular pathogenesis of muscular dystrophies. Neuromuscular Disorders, 1993, 3, 533-535.	0.3	51
220	Dystrophin deficiency exacerbates skeletal muscle pathology in dysferlin-null mice. Skeletal Muscle, 2011, 1, 35.	1.9	51
221	Identification of novel proteins unique to either transverse tubules (TS28) or the sarcolemma (SL50) in rabbit skeletal muscle Journal of Cell Biology, 1990, 110, 1173-1185.	2.3	50
222	Genetic heterogeneity for Duchenne-like muscular dystrophy (DLMD) based on linkage and 50 DAG analysis. Human Molecular Genetics, 1993, 2, 1945-1947.	1.4	50
223	Loss of basement membrane, receptor and cytoskeletal lattices in a laminin-deficient muscular dystrophy. Journal of Cell Science, 2004, 117, 735-742.	1.2	50
224	A 5′ Dystrophin Duplication Mutation Causes Membrane Deficiency of -Dystroglycan in a Family with X-linked Cardiomyopathy. Journal of Molecular and Cellular Cardiology, 1997, 29, 3175-3188.	0.9	49
225	Characterization of the purified N-type Ca2+ channel and the cation sensitivity of ω-conotoxin GVIA binding. Neuropharmacology, 1993, 32, 1127-1139.	2.0	48
226	Absence of \hat{I}^3 -sarcoglycan (35 DAG) in autosomal recessive muscular dystrophy linked to chromosome 13q12. FEBS Letters, 1996, 381, 15-20.	1.3	48
227	Neural Regulation of î±-Dystroglycan Biosynthesis and Glycosylation in Skeletal Muscle. Journal of Neurochemistry, 2001, 74, 70-80.	2.1	48
228	Characterization of aquaporinâ€4 in muscle and muscular dystrophy. FASEB Journal, 2002, 16, 943-949.	0.2	48
229	Disruption of perlecan binding and matrix assembly by post-translational or genetic disruption of dystroglycan function. FEBS Letters, 2005, 579, 4792-4796.	1.3	48
230	Dystroglycan Matrix Receptor Function in Cardiac Myocytes Is Important for Limiting Activity-Induced Myocardial Damage. Circulation Research, 2009, 105, 984-993.	2.0	48
231	Î ² -Sarcoglycan: genomic analysis and identification of a novel missense mutation in the LGMD2E Amish isolate. Neuromuscular Disorders, 1998, 8, 30-38.	0.3	47
232	Old World Arenavirus Infection Interferes with the Expression of Functional \hat{l}_{\pm} -Dystroglycan in the Host Cell. Molecular Biology of the Cell, 2007, 18, 4493-4507.	0.9	47
233	Insulin Resistance in Striated Muscle-specific Integrin Receptor \hat{I}^21 -deficient Mice. Journal of Biological Chemistry, 2009, 284, 4679-4688.	1.6	47
234	Congenital muscular dystrophy type 1D (MDC1D) due to a large intragenic insertion/deletion, involving intron 10 of the LARGE gene. European Journal of Human Genetics, 2011, 19, 452-457.	1.4	47

#	Article	IF	Citations
235	Analysis of excitation-contraction-coupling components in chronically stimulated canine skeletal muscle. FEBS Journal, 1991, 202, 739-747.	0.2	46
236	Intramembrane charge movements and excitation- contraction coupling expressed by two-domain fragments of the Ca2+ channel. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 6935-6940.	3.3	46
237	Expression, localization and functions in acrosome reaction and sperm motility of CaV3.1 and CaV3.2 channels in sperm cells: An evaluation from CaV3.1 and CaV3.2 deficient mice. Journal of Cellular Physiology, 2007, 212, 753-763.	2.0	46
238	Early adenovirus-mediated gene transfer effectively prevents muscular dystrophy in alpha-sarcoglycan-deficient mice. Gene Therapy, 2000, 7, 1385-1391.	2.3	45
239	Modified Cardiovascular L-type Channels in Mice Lacking the Voltage-dependent Ca2+ Channel \hat{I}^2 3 Subunit. Journal of Biological Chemistry, 2003, 278, 43261-43267.	1.6	45
240	Long-term Skeletal Muscle Protection After Gene Transfer in a Mouse Model of LGMD-2D. Molecular Therapy, 2007, 15, 1775-1781.	3.7	45
241	Rab3-interacting Molecule \hat{I}^3 Isoforms Lacking the Rab3-binding Domain Induce Long Lasting Currents but Block Neurotransmitter Vesicle Anchoring in Voltage-dependent P/Q-type Ca2+ Channels. Journal of Biological Chemistry, 2010, 285, 21750-21767.	1.6	45
242	Dystrophin-associated glycoproteins: their possible roles in the pathogenesis of Duchenne muscular dystrophy., 1993, 3, 139-166.		45
243	ION PATHWAYS IN PROTEINS OF THE SARCOPLASMIC RETICULUM. Annals of the New York Academy of Sciences, 1980, 358, 138-148.	1.8	44
244	Evidence for a 95 kDa Short Form of the \hat{l}_{\pm} sub>1ASubunit Associated with the i %-Conotoxin MVIIC Receptor of the P/Q-type Ca ²⁺ Channels. Journal of Neuroscience, 1998, 18, 641-647.	1.7	44
245	Expression of \hat{I}^3 -Sarcoglycan in Smooth Muscle and Its Interaction with the Smooth Muscle Sarcoglycan-Sarcospan Complex. Journal of Biological Chemistry, 2000, 275, 38554-38560.	1.6	44
246	Welcome to Skeletal Muscle. Skeletal Muscle, 2011, 1, 1.	1.9	43
247	Expression of dystrophin-associated glycoproteins during human fetal muscle development: A preliminary immunocytochemical study. Neuromuscular Disorders, 1994, 4, 343-348.	0.3	42
248	Congenital muscular dystrophy with glycosylation defects of \hat{l}_{\pm} -dystroglycan in Japan. Neuromuscular Disorders, 2005, 15, 342-348.	0.3	42
249	Sarcolemmal-restricted localization of functional CIC-1 channels in mouse skeletal muscle. Journal of General Physiology, 2010, 136, 597-613.	0.9	42
250	\hat{I}^31 Subunit Interactions within the Skeletal Muscle L-type Voltage-gated Calcium Channels. Journal of Biological Chemistry, 2003, 278, 1212-1219.	1.6	41
251	Chloride-induced release of actively loaded calcium from light and heavy sarcoplasmic reticulum vesicles. Journal of Membrane Biology, 1980, 54, 73-80.	1.0	40
252	Phosphorylation of heavy sarcoplasmic reticulum vesicles: Identification and characterization of three phosphorylated proteins. Journal of Membrane Biology, 1980, 56, 241-248.	1.0	39

#	Article	IF	Citations
253	Long-term regulation of voltage-gated Ca2+channels by gabapentin. FEBS Letters, 2002, 528, 177-182.	1.3	39
254	Laminin isoforms differentially regulate adhesion, spreading, proliferation, and ERK activation of \hat{l}^21 integrin-null cells. Experimental Cell Research, 2004, 300, 94-108.	1.2	39
255	Cell stiffness and receptors: evidence for cytoskeletal subnetworks. American Journal of Physiology - Cell Physiology, 2005, 288, C72-C80.	2.1	39
256	<i>GMPPB</i> -Associated Dystroglycanopathy: Emerging Common Variants with Phenotype Correlation. Human Mutation, 2015, 36, 1159-1163.	1.1	39
257	Basolateral Entry and Release of New and Old World Arenaviruses from Human Airway Epithelia. Journal of Virology, 2008, 82, 6034-6038.	1.5	37
258	Role of dystroglycan in limiting contraction-induced injury to the sarcomeric cytoskeleton of mature skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10992-10997.	3.3	37
259	Fukutin-related Protein Associates with the Sarcolemmal Dystrophin-Glycoprotein Complex. Journal of Biological Chemistry, 2007, 282, 16713-16717.	1.6	36
260	Sarcoglycan Complex. Journal of Biological Chemistry, 2009, 284, 19178-19182.	1.6	35
261	Combined deficiency of alpha and epsilon sarcoglycan disrupts the cardiac dystrophin complex. Human Molecular Genetics, 2011, 20, 4644-4654.	1.4	35
262	Endpoint measures in the mdx mouse relevant for muscular dystrophy pre-clinical studies. Neuromuscular Disorders, 2012, 22, 34-42.	0.3	35
263	Purification of dystrophin-related protein (utrophin) from lung and its identification in pulmonary artery endothelial cells. FEBS Letters, 1993, 326, 289-293.	1.3	34
264	Loss of LARGE2 Disrupts Functional Glycosylation of \hat{l}_{\pm} -Dystroglycan in Prostate Cancer. Journal of Biological Chemistry, 2013, 288, 2132-2142.	1.6	33
265	Structure of protein O-mannose kinase reveals a unique active site architecture. ELife, 2016, 5, .	2.8	33
266	An investigation of functional similarities between the sarcoplasmic reticulum and platelet calcium-dependent adenosinetriphosphatases with the inhibitors quercetin and calmidazolium. Biochemistry, 1987, 26, 8024-8030.	1.2	32
267	Modulation of L-type Ca2+ current but not activation of Ca2+ release by the gamma1 subunit of the dihydropyridine receptor of skeletal muscle. BMC Physiology, 2001, 1, 8.	3.6	32
268	Gene transfer establishes primacy of striated vs. smooth muscle sarcoglycan complex in limb-girdle muscular dystrophy. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8910-8915.	3.3	32
269	Training the next generation of biomedical investigators in glycosciences. Journal of Clinical Investigation, 2016, 126, 405-408.	3.9	32
270	The $\hat{l}\pm2\hat{l}'$ subunit augments functional expression and modifies the pharmacology of CaV1.3 L-type channels. Cell Calcium, 2009, 46, 282-292.	1.1	31

#	Article	IF	CITATIONS
271	Further evidence of Fukutin mutations as a cause of childhood onset limb-girdle muscular dystrophy without mental retardation. Neuromuscular Disorders, 2009, 19, 352-356.	0.3	31
272	Glial scaffold required for cerebellar granule cell migration is dependent on dystroglycan function as a receptor for basement membrane proteins. Acta Neuropathologica Communications, 2013, 1, 58.	2.4	31
273	Dystroglycan Maintains Inner Limiting Membrane Integrity to Coordinate Retinal Development. Journal of Neuroscience, 2017, 37, 8559-8574.	1.7	31
274	Restoration of dystrophin-associated proteins in skeletal muscle of mdx mice transgenic for dystrophin gene. FEBS Letters, 1993, 320, 276-280.	1.3	30
275	Expression of dystrophin-associated proteins in dystrophin-positive muscle fibers (revertants) in Duchenne muscular dystrophy. Neuromuscular Disorders, 1994, 4, 115-120.	0.3	30
276	Expression of dystrophin-associated glycoproteins and utrophin in carriers of Duchenne muscular dystrophy. Neuromuscular Disorders, 1994, 4, 401-409.	0.3	30
277	Aberrant glycosylation of \hat{l} ±-dystroglycan causes defective binding of laminin in the muscle of chicken muscular dystrophy. FEBS Letters, 2005, 579, 2359-2363.	1.3	30
278	A common disease-associated missense mutation in alpha-sarcoglycan fails to cause muscular dystrophy in mice. Human Molecular Genetics, 2008, 17, 1201-1213.	1.4	30
279	Binding of Lassa virus perturbs extracellular matrix-induced signal transduction via dystroglycan. Cellular Microbiology, 2012, 14, 1122-1134.	1.1	30
280	Biallelic Mutations in TMTC3, Encoding a Transmembrane and TPR-Containing Protein, Lead to Cobblestone Lissencephaly. American Journal of Human Genetics, 2016, 99, 1181-1189.	2.6	30
281	Mutation Associated with an Autosomal Dominant Cone-Rod Dystrophy CORD7 Modifies RIM1-Mediated Modulation of Voltage-Dependent Ca ²⁺ Channels. Channels, 2007, 1, 144-147.	1.5	29
282	Structure, function and biosynthesis of sarcoplasmic reticulum proteins. Trends in Biochemical Sciences, 1979, 4, 148-151.	3.7	28
283	Transient Expression of Dp140, a Product of the Duchenne Muscular Dystrophy Locus, during Kidney Tubulogenesis. Developmental Biology, 1997, 181, 156-167.	0.9	28
284	Anti-epileptic drugs delay age-related loss of spiral ganglion neurons via T-type calcium channel. Hearing Research, 2011, 278, 106-112.	0.9	28
285	Cell entry of Lassa virus induces tyrosine phosphorylation of dystroglycan. Cellular Microbiology, 2013, 15, 689-700.	1.1	28
286	Phenotypic heterogeneity in the stargazin allelic series. Mammalian Genome, 2003, 14, 506-513.	1.0	27
287	Abnormal expression of laminin suggests disturbance of sarcolemma-extracellular matrix interaction in Japanese patients with autosomal recessive muscular dystrophy deficient in adhalin Journal of Clinical Investigation, 1994, 94, 601-606.	3.9	27
288	Targeting Schwann cells by nonlytic arenaviral infection selectively inhibits myelination. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 16071-16076.	3.3	26

#	Article	IF	CITATIONS
289	Inhibition of Recombinant N-Type CaV Channels by the Â2 Subunit Involves Unfolded Protein Response (UPR)-Dependent and UPR-Independent Mechanisms. Journal of Neuroscience, 2007, 27, 3317-3327.	1.7	26
290	Involvement of Ca ²⁺ Channel Synprint Site in Synaptic Vesicle Endocytosis. Journal of Neuroscience, 2010, 30, 655-660.	1.7	26
291	DIDS INHIBITION OF SARCOPLASMIC RETICULUM ANION EFFLUX AND CALCIUM TRANSPORT. Annals of the New York Academy of Sciences, 1980, 358, 328-331.	1.8	25
292	Utrophin to the rescue. Nature, 1996, 384, 308-309.	13.7	25
293	Dystroglycan controls signaling of multiple hormones through modulation of STAT5 activity. Journal of Cell Science, 2010, 123, 3683-3692.	1.2	25
294	Contact-dependent regulation of N-type calcium channel subunits during synaptogenesis. , 1998, 35, 198-208.		24
295	Identification and characterization of proteins in sarcoplasmic reticulum from normal and failing human left ventricles. Journal of Molecular and Cellular Cardiology, 1990, 22, 1477-1485.	0.9	23
296	Structural and functional correlates of a mutation in the malignant hyperthermia-susceptible pig ryanodine receptor. FEBS Letters, 1992, 301, 49-52.	1.3	23
297	A functional AMPA receptor-calcium channel complex in the postsynaptic membrane. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5561-5566.	3.3	23
298	Reactive oxygen species deglycosilate glomerular α-dystroglycan. Kidney International, 2006, 69, 1526-1534.	2.6	23
299	Cell surface glycan engineering reveals that matriglycan alone can recapitulate dystroglycan binding and function. Nature Communications, 2022, 13, .	5. 8	23
300	Calcium transport by sarcoplasmic reticulum of skeletal muscle is inhibited by antibodies against the 53-kilodalton glycoprotein of the sarcoplasmic reticulum membrane. Biochemistry, 1989, 28, 4830-4839.	1.2	22
301	The Expression of Dystrophin-associated Glycoproteins During Skeletal Muscle Degeneration and Regeneration. An Immunofluorescence Study. Journal of Neuropathology and Experimental Neurology, 1995, 54, 557-569.	0.9	22
302	Deficiency of the 50 kDa dystrophin-associated glycoprotein and abnormal expression of utrophin in two South Asian cousins with variable expression of severe childhood autosomal recessive muscular dystrophy. Neuromuscular Disorders, 1994, 4, 121-129.	0.3	21
303	Uniparental disomy unveils a novel recessive mutation in POMT2. Neuromuscular Disorders, 2018, 28, 592-596.	0.3	20
304	Endogenous Glucuronyltransferase Activity of LARGE or LARGE2 Required for Functional Modification of \hat{l}_{\pm} -Dystroglycan in Cells and Tissues. Journal of Biological Chemistry, 2014, 289, 28138-28148.	1.6	19
305	Biochemical and pathological changes result from mutated Caveolin-3 in muscle. Skeletal Muscle, 2018, 8, 28.	1.9	19
306	The dystroglycan receptor maintains glioma stem cells in the vascular niche. Acta Neuropathologica, 2019, 138, 1033-1052.	3.9	19

#	Article	lF	Citations
307	POMK regulates dystroglycan function via LARGE1-mediated elongation of matriglycan. ELife, 2020, 9, .	2.8	19
308	\hat{l}_{\pm} -Dystroglycan can mediate arenavirus infection in the absence of \hat{l}^2 -dystroglycan. Virology, 2003, 316, 213-220.	1.1	18
309	Caveolin 3 Is Associated with the Calcium Release Complex and Is Modified via in Vivo Triadin Modification. Biochemistry, 2010, 49, 6130-6135.	1.2	18
310	Molecular Signatures of Membrane Protein Complexes Underlying Muscular Dystrophy. Molecular and Cellular Proteomics, 2016, 15, 2169-2185.	2.5	18
311	Exome sequencing reveals independent SGCD deletions causing limb girdle muscular dystrophy in Boston terriers. Skeletal Muscle, 2017, 7, 15.	1.9	18
312	Assessment of the 50-kDa dystrophin-associated glycoprotein in Brazilian patients with severe childhood autosomal recessive muscular dystrophy. Journal of the Neurological Sciences, 1994, 123, 122-128.	0.3	17
313	Muscular dystrophy associated with ?-dystroglycan deficiency. Annals of Neurology, 1996, 40, 925-928.	2.8	17
314	Molecular characterization of a two-domain form of the neuronal voltage-gated P/Q-type calcium channel $\hat{l}\pm 12.1$ subunit. FEBS Letters, 2002, 532, 300-308.	1.3	17
315	LARGE2-dependent glycosylation confers laminin-binding ability on proteoglycans. Glycobiology, 2016, 26, 1284-1296.	1.3	17
316	HNK-1 sulfotransferase modulates $\hat{l}\pm$ -dystroglycan glycosylation by 3-O-sulfation of glucuronic acid on matriglycan. Glycobiology, 2020, 30, 817-829.	1.3	17
317	Clinical heterogeneity of adhalin deficiency. Annals of Neurology, 1996, 39, 196-202.	2.8	16
318	Dystroglycan Overexpression in Vivo Alters Acetylcholine Receptor Aggregation at the Neuromuscular Junction. Developmental Biology, 2000, 227, 595-605.	0.9	16
319	Localization of α-Dystroglycan on the Podocyte: from Top to Toe. Journal of Histochemistry and Cytochemistry, 2005, 53, 1345-1353.	1.3	16
320	Role of the Ryanodine Receptor of Skeletal Muscle in Excitation-Contraction Coupling. Annals of the New York Academy of Sciences, 1989, 560, 155-162.	1.8	15
321	From adhalinopathies to alpha-sarcoglycanopathies: An overview. Neuromuscular Disorders, 1996, 6, 463-465.	0.3	15
322	Neurosensory Hearing Loss in Secondary Adhalinopathy. Neuropediatrics, 1996, 27, 32-36.	0.3	15
323	Collagen VI deficiency reduces muscle pathology, but does not improve muscle function, in the \hat{I}^3 -sarcoglycan-null mouse. Human Molecular Genetics, 2016, 25, 1357-1369.	1.4	15
324	Clinical utility of RNA sequencing to resolve unusual GNE myopathy with a novel promoter deletion. Muscle and Nerve, 2019, 60, 98-103.	1.0	15

#	Article	IF	CITATIONS
325	Frog cardiac calsequestrin. Identification, characterization, and subcellular distribution in two structurally distinct regions of peripheral sarcoplasmic reticulum in frog ventricular myocardium Circulation Research, 1991, 69, 344-359.	2.0	14
326	Analysis of the Role of Dystroglycan in Early Postimplantation Mouse Developmenta. Annals of the New York Academy of Sciences, 1998, 857, 256-259.	1.8	14
327	Dystroglycan is involved in laminin-1-stimulated motility of Mýller glial cells: Combined velocity and directionality analysis. Glia, 2005, 49, 492-500.	2.5	14
328	Muscles of mice deficient in \hat{l}_{\pm} -sarcoglycan maintain large masses and near control force values throughout the life span. Physiological Genomics, 2005, 22, 244-256.	1.0	14
329	\hat{l}^3 1-Dependent Down-regulation of Recombinant Voltage-gated Ca2+ Channels. Cellular and Molecular Neurobiology, 2007, 27, 901-908.	1.7	14
330	A novel POMT2 mutation causes mild congenital muscular dystrophy with normal brain MRI. Brain and Development, 2009, 31, 465-468.	0.6	14
331	A novel missense mutation in POMT1 modulates the severe congenital muscular dystrophy phenotype associated with POMT1 nonsense mutations. Neuromuscular Disorders, 2014, 24, 312-320.	0.3	14
332	α-Dystroglycan deficiency correlates with elevated serum creatine kinase and decreased muscle contraction tension in golden retriever muscular dystrophy. FEBS Letters, 1994, 350, 173-176.	1.3	13
333	[28] Purification and reconstitution of N-type calcium channel complex from rabbit brain. Methods in Enzymology, 1994, 238, 335-348.	0.4	13
334	Adhalin gene mutations and autosomal recessive limb-girdle muscular dystrophy. Annals of Neurology, 1995, 38, 353-354.	2.8	13
335	Expression of sialidase and dystroglycan in human glomerular diseases. Nephrology Dialysis Transplantation, 2010, 25, 478-484.	0.4	13
336	Exercise-Induced Left Ventricular Systolic Dysfunction in Women Heterozygous for Dystrophinopathy. Journal of the American Society of Echocardiography, 2010, 23, 848-853.	1.2	13
337	Variable disease severity in Saudi Arabian and Sudanese families with c.3924 + 2 T > C mutation of LAMA2. BMC Research Notes, 2011, 4, 534.	0.6	13
338	Protective role for the N-terminal domain of \hat{l}_{\pm} -dystroglycan in Influenza A virus proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11396-11401.	3.3	13
339	Identification of muscle-specific calpain and \hat{l}^2 -sarcoglycan genes in progressive autosomal recessive muscular dystrophies. Neuromuscular Disorders, 1996, 6, 455-462.	0.3	12
340	Expression of Deletion-Containing Dystrophins in mdx Muscle: Implications for Gene Therapy and Dystrophin Function. Pediatric Research, 1995, 37, 693-700.	1,1	11
341	Two separate Ni ²⁺ â€sensitive voltageâ€gated Ca ²⁺ channels modulate transretinal signalling in the isolated murine retina. Acta Ophthalmologica, 2011, 89, e579-90.	0.6	11
342	Evidence for the presence of calsequestrin in both peripheral and interior regions of sheep Purkinje fibers Circulation Research, 1984, 55, 267-270.	2.0	10

#	Article	IF	Citations
343	Adenosine A ₃ receptor stimulation induces protection of skeletal muscle from eccentric exercise-mediated injury. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 299, R259-R267.	0.9	10
344	MG53′s new identity. Skeletal Muscle, 2013, 3, 25.	1.9	10
345	Dynamic Dystroglycan Complexes Mediate Cell Entry of Lassa Virus. MBio, 2019, 10, .	1.8	10
346	Lassa Fever Virus Binds Matriglycan—A Polymer of Alternating Xylose and Glucuronate—On α-Dystroglycan. Viruses, 2021, 13, 1679.	1.5	10
347	Partial deficiency of dystrophinâ€associated proteins in a young girl with sporadic myopathy and normal karyotype. Neurology, 1993, 43, 1267-1267.	1.5	10
348	Antibodies against the Calcium-Binding Protein. Plant Physiology, 1989, 91, 1259-1261.	2.3	9
349	Exogenous expression of the glycosyltransferase LARGE1 restores α-dystroglycan matriglycan and laminin binding in rhabdomyosarcoma. Skeletal Muscle, 2019, 9, 11.	1.9	9
350	Adhalin gene polymorphism. Human Molecular Genetics, 1994, 3, 2269-2269.	1.4	8
351	Adhalin mRNA and cDNA sequence are normal in the cardiomyopathic hamster. FEBS Letters, 1995, 364, 245-249.	1.3	8
352	Functional Glycosylation of Dystroglycan Is Crucial for Thymocyte Development in the Mouse. PLoS ONE, 2010, 5, e9915.	1.1	8
353	High-affinity antibodies to the 1,4-dihydropyridine Ca2+-channel blockers Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 2792-2796.	3.3	7
354	220th ENMC workshop: Dystroglycan and the dystroglycanopathies Naarden, The Netherlands, 27–29 May 2016. Neuromuscular Disorders, 2017, 27, 387-395.	0.3	7
355	<i>Large1</i> gene transfer in older <i>myd</i> mice with severe muscular dystrophy restores muscle function and greatly improves survival. Science Advances, 2022, 8, .	4.7	7
356	Radioimmunoassay for the Calcium Release Channel Agonist Ryanodine. Analytical Biochemistry, 1994, 218, 55-62.	1.1	6
357	Skeletal Muscle - one year on. Skeletal Muscle, 2012, 2, 1.	1.9	6
358	Muscular dystrophy-dystroglycanopathy in a family of Labrador retrievers with a LARGE1 mutation. Neuromuscular Disorders, 2021, 31, 1169-1178.	0.3	6
359	Molecular basis of muscular dystrophies. , 2000, 23, 1456.		6
360	Limb-girdle muscular dystrophies. Advances in Neurology, 2002, 88, 273-91.	0.8	6

#	Article	IF	CITATIONS
361	227 th ENMC International Workshop:. Neuromuscular Disorders, 2018, 28, 185-192.	0.3	5
362	32,000-Dalton Subunit of the 1,4-Dihydropyridine Receptor. Annals of the New York Academy of Sciences, 1989, 560, 251-257.	1.8	4
363	Genetic characterization and improved genotyping of the dysferlin-deficient mouse strain Dysf tm1Kcam. Skeletal Muscle, 2015, 5, 32.	1.9	4
364	A syntrophin gene maps to mouse Chromosome 8 and is not the myodystrophy gene. Mammalian Genome, 1995, 6, 664-665.	1.0	2
365	Characterisation of antibody models of the ryanodine receptor for use in high-throughput screeningâ€. Pest Management Science, 1998, 54, 345-352.	0.7	2
366	Response to the letter: "On the localization of ClC-1 in skeletal muscle fibers― Journal of General Physiology, 2011, 137, 331-333.	0.9	2
367	Skeletal Muscle Dystrophin-Glycoprotein Complex and Muscular Dystrophy. , 2012, , 935-942.		2
368	Third International Workshop for Glycosylation Defects in Muscular Dystrophies, 18–19 <scp>A</scp> pril 2013, <scp>C</scp> harlotte, <scp>USA</scp> . Brain Pathology, 2014, 24, 280-284.	2.1	2
369	A unique variant of lymphocytic choriomeningitis virus that induces pheromone binding protein MUP: Critical role for CTL. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18001-18008.	3.3	2
370	Anti-dihydropyridine Antibodies Exhibit [3H]Nitrendipine Binding Properties Similar to the Membrane Receptor for the 1,4-Dihydropyridine Ca2+ Channel Antagonists. Journal of Cardiovascular Pharmacology, 1987, 9, S113-S121.	0.8	1
371	\hat{l}_{\pm} -Dystroglycan can mediate arenavirus infection in the absence of \hat{l}^2 -dystroglycan. Virology, 2003, 316, 213-213.	1.1	1
372	Unraveling the ribbon synapse. Nature Neuroscience, 2008, 11, 857-859.	7.1	1
373	Skeletal muscle's 3rd year anniversary. Skeletal Muscle, 2014, 4, 3.	1.9	1
374	Investigations of an inducible intact dystrophin gene excision system in cardiac and skeletal muscle in vivo. Scientific Reports, 2020, 10, 10967.	1.6	1
375	Molecular basis of muscular dystrophies. , 2000, 23, 1456.		1
376	Intracellular accumulation and reduced sarcolemmal expression of dysferlin in limb–girdle muscular dystrophies. Annals of Neurology, 2000, 48, 902-912.	2.8	1
377	Molecular Pathways for Dilated Cardiomyopathy. , 2004, , 306-310.		1
378	Monoclonal Antibody Characterization of the 1,4-Dihydropyridine Receptor of Rabbit Skeletal Muscle. Annals of the New York Academy of Sciences, 1988, 522, 43-46.	1.8	0

#	Article	IF	CITATIONS
379	Immunogold localization of adhalin, \hat{l}_{\pm} -dystroglycan and laminin in normal and dystrophic skeletal muscle. Biochemical Society Transactions, 1996, 24, 274S-274S.	1.6	O
380	Overlay and Bead Assay: Determination of Calcium Channel Subunit Interaction Domains. , 1998, 88, 71-86.		0
381	Ca _v 3.2 Tâ€ŧype Ca++ channels trigger the endotheliumâ€dependent vasodilator signals activated by electrical stimulation FASEB Journal, 2006, 20, A277.	0.2	O
382	Sarcolemmal-restricted localization of functional CIC-1 channels in mouse skeletal muscle. Journal of Cell Biology, 2010, 191, i16-i16.	2.3	0
383	Rate of force recovery immediately following lengthening contractions for various mouse models of muscular dystrophy. FASEB Journal, 2012, 26, 1141.6.	0.2	O
384	Contractile properties of mice deficient in dystrophin and the NADPH subunit p47 phox. FASEB Journal, 2012, 26, 1141.7.	0.2	0
385	Molecular Basis for Dystroglycan Binding to Lamininâ€G Domainâ€Containing Ligands. FASEB Journal, 2013, 27, 85.1.	0.2	O
386	Illuminating regeneration: noninvasive imaging of disease progression in muscular dystrophy. Journal of Clinical Investigation, 2013, 123, 1931-1934.	3.9	0
387	Like-Glycosyltransferase; Glycosyltransferase-Like 1B (LARGE, GYLTL1B). , 2014, , 1167-1179.		O
388	Dystroglycan: Extracellular Matrix Receptor that Links to Cytoskeleton., 2015,, 1245-1251.		0
389	Alpha-Dystroglycan Supports Platelet Aggregation and Thrombus Formation. Blood, 2019, 134, 11-11.	0.6	O