List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8170093/publications.pdf Version: 2024-02-01

Мітни л Інсигам

#	Article	IF	CITATIONS
1	Current status and prospects of herbicideâ€resistant grain sorghum (<i>Sorghum bicolor</i>). Pest Management Science, 2022, 78, 409-415.	3.4	8
2	Resistance to 2,4-D in Palmer amaranth (<i>Amaranthus palmeri</i>) from Kansas is mediated by enhanced metabolism. Weed Science, 2022, 70, 390-400.	1.5	9
3	Management of glyphosate-resistant Palmer amaranth (<i>Amaranthus palmeri</i>) in 2,4-D–, glufosinate-, and glyphosate-resistant soybean. Weed Technology, 2021, 35, 136-143.	0.9	15
4	Dicamba resistance in kochia from Kansas and Nebraska evolved independently. Pest Management Science, 2021, 77, 126-130.	3.4	3
5	Genetic Basis of Chlorsulfuron, Atrazine, and Mesotrione Resistance in a Palmer Amaranth (<i>Amaranthus palmeri</i>) Population. ACS Agricultural Science and Technology, 2021, 1, 109-114.	2.3	4
6	Can nonâ€Mendelian inheritance of extrachromosomal circular DNAâ€mediated <i>EPSPS</i> gene amplification provide an opportunity to reverse resistance to glyphosate?. Weed Research, 2021, 61, 100-105.	1.7	4
7	Use of high-resolution unmanned aerial systems imagery and machine learning to evaluate grain sorghum tolerance to mesotrione. Journal of Applied Remote Sensing, 2021, 15, .	1.3	2
8	Dose responses of silvery-thread moss (<i>Bryum argenteum</i>) to carfentrazone-ethyl. Weed Technology, 2021, 35, 611-617.	0.9	1
9	A single gene inherited trait confers metabolic resistance to chlorsulfuron in grain sorghum (Sorghum bicolor). Planta, 2021, 253, 48.	3.2	8
10	High-resolution unmanned aircraft systems imagery for stay-green characterization in grain sorghum (Sorghum bicolor L.). Journal of Applied Remote Sensing, 2021, 15, .	1.3	4
11	Preâ€planting weed detection based on ground field spectral data. Pest Management Science, 2020, 76, 1173-1182.	3.4	12
12	Confirmation and Characterization of the First Case of Acetolactate Synthase (ALS)-Inhibitor—Resistant Wild Buckwheat (Polygonum convolvulus L.) in the United States. Agronomy, 2020, 10, 1496.	3.0	3
13	Characterization, Genetic Analyses, and Identification of QTLs Conferring Metabolic Resistance to a 4-Hydroxyphenylpyruvate Dioxygenase Inhibitor in Sorghum (Sorghum bicolor). Frontiers in Plant Science, 2020, 11, 596581.	3.6	11
14	Role of Cytochrome P450 Enzymes in Plant Stress Response. Antioxidants, 2020, 9, 454.	5.1	218
15	Evolution of target and non-target based multiple herbicide resistance in a single Palmer amaranth (<i>Amaranthus palmeri</i>) population from Kansas. Weed Technology, 2020, 34, 447-453.	0.9	10
16	Predominance of Metabolic Resistance in a Six-Way-Resistant Palmer Amaranth (Amaranthus palmeri) Population. Frontiers in Plant Science, 2020, 11, 614618.	3.6	28
17	Mechanism of atrazine resistance in atrazine- and HPPD inhibitor-resistant Palmer amaranth (<i>Amaranthus palmeri</i> S. Wats.) from Nebraska. Canadian Journal of Plant Science, 2019, 99, 815-823.	0.9	5
18	Herbicide resistance: Development of wheat production systems and current status of resistant weeds in wheat cropping systems. Crop Journal, 2019, 7, 750-760.	5.2	61

#	Article	IF	CITATIONS
19	Non-Target-Site Resistance to Herbicides: Recent Developments. Plants, 2019, 8, 417.	3.5	103
20	Herbicide-Resistant Kochia (<i>Bassia scoparia</i>) in North America: A Review. Weed Science, 2019, 67, 4-15.	1.5	40
21	Herbicide Metabolism: Crop Selectivity, Bioactivation, Weed Resistance, and Regulation. Weed Science, 2019, 67, 149-175.	1.5	62
22	Basis of Atrazine and Mesotrione Synergism for Controlling Atrazine―and HPPD Inhibitorâ€Resistant Palmer Amaranth. Agronomy Journal, 2019, 111, 3265-3273.	1.8	21
23	Rapid metabolism increases the level of 2,4-D resistance at high temperature in common waterhemp (Amaranthus tuberculatus). Scientific Reports, 2019, 9, 16695.	3.3	21
24	Glyphosate- and Dicamba-Resistant Genes Are Not Linked in Kochia (<i>Bassia scoparia</i>). Weed Science, 2019, 67, 16-21.	1.5	2
25	Control of Photosystem II– and 4-Hydroxyphenylpyruvate Dioxygenase Inhibitor–Resistant Palmer Amaranth (<i>Amaranthus palmeri</i>) in Conventional Corn. Weed Technology, 2018, 32, 326-335.	0.9	11
26	Weed resistance to synthetic auxin herbicides. Pest Management Science, 2018, 74, 2265-2276.	3.4	113
27	Gene Duplication and Aneuploidy Trigger Rapid Evolution of Herbicide Resistance in Common Waterhemp. Plant Physiology, 2018, 176, 1932-1938.	4.8	21
28	Reduced Translocation of Glyphosate and Dicamba in Combination Contributes to Poor Control of Kochia scoparia: Evidence of Herbicide Antagonism. Scientific Reports, 2018, 8, 5330.	3.3	26
29	Extrachromosomal circular DNA-based amplification and transmission of herbicide resistance in crop weed <i>Amaranthus palmeri</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3332-3337.	7.1	159
30	Reduced absorption of glyphosate and decreased translocation of dicamba contribute to poor control of kochia (<i>Kochia scoparia</i>) at high temperature. Pest Management Science, 2018, 74, 1134-1142.	3.4	25
31	Molecular cytogenetics to characterize mechanisms of gene duplication in pesticide resistance. Pest Management Science, 2018, 74, 22-29.	3.4	15
32	Survey of the genomic landscape surrounding the 5â€enolpyruvylshikimateâ€3â€phosphate synthase (<i>EPSPS</i>) gene in glyphosateâ€resistant <i>Amaranthus palmeri</i> from geographically distant populations in the USA. Pest Management Science, 2018, 74, 1109-1117.	3.4	33
33	Multiple resistance to glyphosate, paraquat and ACCaseâ€inhibiting herbicides in Italian ryegrass populations from California: confirmation and mechanisms of resistance. Pest Management Science, 2018, 74, 868-877.	3.4	23
34	Increased chalcone synthase (CHS) expression is associated with dicamba resistance in <scp><i>Kochia scoparia</i></scp> . Pest Management Science, 2018, 74, 2306-2315.	3.4	38
35	Metabolism of 2,4â€dichlorophenoxyacetic acid contributes to resistance in a common waterhemp (<i>Amaranthus tuberculatus</i>) population. Pest Management Science, 2018, 74, 2356-2362.	3.4	60
36	Back Cover: Cover Image, Volume 74, Issue 10. Pest Management Science, 2018, 74, ii.	3.4	0

#	Article	IF	CITATIONS
37	Front Cover: Cover Image, Volume 74, Issue 10. Pest Management Science, 2018, 74, i.	3.4	0
38	Evaluating Effect of Degree of Water Stress on Growth and Fecundity of Palmer amaranth (<i>Amaranthus palmeri</i>) Using Soil Moisture Sensors. Weed Science, 2018, 66, 738-745.	1.5	22
39	Glyphosate-Resistant Junglerice (<i>Echinochloa colona</i>) from Mississippi and Tennessee: Magnitude and Resistance Mechanisms. Weed Science, 2018, 66, 603-610.	1.5	12
40	Prevalence and Mechanism of Atrazine Resistance in Waterhemp (<i>Amaranthus tuberculatus</i>) from Nebraska. Weed Science, 2018, 66, 595-602.	1.5	21
41	Molecular and physiological characterization of sixâ€way resistance in an <i>Amaranthus tuberculatus</i> var. <i>rudis</i> biotype from Missouri. Pest Management Science, 2018, 74, 2688-2698.	3.4	31
42	Influence of Plant Growth Stage and Temperature on Glyphosate Efficacy in Common Lambsquarters (Chenopodium album). Weed Technology, 2018, 32, 448-453.	0.9	9
43	Preemergence Application of Dicamba to Manage Dicamba-Resistant Kochia (<i>Kochia scoparia</i>). Weed Technology, 2018, 32, 309-313.	0.9	8
44	An integrated approach to control glyphosateâ€resistant <i>Ambrosia trifida</i> with tillage and herbicides in glyphosateâ€resistant maize. Weed Research, 2017, 57, 112-122.	1.7	39
45	Rapid detoxification via glutathione <i>S</i> â€ŧransferase (GST) conjugation confers a high level of atrazine resistance in Palmer amaranth (<scp><i>Amaranthus palmeri</i></scp>). Pest Management Science, 2017, 73, 2236-2243.	3.4	59
46	Glyphosate-Resistant Palmer Amaranth (Amaranthus palmeri) in Nebraska: Confirmation, EPSPS Gene Amplification, and Response to POST Corn and Soybean Herbicides. Weed Technology, 2017, 31, 80-93.	0.9	55
47	Investigating mechanism of glyphosate resistance in a common ragweed (Ambrosia artemisiifolia L.) biotype from Nebraska. Canadian Journal of Plant Science, 2017, , .	0.9	3
48	Physical Mapping of Amplified Copies of the 5-Enolpyruvylshikimate-3-Phosphate Synthase Gene in Glyphosate-Resistant <i>Amaranthus tuberculatus</i> . Plant Physiology, 2017, 173, 1226-1234.	4.8	54
49	Target Site–Based and Non–Target Site Based Resistance to ALS Inhibitors in Palmer Amaranth (<i>Amaranthus palmeri</i>). Weed Science, 2017, 65, 681-689.	1.5	52
50	Temperature Influences Efficacy, Absorption, and Translocation of 2,4-D or Glyphosate in Glyphosate-Resistant and Glyphosate-Susceptible Common Ragweed (<i>Ambrosia artemisiifolia</i>) and Giant Ragweed (<i>Ambrosia trifida</i>). Weed Science, 2017, 65, 588-602.	1.5	36
51	Physiological and Molecular Characterization of Hydroxyphenylpyruvate Dioxygenase (HPPD)-inhibitor Resistance in Palmer Amaranth (Amaranthus palmeri S.Wats.). Frontiers in Plant Science, 2017, 8, 555.	3.6	69
52	Expression Profiles of <i>psbA, ALS, EPSPS</i> , and Other Chloroplastic Genes in Response to PSII-, ALS-, and EPSPS-Inhibitor Treatments in <i>Kochia scoparia</i> . American Journal of Plant Sciences, 2017, 08, 451-470.	0.8	2
53	Gene Amplification and Herbicide Resistance. , 2017, , 173-184.		0
54	A Target-Site Point Mutation in Henbit (<i>Lamium amplexicaule</i>) Confers High-Level Resistance to ALS-Inhibitors. Weed Science, 2016, 64, 231-239.	1.5	8

#	Article	IF	CITATIONS
55	Transfer of 2,4-D-resistance from <i>Raphanus raphanistrum</i> into <i>Brassica napus</i> : production of F ₁ hybrids through embryo rescue. Canadian Journal of Plant Science, 2016, 96, 384-386.	0.9	0
56	Integrated Management of Glyphosate-Resistant Giant Ragweed (<i>Ambrosia trifida</i>) with Tillage and Herbicides in Soybean. Weed Technology, 2016, 30, 45-56.	0.9	27
57	Impact of Climate Change Factors on Weeds and Herbicide Efficacy. Advances in Agronomy, 2016, , 107-146.	5.2	116
58	Genomic distribution of EPSPS copies conferring glyphosate resistance in Palmer amaranth and kochia. Indian Journal of Weed Science, 2016, 48, 132.	0.3	0
59	Fieldâ€evolved resistance to four modes of action of herbicides in a single kochia (<i>Kochia) Tj ETQq1 1 0.7843</i>	14 ₃ rgBT /C	Overlock 10
60	Transfer of Dicamba Tolerance from Sinapis arvensis to Brassica napus via Embryo Rescue and Recurrent Backcross Breeding. PLoS ONE, 2015, 10, e0141418.	2.5	12
61	Glyphosate-Resistant Kochia (<i>Kochia scoparia</i>) in Kansas: EPSPS Gene Copy Number in Relation to Resistance Levels. Weed Science, 2015, 63, 587-595.	1.5	34
62	Physiological and Molecular Mechanisms of Differential Sensitivity of Palmer Amaranth (Amaranthus) Tj ETQq0 0	0 rgBT /O	verlock 10 Tr
63	Tandem Amplification of a Chromosomal Segment Harboring 5-Enolpyruvylshikimate-3-Phosphate Synthase Locus Confers Glyphosate Resistance in Kochia scoparia. Plant Physiology, 2014, 166, 1200-1207.	4.8	103
64	Introgression of phenoxy herbicide resistance from <i>Raphanus raphanistrum</i> into <i>Raphanus sativus</i> . Plant Breeding, 2014, 133, 489-492.	1.9	7
65	Investigation of MCPA (4-Chloro-2-ethylphenoxyacetate) Resistance in Wild Radish (<i>Raphanus) Tj ETQq1 1 0.7</i>	784314 rg 5.2	BT_{32}^{\prime} Overlock
66	Production of an auxinic herbicide-resistant microspore-derived doubled haploid wild mustard (Sinapis arvensis L.) plant. Crop Protection, 2007, 26, 357-362.	2.1	7
67	Inheritance of picloram and 2,4-D resistance in wild mustard (Brassica kaber). Weed Science, 2005, 53, 417-423.	1.5	33
68	Comparison of ABP1 over-expressing Arabidopsis and under-expressing tobacco with an auxinic herbicide-resistant wild mustard (Brassica kaber) biotype. Plant Science, 2005, 169, 21-28.	3.6	17
69	Recent advances in Pelargonium in vitro regeneration systems. Plant Cell, Tissue and Organ Culture, 2001, 67, 1-9.	2.3	35
70	Increased Absorption and Translocation Contribute to Improved Efficacy of Dicamba to Control Early Growth Stage Palmer amaranth <i>(Amaranthus palmeri)</i> . Weed Science, 0, , 1-25.	1.5	1
71	Characterization and management of metsulfuronâ€resistant Rumex dentatus biotypes in Northâ€West India. Agronomy Journal, 0, , .	1.8	0
72	Assessment of Phenotypic and Genotypic Diversity in Elite Temperate and Tropical Sweet Sorghum Cultivars. Sugar Tech, 0, , 1.	1.8	0