Jörn Wilms

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8169928/publications.pdf

Version: 2024-02-01

518 papers 23,872 citations

65 h-index 136 g-index

522 all docs 522 docs citations

522 times ranked 13875 citing authors

#	Article	IF	CITATIONS
1	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	8.3	2,805
2	On the Absorption of Xâ€Rays in the Interstellar Medium. Astrophysical Journal, 2000, 542, 914-924.	4.5	2,797
3	Letter of intent for KM3NeT 2.0. Journal of Physics G: Nuclear and Particle Physics, 2016, 43, 084001.	3.6	512
4	IMPROVED REFLECTION MODELS OF BLACK HOLE ACCRETION DISKS: TREATING THE ANGULAR DISTRIBUTION OF X-RAYS. Astrophysical Journal, 2014, 782, 76.	4.5	501
5	Going with the Flow: Can the Base of Jets Subsume the Role of Compact Accretion Disk Coronae?. Astrophysical Journal, 2005, 635, 1203-1216.	4.5	459
6	Rossi Xâ€Ray Timing ExplorerObservation of Cygnus Xâ€1. II. Timing Analysis. Astrophysical Journal, 1999, 510, 874-891.	4.5	397
7	X-RAY REFLECTED SPECTRA FROM ACCRETION DISK MODELS. III. A COMPLETE GRID OF IONIZED REFLECTION CALCULATIONS. Astrophysical Journal, 2013, 768, 146.	4.5	370
8	An accreting pulsar with extreme properties drives an ultraluminous x-ray source in NGC 5907. Science, 2017, 355, 817-819.	12.6	321
9	Irradiation of an accretion disc by a jet: general properties and implications for spin measurements of black holes. Monthly Notices of the Royal Astronomical Society, 2013, 430, 1694-1708.	4.4	286
10	XMM-EPIC observation of MCG-6-30-15: direct evidence for the extraction of energy from a spinning black hole?. Monthly Notices of the Royal Astronomical Society, 2001, 328, L27-L31.	4.4	283
11	Magnetic Fields of Accreting Xâ€Ray Pulsars with theRossi Xâ€Ray Timing Explorer. Astrophysical Journal, 2002, 580, 394-412.	4.5	275
12	Broad emission lines for a negatively spinning black hole. Monthly Notices of the Royal Astronomical Society, 2010, 409, 1534-1540.	4.4	274
13	XMM-Newton observations of the brightest ultraluminous X-ray sources. Monthly Notices of the Royal Astronomical Society, 2006, 368, 397-413.	4.4	240
14	The role of the reflection fraction in constraining black hole spin. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 444, L100-L104.	3.3	232
15	Spectral formation in accreting X-ray pulsars: bimodal variation of the cyclotron energy with luminosity. Astronomy and Astrophysics, 2012, 544, A123.	5.1	204
16	Modulated High-Energy Gamma-Ray Emission from the Microquasar Cygnus X-3. Science, 2009, 326, 1512-1516.	12.6	193
17	Polarized Gamma-Ray Emission from the Galactic Black Hole Cygnus X-1. Science, 2011, 332, 438-439.	12,6	190
18	Long term variability of Cygnus X–1. Astronomy and Astrophysics, 2003, 407, 1039-1058.	5.1	178

#	Article	IF	CITATIONS
19	The enhanced X-ray Timing and Polarimetry missionâ€"eXTP. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	178
20	Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event. Nature Physics, 2016, 12, 807-814.	16.7	170
21	The Large Observatory for X-ray Timing (LOFT). Experimental Astronomy, 2012, 34, 415-444.	3.7	168
22	The SUrvey for Pulsars and Extragalactic Radio Bursts – II. New FRB discoveries and their follow-up. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1427-1446.	4.4	156
23	Cyclotron lines in highly magnetized neutron stars. Astronomy and Astrophysics, 2019, 622, A61.	5.1	150
24	Cygnus X-1 contains a 21–solar mass black hole—Implications for massive star winds. Science, 2021, 371, 1046-1049.	12.6	138
25	Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. Astrophysical Journal Letters, 2017, 850, L35.	8.3	135
26	The effects of high density on the X-ray spectrum reflected from accretion discs around black holes. Monthly Notices of the Royal Astronomical Society, 2016, 462, 751-760.	4.4	129
27	Black hole lightning due to particle acceleration at subhorizon scales. Science, 2014, 346, 1080-1084.	12.6	128
28	Normalizing a relativistic model of X-ray reflection. Astronomy and Astrophysics, 2016, 590, A76.	5.1	127
29	Discovery of a flux-related change of the cyclotron line energy in Hercules X-1. Astronomy and Astrophysics, 2007, 465, L25-L28.	5.1	125
30	Detection of large-scale X-ray bubbles in the Milky Way halo. Nature, 2020, 588, 227-231.	27.8	122
31	The ATHENA x-ray integral field unit (X-IFU). , 2018, , .		120
32	On the determination of the spin of the black hole in Cyg X-1 from X-ray reflection spectra. Monthly Notices of the Royal Astronomical Society, 2012, 424, 217-223.	4.4	117
33	Selfâ€consistent Thermal Accretion Disk Corona Models for Compact Objects. II. Application to Cygnus Xâ€1. Astrophysical Journal, 1997, 487, 759-768.	4.5	116
34	A model for cyclotron resonance scattering features. Astronomy and Astrophysics, 2007, 472, 353-365.	5.1	113
35	Coronal-temporal correlations in GX 339-4: hysteresis, possible reflection changes and implications for advection-dominated accretion flows. Monthly Notices of the Royal Astronomical Society, 2002, 332, 856-878.	4.4	109
36	THE REFLECTION COMPONENT FROM CYGNUS X-1 IN THE SOFT STATE MEASURED BY <i>NuSTAR</i> AND <i>SUZAKU</i> Astrophysical Journal, 2014, 780, 78.	4.5	109

#	Article	IF	CITATIONS
37	Long term variability of CygnusÂX-1. Astronomy and Astrophysics, 2006, 447, 245-261.	5.1	108
38	eXTP: Enhanced X-ray Timing and Polarization mission. Proceedings of SPIE, 2016, , .	0.8	106
39	<i>NuSTAR</i> AND <i>SUZAKU</i> OBSERVATIONS OF THE HARD STATE IN CYGNUS X-1: LOCATING THE INNER ACCRETION DISK. Astrophysical Journal, 2015, 808, 9.	4.5	105
40	SEARCH FOR COSMIC NEUTRINO POINT SOURCES WITH FOUR YEARS OF DATA FROM THE ANTARES TELESCOPE. Astrophysical Journal, 2012, 760, 53.	4.5	104
41	CORONA, JET, AND RELATIVISTIC LINE MODELS FOR <i>SUZAKU</i> / <i>/<i>RXTE</i>/<i>/<i>CHANDRA</i>-HETG OBSERVATIONS OF THE CYGNUS X-1 HARD STATE. Astrophysical Journal, 2011, 728, 13.</i></i>	4.5	102
42	An evaluation of the exposure in nadir observation of the JEM-EUSO mission. Astroparticle Physics, 2013, 44, 76-90.	4.3	102
43	High variability in VelaÂX-1: giant flares and off states. Astronomy and Astrophysics, 2008, 492, 511-525.	5.1	99
44	Low‣uminosity States of the Black Hole Candidate GX 339â^4. II. Timing Analysis. Astrophysical Journal, 1999, 517, 355-366.	4.5	98
45	THE SOFT STATE OF CYGNUS X-1 OBSERVED WITH NuSTAR: A VARIABLE CORONA AND A STABLE INNER DISK. Astrophysical Journal, 2016, 826, 87.	4.5	93
46	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D, 2016, 93, .	4.7	92
47	Low‣uminosity States of the Black Hole Candidate GX 339â^4. I.ASCAand Simultaneous Radio/RXTEObservations. Astrophysical Journal, 1999, 522, 460-475.	4.5	89
48	Constraining jet/disc geometry and radiative processes in stellar black holes XTE J1118+480 and GX 339â~4. Monthly Notices of the Royal Astronomical Society, 2009, 398, 1638-1650.	4.4	88
49	SEARCHES FOR POINT-LIKE AND EXTENDED NEUTRINO SOURCES CLOSE TO THE GALACTIC CENTER USING THE ANTARES NEUTRINO TELESCOPE. Astrophysical Journal Letters, 2014, 786, L5.	8.3	88
50	The Athena X-ray Integral Field Unit (X-IFU). Proceedings of SPIE, 2016, , .	0.8	88
51	<i>NuSTAR</i> DISCOVERY OF A LUMINOSITY DEPENDENT CYCLOTRON LINE ENERGY IN VELA X-1. Astrophysical Journal, 2014, 780, 133.	4.5	86
52	Towards a Unified View of Inhomogeneous Stellar Winds in Isolated Supergiant Stars and Supergiant High Mass X-Ray Binaries. Space Science Reviews, 2017, 212, 59-150.	8.1	86
53	THE COMPLEX ACCRETION GEOMETRY OF GX 339–4 AS SEEN BY <i>NuSTAR</i> AND <i>SWIFT</i> Astrophysical Journal, 2015, 808, 122.	4.5	84
54	Spectral analysis of 1Hâ€f0707â^'495 with XMM-Newton. Monthly Notices of the Royal Astronomical Society, 2012, 422, 1914-1921.	4.4	83

#	Article	IF	Citations
55	TANAMI: tracking active galactic nuclei with austral milliarcsecond interferometry. Astronomy and Astrophysics, 2010, 519, A45.	5.1	82
56	Discovery of recurring soft-to-hard state transitions in LMC X-3. Monthly Notices of the Royal Astronomical Society, 2001, 320, 327-340.	4.4	80
57	Long term variability of CygÂX-1. Astronomy and Astrophysics, 2004, 414, 1091-1104.	5.1	80
58	Limits on dark matter annihilation in the sun using the ANTARES neutrino telescope. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 759, 69-74.	4.1	78
59	NO TIME FOR DEAD TIME: TIMING ANALYSIS OF BRIGHT BLACK HOLE BINARIES WITH < i > NuSTAR < / i > . Astrophysical Journal, 2015, 800, 109.	4.5	73
60	Correlated optical, X-ray, and $\langle i \rangle \hat{i}^3 \langle i \rangle$ -ray flaring activity seen with INTEGRAL during the 2015 outburst of V404 Cygni. Astronomy and Astrophysics, 2015, 581, L9.	5.1	72
61	A giant radio flare from Cygnus X-3 with associated \hat{I}^3 -ray emission. Monthly Notices of the Royal Astronomical Society, 2012, 421, 2947-2955.	4.4	71
62	Sensitivity of the KM3NeT/ARCA neutrino telescope to point-like neutrino sources. Astroparticle Physics, 2019, 111, 100-110.	4.3	71
63	Confirmation of two cyclotron lines in Vela X-1. Astronomy and Astrophysics, 2002, 395, 129-140.	5.1	71
64	The variable cyclotron line in GX 301-2. Astronomy and Astrophysics, 2004, 427, 975-986.	5.1	71
65	<i>CHANDRA</i> X-RAY SPECTROSCOPY OF THE FOCUSED WIND IN THE CYGNUS X-1 SYSTEM. I. THE NONDIP SPECTRUM IN THE LOW/HARD STATE. Astrophysical Journal, 2009, 690, 330-346.	4.5	71
66	Discovery of a Third Harmonic Cyclotron Resonance Scattering Feature in the X-Ray Spectrum of 4U 0115+63. Astrophysical Journal, 1999, 521, L49-L53.	4.5	70
67	Crab: the standard x-ray candle with all (modern) x-ray satellites. , 2005, , .		67
68	A highly magnetized twin-jet base pinpoints a supermassive black hole. Astronomy and Astrophysics, 2016, 593, A47.	5.1	65
69	Long term variability of Cygnus X-1. Astronomy and Astrophysics, 2013, 554, A88.	5.1	64
70	Joint Constraints on Galactic Diffuse Neutrino Emission from the ANTARES and IceCube Neutrino Telescopes. Astrophysical Journal Letters, 2018, 868, L20.	8.3	64
71	Outburst of GX 304–1 monitored with INTEGRAL: positive correlation between the cyclotron line energy and flux. Astronomy and Astrophysics, 2012, 542, L28.	5.1	64
72	Pulse Phaseâ€Resolved Analysis of the Highâ€Mass Xâ€Ray Binary Centaurus Xâ€3 over Two Binary Orbits. Astrophysical Journal, 2008, 675, 1487-1498.	4.5	64

#	Article	IF	Citations
73	X-ray variation statistics and wind clumping in VelaÂX-1. Astronomy and Astrophysics, 2010, 519, A37.	5.1	63
74	Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2012, 714, 224-230.	4.1	63
75	No anticorrelation between cyclotron line energy and X-ray flux in 4UÂ0115+634. Astronomy and Astrophysics, 2013, 551, A6.	5.1	63
76	Long term variability of Cygnus X-1. Astronomy and Astrophysics, 2014, 565, A1.	5.1	63
77	A 0535+26 in the August/September 2005 outburst observed by RXTE and INTEGRAL. Astronomy and Astrophysics, 2007, 465, L21-L24.	5.1	62
78	RXTE Discovery of Multiple Cyclotron Lines during the 2004 December Outburst of V0332+53. Astrophysical Journal, 2005, 634, L97-L100.	4.5	61
79	INTEGRAL observation of the high-mass X-ray transient V 0332+53 during the 2005 outburst decline. Astronomy and Astrophysics, 2006, 451, 187-194.	5.1	61
80	INTEGRAL observations of Hercules X-1. Astronomy and Astrophysics, 2008, 482, 907-915.	5.1	61
81	First all-flavor neutrino pointlike source search with the ANTARES neutrino telescope. Physical Review D, 2017, 96, .	4.7	60
82	Rossi Xâ€Ray Timing ExplorerObservation of Cygnus Xâ€1. III. Implications for Compton Corona and Advectionâ€dominated Accretion Flow Models. Astrophysical Journal, 1999, 515, 726-737.	4.5	60
83	Selfâ€consistent Thermal Accretion Disk Corona Models for Compact Objects. I. Properties of the Corona and the Spectrum of Escaping Radiation. Astrophysical Journal, 1997, 487, 747-758.	4.5	58
84	Deep-Sea Bioluminescence Blooms after Dense Water Formation at the Ocean Surface. PLoS ONE, 2013, 8, e67523.	2.5	58
85	Implications of the Warm Corona and Relativistic Reflection Models for the Soft Excess in Mrk 509. Astrophysical Journal, 2019, 871, 88.	4.5	58
86	Discovery of a Cyclotron Resonant Scattering Feature in theRossi Xâ€Ray Timing ExplorerSpectrum of 4U 0352+309 (X Persei). Astrophysical Journal, 2001, 552, 738-747.	4.5	57
87	A good long look at the black hole candidates LMC X-1 and LMC X-3. Monthly Notices of the Royal Astronomical Society, 2001, 320, 316-326.	4.4	57
88	Search for muon neutrinos from gamma-ray bursts with the ANTARES neutrino telescope using 2008 to 2011 data. Astronomy and Astrophysics, 2013, 559, A9.	5.1	57
89	TANAMI monitoring of Centaurus A: The complex dynamics in the inner parsec of an extragalactic jet. Astronomy and Astrophysics, 2014, 569, A115.	5.1	57
90	NON-LOCAL THERMAL EQUILIBRIUM MODEL ATMOSPHERES FOR THE HOTTEST WHITE DWARFS: SPECTRAL ANALYSIS OF THE COMPACT COMPONENT IN NOVA V4743 Sgr. Astrophysical Journal, 2010, 717, 363-371.	4.5	56

#	Article	IF	Citations
91	ON THE ROLE OF THE ACCRETION DISK IN BLACK HOLE DISK-JET CONNECTIONS. Astrophysical Journal, 2012, 757, 11.	4.5	56
92	THE SMOOTH CYCLOTRON LINE IN HER X-1 AS SEEN WITH NUCLEAR SPECTROSCOPIC TELESCOPE ARRAY. Astrophysical Journal, 2013, 779, 69.	4.5	54
93	eROSITA on SRG. Proceedings of SPIE, 2010, , .	0.8	53
94	USING THE X-RAY DUST SCATTERING HALO OF CYGNUS X-1 TO DETERMINE DISTANCE AND DUST DISTRIBUTIONS. Astrophysical Journal, 2011, 738, 78.	4.5	53
95	Results from the search for dark matter in the Milky Way with 9 years of data of the ANTARES neutrino telescope. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 769, 249-254.	4.1	52
96	Is the "IR Coincidence―Just That?. Astrophysical Journal, 2005, 626, 1006-1014.	4.5	51
97	Measurement of the atmospheric $\hat{l}/2$ $\hat{l}/4$ energy spectrum from 100 GeV to 200 TeV with the ANTARES telescope. European Physical Journal C, 2013, 73, 1.	3.9	51
98	SPECTRAL STATE DEPENDENCE OF THE 0.4–2 MEV POLARIZED EMISSION IN CYGNUS X-1 SEEN WITH <i>NTEGRAL</i> /i>/IBIS, AND LINKS WITH THE AMI RADIO DATA. Astrophysical Journal, 2015, 807, 17.	4.5	51
99	Long term variability of CygnusÂX-1. Astronomy and Astrophysics, 2004, 425, 1061-1068.	5.1	51
100	Observatory science with eXTP. Science China: Physics, Mechanics and Astronomy, 2019, 62, 1.	5.1	50
101	A HARD X-RAY POWER-LAW SPECTRAL CUTOFF IN CENTAURUS X-4. Astrophysical Journal, 2014, 797, 92.	4.5	49
102	THE FIRST COMBINED SEARCH FOR NEUTRINO POINT-SOURCES IN THE SOUTHERN HEMISPHERE WITH THE ANTARES AND ICECUBE NEUTRINO TELESCOPES. Astrophysical Journal, 2016, 823, 65.	4.5	49
103	Quasi-periodic Oscillation in Seyfert Galaxies: Significance Levels. The Case of Markarian 766. Astrophysical Journal, 2001, 562, L121-L124.	4.5	49
104	A MULTIWAVELENGTH STUDY OF CYGNUS X-1: THE FIRST MID-INFRARED SPECTROSCOPIC DETECTION OF COMPACT JETS. Astrophysical Journal, 2011, 736, 63.	4.5	48
105	The positioning system of the ANTARES Neutrino Telescope. Journal of Instrumentation, 2012, 7, T08002-T08002.	1.2	48
106	GRIPS - Gamma-Ray Imaging, Polarimetry and Spectroscopy. Experimental Astronomy, 2012, 34, 551-582.	3.7	48
107	GAMMA-RAY OBSERVATIONS OF THE MICROQUASARS CYGNUS X-1, CYGNUS X-3, GRS 1915+105, AND GX 3398 WITH THE <i>FERMI </i> SERVATIONS OF THE MICROQUASARS CYGNUS X-1, CYGNUS X-3, GRS 1915+105, AND GX 3398 WITH THE <i>FERMI </i> SERVATIONS OF THE MICROQUASARS CYGNUS X-1, CYGNUS X-3, GRS 1915+105, AND GX 3398 WITH THE <i>FERMI </i> SERVATIONS OF THE MICROQUASARS CYGNUS X-1, CYGNUS X-3, GRS 1915+105, AND GX 3398 WITH THE <i>FERMI </i> SERVATIONS OF THE MICROQUASARS CYGNUS X-1, CYGNUS X-3, GRS 1915+105, AND GX 3398 WITH THE <i>FERMI SERVATIONS OF THE MICROQUASARS CYGNUS X-1, CYGNUS X-3, GRS 1915+105, AND GX 3398 WITH THE <i>FERMI SERVATIONS OF THE MICROQUASARS CYGNUS X-1, CYGNUS X-3, GRS 1915+105, AND GX 3398 WITH THE <i>FERMI SERVATIONS OF THE MICROQUASARS CYGNUS X-1, CYGNUS X-3, GRS 1915+105, AND GX 3398 WITH THE <i>FERMI SERVATIONS OF THE MICROQUASARS CYGNUS X-1, CYGNUS X-3, GRS 1915+105, AND GX 3398 WITH THE <i>FERMI SERVATIONS OF THE ORDER OF THE ORDE</i></i></i></i></i>	–4 4.5	47
108	TANAMI blazars in the IceCube PeV-neutrino fields. Astronomy and Astrophysics, 2014, 566, L7.	5.1	46

#	Article	IF	Citations
109	Deep sea tests of a prototype of the KM3NeT digital optical module. European Physical Journal C, 2014, 74, $1.$	3.9	46
110	Rapid and multiband variability of the TeV bright active nucleus of the galaxy IC 310. Astronomy and Astrophysics, 2014, 563, A91.	5.1	45
111	The JEM-EUSO instrument. Experimental Astronomy, 2015, 40, 19-44.	3.7	45
112	A polarized fast radio burst at low Galactic latitude. Monthly Notices of the Royal Astronomical Society, 0 , 0 ,	4.4	45
113	BROADBAND SPECTROSCOPY USING TWO <i>SUZAKU</i> OBSERVATIONS OF THE HMXB GX 301–2. Astrophysical Journal, 2012, 745, 124.	4.5	44
114	Long-term change in the cyclotron line energy in Hercules X-1. Astronomy and Astrophysics, 2014, 572, A119.	5.1	44
115	Updating the orbital ephemeris of HerculesÂX-1; rate of decay and eccentricity of the orbit. Astronomy and Astrophysics, 2009, 500, 883-889.	5.1	43
116	FIRST SEARCH FOR POINT SOURCES OF HIGH-ENERGY COSMIC NEUTRINOS WITH THE ANTARES NEUTRINO TELESCOPE. Astrophysical Journal Letters, 2011, 743, L14.	8.3	43
117	Search for relativistic magnetic monopoles with the ANTARES neutrino telescope. Astroparticle Physics, 2012, 35, 634-640.	4.3	43
118	ON ESTIMATING THE HIGH-ENERGY CUTOFF IN THE X-RAY SPECTRA OF BLACK HOLES VIA REFLECTION SPECTROSCOPY. Astrophysical Journal Letters, 2015, 808, L37.	8.3	43
119	The dust-scattering component of X-ray extinction: effects on continuum fitting and high-resolution absorption edge structure. Monthly Notices of the Royal Astronomical Society, 2016, 458, 1345-1351.	4.4	43
120	The Athena X-ray Integral Field Unit (X-IFU). Journal of Low Temperature Physics, 2018, 193, 901-907.	1.4	43
121	The broad iron K <i>i\hat{l}±</i> line of Cygnus X-1 as seen by <i>XMM-Newton</i> in the EPIC-pn modified timing mode. Astronomy and Astrophysics, 2011, 533, L3.	5.1	42
122	RXTE observation of Cygnus X-1 – I. Spectral analysis. Monthly Notices of the Royal Astronomical Society, 1998, 298, 729-736.	4.4	41
123	All-flavor Search for a Diffuse Flux of Cosmic Neutrinos with Nine Years of ANTARES Data. Astrophysical Journal Letters, 2018, 853, L7.	8.3	41
124	On the deep minimum state in the Seyfert galaxy MCGâ^'6-30-15. Monthly Notices of the Royal Astronomical Society, 2004, 349, 1153-1166.	4.4	40
125	INTEGRAL observation of the accreting pulsar GXÂ1+4. Astronomy and Astrophysics, 2007, 462, 995-1005.	5.1	40
126	Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. Physical Review D, 2017, 96, .	4.7	40

#	Article	IF	CITATIONS
127	Temporal variations of strength and location of the South Atlantic Anomaly as measured by RXTE. Earth and Planetary Science Letters, 2009, 281, 125-133.	4.4	39
128	The ANTARES telescope neutrino alert system. Astroparticle Physics, 2012, 35, 530-536.	4.3	39
129	<i>NuSTAR</i> DISCOVERY OF A CYCLOTRON LINE IN KS 1947+300. Astrophysical Journal Letters, 2014, 784, L40.	8.3	39
130	NuSTAR AND XMM-NEWTON OBSERVATIONS OF THE HARD X-RAY SPECTRUM OF CENTAURUS A. Astrophysical Journal, 2016, 819, 150.	4.5	39
131	A 33 hour period for the Wolf-Rayet/black hole X-rayÂbinary candidate NGCÂ300ÂX-1. Astronomy and Astrophysics, 2007, 466, L17-L20.	5.1	39
132	Long term variability of Cygnus X-1. Astronomy and Astrophysics, 2015, 576, A117.	5.1	38
133	The JEM-EUSO mission: An introduction. Experimental Astronomy, 2015, 40, 3-17.	3.7	38
134	THE NuSTAR X-RAY SPECTRUM OF HERCULES X-1: A RADIATION-DOMINATED RADIATIVE SHOCK. Astrophysical Journal, 2016, 831, 194.	4.5	38
135	Diskâ€dominated States of 4U 1957+11: <i>Chandra</i> , <i>XMMâ€Newton</i> , and <i>RXTE</i> Observations of Ostensibly the Most Rapidly Spinning Galactic Black Hole. Astrophysical Journal, 2008, 689, 1199-1214.	4.5	37
136	The pre-outburst flare of the A 0535+26ÂAugust/September 2005 outburst. Astronomy and Astrophysics, 2008, 480, L17-L20.	5.1	36
137	Reflection Spectroscopy of the Black Hole Binary XTE J1752â^223 in Its Long-stable Hard State. Astrophysical Journal, 2018, 864, 25.	4.5	36
138	Chandra Spectral and Timing Analysis of Sgr A*'s Brightest X-Ray Flares. Astrophysical Journal, 2019, 886, 96.	4.5	36
139	Study of the many fluorescent lines and the absorption variability in GXÂ301â^'2 with <i>XMM-Newton</i> . Astronomy and Astrophysics, 2011, 535, A9.	5.1	36
140	GRO J1008â^'57: an (almost) predictable transient X-ray binary. Astronomy and Astrophysics, 2013, 555, A95.	5.1	35
141	Constraints on the neutrino emission from the Galactic Ridge with the ANTARES telescope. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 760, 143-148.	4.1	35
142	THE DOUBLE-DEGENERATE NUCLEUS OF THE PLANETARY NEBULA TS 01: A CLOSE BINARY EVOLUTION SHOWCASE. Astrophysical Journal, 2010, 714, 178-193.	4.5	34
143	The clumpy absorber in the high-mass X-ray binary Vela X-1. Astronomy and Astrophysics, 2017, 608, A143.	5.1	34
144	Stability of the Cyclotron Resonance Scattering Feature in Hercules Xâ€1 withRXTE. Astrophysical Journal, 2001, 562, 499-507.	4.5	34

#	Article	IF	CITATIONS
145	Study of the cyclotron feature in MXB 0656-072. Astronomy and Astrophysics, 2006, 451, 267-272.	5.1	33
146	Dual-frequency VLBI study of Centaurus A on sub-parsec scales. Astronomy and Astrophysics, 2011, 530, L11.	5.1	33
147	<i>Chandra</i> X-ray spectroscopy of focused wind in the Cygnus X-1 system. Astronomy and Astrophysics, 2016, 590, A114.	5.1	33
148	New constraints on all flavor Galactic diffuse neutrino emission with the ANTARES telescope. Physical Review D, 2017, 96, .	4.7	33
149	The 1999 Hercules Xâ€1 Anomalous Low State. Astrophysical Journal, 2000, 543, 351-358.	4.5	33
150	Cyclotron features in X-ray spectra of accreting pulsars. Advances in Space Research, 2006, 38, 2747-2751.	2.6	32
151	INTEGRAL: Science Highlights and Future Prospects. Space Science Reviews, 2011, 161, 149-177.	8.1	32
152	<i>SUZAKU</i> OBSERVATIONS OF 4U 1957+11: POTENTIALLY THE MOST RAPIDLY SPINNING BLACK HOLE IN (THE HALO OF) THE GALAXY. Astrophysical Journal, 2012, 744, 107.	4.5	32
153	A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 008-008.	5.4	32
154	Variable neutron star free precession in Hercules X-1 from evolution of RXTE X-ray pulse profiles with phase of the 35-d cycle. Monthly Notices of the Royal Astronomical Society, 2013, 435, 1147-1164.	4.4	32
155	THE Be/X-RAY BINARY SWIFT J1626.6–5156 AS A VARIABLE CYCLOTRON LINE SOURCE. Astrophysical Journal, 2013, 762, 61.	4.5	32
156	The prototype detection unit of the KM3NeT detector. European Physical Journal C, 2016, 76, 1.	3.9	32
157	Search for Multimessenger Sources of Gravitational Waves and High-energy Neutrinos with Advanced LIGO during Its First Observing Run, ANTARES, and IceCube. Astrophysical Journal, 2019, 870, 134.	4.5	32
158	On the Inability of Comptonization to Produce the Broad Xâ€Ray Iron Lines Observed in Seyfert Nuclei. Astrophysical Journal, 2000, 533, 821-825.	4.5	32
159	Discovery of slow X-ray pulsations in the high-mass X-ray binary 4U 2206+54. Astronomy and Astrophysics, 2009, 494, 1073-1082.	5.1	31
160	The accretion environment in Vela X-1 during a flaring period using <i>XMM-Newton </i> . Astronomy and Astrophysics, 2014, 563, A70.	5.1	31
161	The EUSO-Balloon pathfinder. Experimental Astronomy, 2015, 40, 281-299.	3.7	31
162	Discovery and modelling of a flattening of the positive cyclotron line/luminosity relation in GX 304â^1 with <i>RXTE </i> . Monthly Notices of the Royal Astronomical Society, 2017, 466, 2752-2779.	4.4	31

#	Article	lF	Citations
163	Synthetic simulations of the extragalactic sky seen by eROSITA. Astronomy and Astrophysics, 2018, 617, A92.	5.1	31
164	Discovery of a Cyclotron Resonance Scattering Feature in the X-Ray Spectrum of XTE J1946+274. Astrophysical Journal, 2001, 563, L35-L39.	4.5	30
165	Iron line spectroscopy of NGC 4593 withXMM-Newton: where is the black hole accretion disc?. Monthly Notices of the Royal Astronomical Society, 2004, 352, 205-210.	4.4	30
166	A DOUBLE-PEAKED OUTBURST OF A 0535+26 OBSERVED WITH <i>INTEGRAL</i> , <i>RXTE</i> , AND <i>SUZAKU</i> . Astrophysical Journal Letters, 2013, 764, L23.	8.3	30
167	Variable pulse profiles of Hercules X-1 repeating with the same irregular 35Âd clock as the turn-ons. Astronomy and Astrophysics, 2013, 550, A110.	5.1	30
168	Search of dark matter annihilation in the galactic centre using the ANTARES neutrino telescope. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 068-068.	5 . 4	30
169	Short-period X-ray oscillations in super-soft novae and persistent super-soft sources. Astronomy and Astrophysics, 2015, 578, A39.	5.1	30
170	PROBING THE ACCRETION DISK AND CENTRAL ENGINE STRUCTURE OF NGC 4258 WITH <i>>SUZAKU</i> AND <i>XMM-NEWTON</i> OBSERVATIONS. Astrophysical Journal, 2009, 691, 1159-1167.	4.5	29
171	TWELVE AND A HALF YEARS OF OBSERVATIONS OF CENTAURUS A WITH THE < i>ROSSI X-RAY TIMING EXPLORER < /i>. Astrophysical Journal, 2011, 733, 23.	4.5	29
172	LOFT: the Large Observatory For X-ray Timing. Proceedings of SPIE, 2012, , .	0.8	29
173	The unusual multiwavelength properties of the gamma-ray source PMN J1603â~'4904. Astronomy and Astrophysics, 2014, 562, A4.	5.1	29
174	SPECTRAL AND TIMING NATURE OF THE SYMBIOTIC X-RAY BINARY 4U 1954+319: THE SLOWEST ROTATING NEUTRON STAR IN AN X-RAY BINARY SYSTEM. Astrophysical Journal, 2014, 786, 127.	4.5	29
175	LABORATORY MEASUREMENTS OF THE K-SHELL TRANSITION ENERGIES IN L-SHELL IONS OF SI AND S. Astrophysical Journal, 2016, 830, 26.	4.5	29
176	Cyclotron resonant scattering feature simulations. Astronomy and Astrophysics, 2017, 601, A99.	5.1	29
177	X-ray spectroscopy of MXBÂ1728–34 with <i>XMM-Newton</i> . Astronomy and Astrophysics, 2011, 530, A99.	5.1	28
178	Detection potential of the KM3NeT detector for high-energy neutrinos from the Fermi bubbles. Astroparticle Physics, 2013, 42, 7-14.	4.3	28
179	Revealing the broad iron K <i>\hat{l}±</i> line in Cygnus X-1 through simultaneous <i>XMM-Newton</i> , RXTE, and INTEGRAL observations. Astronomy and Astrophysics, 2016, 589, A14.	5.1	28
180	Modelling the light curves of ultraluminous X-ray sources as precession. Monthly Notices of the Royal Astronomical Society, 2017, 466, 2236-2241.	4.4	28

#	Article	IF	Citations
181	<i>Athena</i> X-IFU synthetic observations of galaxy clusters to probe the chemical enrichment of the Universe. Astronomy and Astrophysics, 2018, 620, A173.	5.1	28
182	The XMM-Newton view of the Crab. Astronomy and Astrophysics, 2006, 453, 173-180.	5.1	28
183	INTEGRAL and Swift observations of EXO 2030+375 during a giant outburst. Astronomy and Astrophysics, 2007, 464, L45-L48.	5.1	28
184	<i>INTEGRAL</i> observations of the variability of OAO 1657-415. Astronomy and Astrophysics, 2008, 486, 293-302.	5.1	28
185	Tracking the Orbital and Superorbital Periods of SMC Xâ€1. Astrophysical Journal, 2007, 670, 624-634.	4.5	27
186	CONFIRMATION OF A HIGH MAGNETIC FIELD IN GRO J1008–57. Astrophysical Journal, 2014, 792, 108.	4.5	27
187	A CLUMPY STELLAR WIND AND LUMINOSITY-DEPENDENT CYCLOTRON LINE REVEALED BY THE FIRST <i>SUZAKU</i> OBSERVATION OF THE HIGH-MASS X-RAY BINARY 4U 1538–522. Astrophysical Journal, 2014, 792, 14.	4.5	27
188	eROSITA on SRG. Proceedings of SPIE, 2014, , .	0.8	27
189	JEM-EUSO: Meteor and nuclearite observations. Experimental Astronomy, 2015, 40, 253-279.	3.7	27
190	Cyclotron resonant scattering feature simulations. Astronomy and Astrophysics, 2017, 597, A3.	5.1	27
191	Search for high-energy neutrinos from bright GRBs with ANTARES. Monthly Notices of the Royal Astronomical Society, 2017, 469, 906-915.	4.4	27
192	EUSO-TA – First results from a ground-based EUSO telescope. Astroparticle Physics, 2018, 102, 98-111.	4.3	27
193	Evidence for Returning Disk Radiation in the Black Hole X-Ray Binary XTE J1550–564. Astrophysical Journal, 2020, 892, 47.	4.5	27
194	INTEGRALandRXTEObservations of Centaurus A. Astrophysical Journal, 2006, 641, 801-821.	4.5	26
195	A Wolf-Rayet/black-hole X-ray binary candidate in NGCÂ300. Astronomy and Astrophysics, 2007, 461, L9-L12.	5.1	26
196	A search for Secluded Dark Matter in the Sun with the ANTARES neutrino telescope. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 016-016.	5.4	26
197	A <i>Suzaku</i> , <i>NuSTAR,</i> and <i>XMM-Newton</i> view on variable absorption and relativistic reflection in NGC 4151. Astronomy and Astrophysics, 2017, 603, A50.	5.1	26
198	A COMPREHENSIVE SPECTRAL ANALYSIS OF THE X-RAY PULSAR 4U 1907+09 FROM TWO OBSERVATIONS WITH THE THE i>SUZAKU i>X-RAY OBSERVATORY. Astrophysical Journal, 2010, 709, 179-190.	4.5	25

#	Article	IF	Citations
199	<i>SUZAKU</i> OBSERVATIONS OF THE HMXB 1A 1118–61. Astrophysical Journal, 2011, 733, 15.	4.5	25
200	The simultaneous low state spectral energy distribution of 1ES 2344+514 from radio to very high energies. Astronomy and Astrophysics, 2013, 556, A67.	5.1	25
201	Formation of phase lags at the cyclotron energies in the pulse profiles of magnetized, accreting neutron stars. Astronomy and Astrophysics, 2014, 564, L8.	5.1	25
202	The X-ray Integral Field Unit (X-IFU) for Athena. Proceedings of SPIE, 2014, , .	0.8	25
203	A search for neutrino emission from the Fermi bubbles with the ANTARES telescope. European Physical Journal C, 2014, 74, 1.	3.9	25
204	DISTORTED CYCLOTRON LINE PROFILE IN CEP X-4 AS OBSERVED BY <i>NuSTAR</i> . Astrophysical Journal Letters, 2015, 806, L24.	8.3	25
205	5.9-keV Mn K-shell X-ray luminosity from the decay of 55Fe in Type Ia supernova models. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1484-1490.	4.4	25
206	Characterisation of the Hamamatsu photomultipliers for the KM3NeT Neutrino Telescope. Journal of Instrumentation, 2018, 13, P05035-P05035.	1.2	25
207	Asymmetric jet production in the active galactic nucleus of NGC 1052. Astronomy and Astrophysics, 2019, 623, A27.	5.1	25
208	High Resolution Photoexcitation Measurements Exacerbate the Long-Standing Fe XVII Oscillator Strength Problem. Physical Review Letters, 2020, 124, 225001.	7.8	25
209	INTEGRAL-RXTEobservations of Cygnus X-1. Astronomy and Astrophysics, 2003, 411, L383-L388.	5.1	25
210	ANTARES and IceCube Combined Search for Neutrino Point-like and Extended Sources in the Southern Sky. Astrophysical Journal, 2020, 892, 92.	4.5	25
211	eROSITA. Proceedings of SPIE, 2007, , .	0.8	24
212	<i>RXTE</i> observations of the 1AÂ1118–61 in an outburst, and the discovery of a cyclotron line. Astronomy and Astrophysics, 2010, 515, L1.	5.1	24
213	Joint spectral-timing modelling of the hard lags in GX 339â^'4: constraints on reflection models. Monthly Notices of the Royal Astronomical Society, 2012, 422, 2407-2416.	4.4	24
214	AS ABOVE, SO BELOW: EXPLOITING MASS SCALING IN BLACK HOLE ACCRETION TO BREAK DEGENERACIES IN SPECTRAL INTERPRETATION. Astrophysical Journal Letters, 2015, 812, L25.	8.3	24
215	Continued decay in the cyclotron line energy in Hercules X-1. Astronomy and Astrophysics, 2016, 590, A91.	5.1	24
216	The Search for Neutrinos from TXS 0506+056 with the ANTARES Telescope. Astrophysical Journal Letters, 2018, 863, L30.	8.3	24

#	Article	IF	Citations
217	Observational manifestations of the change in the tilt of the accretion disk to the orbital plane in her X-1/HZ her with phase of its 35-day period. Astronomy Letters, 2006, 32, 804-815.	1.0	23
218	Correlated Radio-X-Ray Variability of Galactic Black Holes: A Radio-X-Ray Flare in Cygnus X-1. Astrophysical Journal, 2007, 663, L97-L100.	4.5	23
219	The reawakening of the sleeping X-ray pulsar XTEÂJ1946+274. Astronomy and Astrophysics, 2012, 546, A125.	5.1	23
220	Arcus: the x-ray grating spectrometer explorer. , 2016, , .		23
221	The gamma-ray emitting radio-loud narrow-line Seyfert 1 galaxy PKS 2004â^'447. Astronomy and Astrophysics, 2016, 588, A146.	5.1	23
222	Single-dish and VLBI observations of Cygnus X-3 during the 2016 giant flare episode. Monthly Notices of the Royal Astronomical Society, 2017, 471, 2703-2714.	4.4	23
223	Gamma-ray emission in radio galaxies under the VLBI scope. Astronomy and Astrophysics, 2019, 627, A148.	5.1	23
224	THE ACCRETION DISK CORONA AND DISK ATMOSPHERE OF 4U 1624–490 AS VIEWED BY THE∢i>CHANDRA⟨i>-HIGH ENERGY TRANSMISSION GRATING SPECTROMETER. Astrophysical Journal, 2009, 701, 984-993.	4.5	22
225	MEASUREMENTS OF CYCLOTRON FEATURES AND PULSE PERIODS IN THE HIGH-MASS X-RAY BINARIES 4U 1538â \in "522 AND 4U 1907+09 WITH THE <i>INTERNATIONAL GAMMA-RAY ASTROPHYSICS LABORATORY</i> Astrophysical Journal, 2013, 777, 61.	4.5	22
226	ON THE RADIAL ONSET OF CLUMPING IN THE WIND OF THE BOI MASSIVE STAR QV NOR. Astrophysical Journal, 2015, 810, 102.	4.5	22
227	eROSITA on SRG. Proceedings of SPIE, 2016, , .	0.8	22
228	First multi-wavelength campaign on the gamma-ray-loud active galaxy IC 310. Astronomy and Astrophysics, 2017, 603, A25.	5.1	22
229	Intrinsic limits on resolutions in muon- and electron-neutrino charged-current events in the KM3NeT/ORCA detector. Journal of High Energy Physics, 2017, 2017, 1.	4.7	22
230	A torque reversal of 4U 1907+09. Astronomy and Astrophysics, 2006, 458, 885-893.	5.1	22
231	On the Enigmatic Xâ€Ray Source V1408 Aquilae (=4U 1957+11). Astrophysical Journal, 1999, 522, 476-486.	4.5	22
232	Probing the outer edge of an accretion disk: a HerÂX-1 turn-on observed withRXTE. Astronomy and Astrophysics, 2005, 443, 753-767.	5.1	21
233	Two ~35 day clocks in Hercules X-1: evidence for neutron star free precession. Astronomy and Astrophysics, 2009, 494, 1025-1030.	5.1	21
234	A Suzaku X-ray observation of one orbit of the supergiant fast X-ray transient IGR J16479â^'4514. Monthly Notices of the Royal Astronomical Society, 2013, 429, 2763-2771.	4.4	21

#	Article	IF	Citations
235	Spectral and timing evolution of the bright failed outburst of the transient black hole Swift J174510.8a^'262411. Monthly Notices of the Royal Astronomical Society, 2016, 456, 3585-3595.	4.4	21
236	Optical and X-ray early follow-up of ANTARES neutrino alerts. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 062-062.	5.4	21
237	Inversion of the decay of the cyclotron line energy in Hercules X-1. Astronomy and Astrophysics, 2017, 606, L13.	5.1	21
238	<i>Chandra</i> X-ray spectroscopy of the focused wind in the Cygnus X-1 system. Astronomy and Astrophysics, 2019, 626, A64.	5.1	21
239	The gamma-ray emitting radio-loud narrow-line Seyfert 1 galaxy PKS 2004â^'447. Astronomy and Astrophysics, 2016, 585, A91.	5.1	21
240	X-ray detection of a nova in the fireball phase. Nature, 2022, 605, 248-250.	27.8	21
241	Finding a 24-day orbital period for the X-ray binary 1A 1118-616. Astronomy and Astrophysics, 2011, 527, A7.	5.1	20
242	Spectro-timing analysis of Cygnus X-1 during a fast state transition. Astronomy and Astrophysics, 2011, 533, A8.	5.1	20
243	First results on dark matter annihilation in the Sun using the ANTARES neutrino telescope. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 032-032.	5.4	20
244	Sperm whale long-range echolocation sounds revealed by ANTARES, a deep-sea neutrino telescope. Scientific Reports, 2017, 7, 45517.	3.3	20
245	Looking at AÂ0535+26 at low luminosities with <i>NuSTAR </i> . Astronomy and Astrophysics, 2017, 608, A105.	5.1	20
246	Spectral and Timing Analysis of the Accretion-powered Pulsar 4U 1626–67 Observed with Suzaku and NuSTAR. Astrophysical Journal, 2019, 878, 121.	4.5	20
247	The optical long â€~period' of LMC X-3. Monthly Notices of the Royal Astronomical Society, 2001, 328, 139-146.	4.4	19
248	An Xâ€Ray Spectral Analysis of the Central Regions of NGC 4593. Astrophysical Journal, 2007, 666, 817-827.	4.5	19
249	The early phase of a H1743-322 outburst observed by <i>INTEGRAL</i> , <i>RXTE</i> , <i>Swift</i> , and <i>XMM/Newton</i> . Astronomy and Astrophysics, 2009, 494, L21-L24.	5.1	19
250	Search for neutrino emission from gamma-ray flaring blazars with the ANTARES telescope. Astroparticle Physics, 2012, 36, 204-210.	4.3	19
251	Search for dark matter annihilation in the earth using the ANTARES neutrino telescope. Physics of the Dark Universe, 2017, 16, 41-48.	4.9	19
252	<i>>Fermi</i> /li>/LAT counterparts of IceCube neutrinos above 100 TeV. Astronomy and Astrophysics, 2018, 620, A174.	5.1	19

#	Article	IF	Citations
253	<i>Suzaku</i> observation of IGRÂJ16318-4848. Astronomy and Astrophysics, 2009, 508, 1275-1278.	5.1	19
254	XMM-Newtonobservation of the anomalous X-ray pulsar 4UÂ0142+61. Astronomy and Astrophysics, 2005, 433, 1079-1083.	5.1	19
255	On the cyclotron line in Cepheus X-4. Astronomy and Astrophysics, 2007, 470, 1065-1070.	5.1	19
256	THE TRANSIENT ACCRETING X-RAY PULSAR XTE J1946+274: STABILITY OF X-RAY PROPERTIES AT LOW FLUX AND UPDATED ORBITAL SOLUTION. Astrophysical Journal, 2015, 815, 44.	4.5	19
257	Relativistic X-Ray Reflection Models for Accreting Neutron Stars. Astrophysical Journal, 2022, 926, 13.	4.5	19
258	THE 5 hr PULSE PERIOD AND BROADBAND SPECTRUM OF THE SYMBIOTIC X-RAY BINARY 3A 1954+319. Astrophysical Journal Letters, 2011, 742, L11.	8.3	18
259	MULTI-WAVELENGTH OBSERVATIONS OF PKS 2142–75 DURING ACTIVE AND QUIESCENT GAMMA-RAY STATES. Astrophysical Journal, 2013, 779, 174.	4.5	18
260	VLBA polarimetric monitoring of 3C 111. Astronomy and Astrophysics, 2018, 610, A32.	5.1	18
261	Ultra-violet imaging of the night-time earth by EUSO-Balloon towards space-based ultra-high energy cosmic ray observations. Astroparticle Physics, 2019, 111, 54-71.	4.3	18
262	OBSERVATIONS OF THE HIGH-MASS X-RAY BINARY A 0535+26 IN QUIESCENCE. Astrophysical Journal, 2013, 770, 19.	4.5	18
263	Geometrical constraints upon the unipolar model of V407 Vul and RXJ0806.3+1527. Monthly Notices of the Royal Astronomical Society, 2005, 357, 1306-1312.	4.4	17
264	X-ray properties of NGCÂ300. Astronomy and Astrophysics, 2005, 443, 103-114.	5.1	17
265	The column density towards LMC X-1. Astronomy and Astrophysics, 2010, 509, L8.	5.1	17
266	The Wide Field Imager of the International X-ray Observatory. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 624, 533-539.	1.6	17
267	PheniX: a new vision for the hard X-ray sky. Experimental Astronomy, 2012, 34, 489-517.	3.7	17
268	Cosmic ray oriented performance studies for the JEM-EUSO first level trigger. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 866, 150-163.	1.6	17
269	Meteor studies in the framework of the JEM-EUSO program. Planetary and Space Science, 2017, 143, 245-255.	1.7	17
270	A variable-density absorption event in NGC 3227 mapped with <i> Suzaku </i> and <i> Swift </i> . Astronomy and Astrophysics, 2015, 584, A82.	5.1	17

#	Article	IF	Citations
271	INTEGRAL deep observations of the Small Magellanic Cloud. Monthly Notices of the Royal Astronomical Society, 2010, 406, 2533-2539.	4.4	16
272	Ground-based tests of JEM-EUSO components at the Telescope Array site, "EUSO-TA― Experimental Astronomy, 2015, 40, 301-314.	3.7	16
273	JEM-EUSO observational technique and exposure. Experimental Astronomy, 2015, 40, 117-134.	3.7	16
274	The TANAMI Multiwavelength Program: Dynamic spectral energy distributions of southern blazars. Astronomy and Astrophysics, 2016, 591, A130.	5.1	16
275	XIPE: the x-ray imaging polarimetry explorer. , 2016, , .		16
276	Relativistic reflection: Review and recent developments in modeling. Astronomische Nachrichten, 2016, 337, 362-367.	1.2	16
277	Modeling the Precession of the Warped Inner Accretion Disk in the Pulsars LMC X-4 and SMC X-1 with NuSTAR and XMM-Newton. Astrophysical Journal, 2020, 888, 125.	4.5	16
278	eROSITA. , 2006, 6266, 194.		15
279	A large area detector proposed for the Large Observatory for X-ray Timing (LOFT). , 2012, , .		15
280	Expansion cone for the 3-inch PMTs of the KM3NeT optical modules. Journal of Instrumentation, 2013, 8, T03006-T03006.	1.2	15
281	Evidence for different accretion regimes in GRO J1008â^'57. Astronomy and Astrophysics, 2017, 607, A88.	5.1	15
282	First observations of speed of light tracks by a fluorescence detector looking down on the atmosphere. Journal of Instrumentation, 2018, 13, P05023-P05023.	1.2	15
283	Event reconstruction for KM3NeT/ORCA using convolutional neural networks. Journal of Instrumentation, 2020, 15, P10005-P10005.	1.2	15
284	The INTEGRAL view on black hole X-ray binaries. New Astronomy Reviews, 2021, 93, 101618.	12.8	15
285	Science with the EXTraS Project: Exploring the X-Ray Transient and Variable Sky. Thirty Years of Astronomical Discovery With UKIRT, 2016, , 291-295.	0.3	15
286	ANTARES constrains a blazar origin of two IceCube PeV neutrino events. Astronomy and Astrophysics, 2015, 576, L8.	5.1	15
287	UNVEILING THE NATURE OF IGR J17177–3656 WITH X-RAY, NEAR-INFRARED, AND RADIO OBSERVATIONS. Astrophysical Journal, 2011, 738, 183.	4.5	14
288	An X-ray variable absorber within the broad line region in Fairall 51. Astronomy and Astrophysics, 2015, 578, A96.	5.1	14

#	Article	IF	CITATIONS
289	Performance assessment of different pulse reconstruction algorithms for the ATHENA X-ray Integral Field Unit. Proceedings of SPIE, 2016, , .	0.8	14
290	Evidence for an evolving cyclotron line energy in 4U 1538â^2522. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2745-2761.	4.4	14
291	EXTraS discovery of an 1.2-s X-ray pulsar in MÂ31. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 457, L5-L9.	3. 3	14
292	An Algorithm for the Reconstruction of Neutrino-induced Showers in the ANTARES Neutrino Telescope. Astronomical Journal, 2017, 154, 275.	4.7	14
293	Extended X-ray emission in PKS 1718â^649. Astronomy and Astrophysics, 2018, 612, L4.	5.1	14
294	The cosmic ray shadow of the Moon observed with the ANTARES neutrino telescope. European Physical Journal C, 2018, 78, 1006.	3.9	14
295	The First NuSTAR Observation of 4U 1538–522: Updated Orbital Ephemeris and a Strengthened Case for an Evolving Cyclotron Line Energy. Astrophysical Journal, 2019, 873, 62.	4.5	14
296	An ultraluminous supersoft source with a 4 hour modulation inÂNGCÂ4631. Astronomy and Astrophysics, 2007, 471, L55-L58.	5.1	13
297	4U 1909+07: a well-hidden pearl. Astronomy and Astrophysics, 2011, 525, A73.	5.1	13
298	First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 006-006.	5 . 4	13
299	Low charge states of Si and S in Cygnus X-1. Physica Scripta, 2013, T156, 014008.	2.5	13
300	GRS 1739-278 OBSERVED AT VERY LOW LUMINOSITY WITH XMM-NEWTON AND NuSTAR. Astrophysical Journal, 2016, 832, 115.	4.5	13
301	All-sky search for high-energy neutrinos from gravitational wave event GW170104 with the AntaresÂneutrino telescope. European Physical Journal C, 2017, 77, 1.	3.9	13
302	Studying the accretion geometry of EXO 2030+375 at luminosities close to the propeller regime. Astronomy and Astrophysics, 2017, 606, A89.	5.1	13
303	The Performance of the Athena X-ray Integral Field Unit at Very High Count Rates. Journal of Low Temperature Physics, 2018, 193, 940-948.	1.4	13
304	Chandra-HETGS Characterization of an Outflowing Wind in the Accreting Millisecond Pulsar IGR J17591–2342. Astrophysical Journal, 2019, 874, 69.	4.5	13
305	Observing the Transient Pulsations of SMC X-1 with NuSTAR. Astrophysical Journal, 2019, 875, 144.	4.5	13
306	The EXTraS project: Exploring the X-ray transient and variable sky. Astronomy and Astrophysics, 2021, 650, A167.	5.1	13

#	Article	IF	CITATIONS
307	Constraining the origin and models of chemical enrichment in galaxy clusters using the <i>Athena</i> X-IFU. Astronomy and Astrophysics, 2020, 642, A90.	5.1	13
308	Timing and Spectroscopy of Accreting X-ray Pulsars: the State of Cyclotron Line Studies. AIP Conference Proceedings, 2004, , .	0.4	12
309	Is the plateau state in GRS 1915+105 equivalent to canonical hard states?. Monthly Notices of the Royal Astronomical Society, 2010, 409, 763-776.	4.4	12
310	eROSITA on SRG. , 2010, , .		12
311	X-RAY DIPS IN THE SEYFERT GALAXY FAIRALL 9: COMPTON-THICK "COMETS―OR A FAILED RADIO GALAXY?. Astrophysical Journal Letters, 2012, 749, L31.	8.3	12
312	Radio and X-ray observations of jet ejection in CygnusÂX-2. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 435, L48-L52.	3.3	12
313	SEARCH FOR A CORRELATION BETWEEN ANTARES NEUTRINOS AND PIERRE AUGER OBSERVATORY UHECRS ARRIVAL DIRECTIONS. Astrophysical Journal, 2013, 774, 19.	4.5	12
314	Multiwavelength observations of the black hole transient Swift J1745â^'26 during the outburst decay. Monthly Notices of the Royal Astronomical Society, 2014, 445, 1288-1298.	4.4	12
315	Radio and gamma-ray properties of extragalactic jets from the TANAMI sample. Astronomy and Astrophysics, 2016, 590, A40.	5.1	12
316	SPECTRO-TIMING STUDY OF GX 339-4 IN A HARD INTERMEDIATE STATE. Astrophysical Journal, 2016, 828, 34.	4.5	12
317	An XMM-Newton and NuSTAR Study of IGR J18214-1318: A Non-pulsating High-mass X-Ray Binary with a Neutron Star. Astrophysical Journal, 2017, 841, 35.	4.5	12
318	ChandraÂand RXTEÂspectroscopy of the accreting msec pulsar IGRÂJ00291+5934. Astronomy and Astrophysics, 2005, 444, 357-363.	5.1	12
319	TESSIM: a simulator for the Athena-X-IFU. Proceedings of SPIE, 2016, , .	0.8	12
320	MIRAX: a Brazilian X-ray astronomy satellite mission. Advances in Space Research, 2004, 34, 2657-2661.	2.6	11
321	<i>NuSTAR</i> DETECTION OF HARD X-RAY PHASE LAGS FROM THE ACCRETING PULSAR GS 0834–430. Astrophysical Journal, 2013, 775, 65.	4.5	11
322	Space experiment TUS on board the Lomonosov satellite as pathfinder of JEM-EUSO. Experimental Astronomy, 2015, 40, 315-326.	3.7	11
323	<i>Swift</i> /BAT measurements of the cyclotron line energy decay in the accreting neutron star Hercules X-1: indication of an evolution of the magnetic field?. Astronomy and Astrophysics, 2015, 578, A88.	5.1	11
324	Paving the way to simultaneous multi-wavelength astronomy. New Astronomy Reviews, 2017, 79, 26-48.	12.8	11

#	Article	IF	CITATIONS
325	An algorithm for the reconstruction of high-energy neutrino-induced particle showers and its application to the ANTARES neutrino telescope. European Physical Journal C, 2017, 77, 419.	3.9	11
326	Discovery of Pulsation Dropout and Turn-on during the High State of the Accreting X-Ray Pulsar LMC X-4. Astrophysical Journal Letters, 2018, 861, L7.	8.3	11
327	The next-generation X-ray galaxy survey with <i>eROSITA</i> . Monthly Notices of the Royal Astronomical Society, 2020, 498, 1651-1667.	4.4	11
328	ANTARES Search for Point Sources of Neutrinos Using Astrophysical Catalogs: A Likelihood Analysis. Astrophysical Journal, 2021, 911, 48.	4.5	11
329	Characterization of the Particle-induced Background of XMM-Newton EPIC-pn: Short- and Long-term Variability. Astrophysical Journal, 2020, 891, 13.	4.5	11
330	Unveiling the Nature of IGR J17497-2821 Using X-Ray and Near-Infrared Observations. Astrophysical Journal, 2007, 657, L109-L112.	4.5	10
331	Dipping in CygnusX-2 in a multi-wavelength campaign due to absorption of extended ADC emission. Astronomy and Astrophysics, 2011, 530, A102.	5.1	10
332	ATHENA end-to-end simulations. Proceedings of SPIE, 2014, , .	0.8	10
333	Wide field imager instrument for the Advanced Telescope for High Energy Astrophysics. Journal of Astronomical Telescopes, Instruments, and Systems, 2014, 1, 014006.	1.8	10
334	The Large Observatory for x-ray timing. Proceedings of SPIE, 2014, , .	0.8	10
335	The JEM-EUSO observation in cloudy conditions. Experimental Astronomy, 2015, 40, 135-152.	3.7	10
336	The atmospheric monitoring system of the JEM-EUSO instrument. Experimental Astronomy, 2015, 40, 45-60.	3.7	10
337	Long-term monitoring of the ANTARES optical module efficiencies using $\40 mathrm $\{K\}$ \$\$ 40 K decays in sea water. European Physical Journal C, 2018, 78, 1.	3.9	10
338	A Broadband X-Ray View of the Precessing Accretion Disk and Pre-eclipse Dip in the Pulsar Her X-1 with NuSTAR and XMM-Newton. Astrophysical Journal, 2021, 909, 186.	4.5	10
339	RXTE monitoring of Centaurus A. Astronomy and Astrophysics, 2001, 371, 858-864.	5.1	10
340	Staring at 4U 1909+07 with <i>Suzaku</i> . Astronomy and Astrophysics, 2012, 547, A2.	5.1	9
341	X-RAY AND NEAR-INFRARED OBSERVATIONS OF THE OBSCURED ACCRETING PULSAR IGR J18179–1621. Astrophysical Journal, 2012, 757, 143.	4.5	9
342	The x-ray microcalorimeter spectrometer onboard Athena. Proceedings of SPIE, 2012, , .	0.8	9

#	Article	IF	CITATIONS
343	Constraints on the winds of hot subdwarf stars from X-ray observations of two sdB binaries with compact companions: CD -30Â 11223 and PG 1232-136. Monthly Notices of the Royal Astronomical Society, 2014, 441, 2684-2690.	4.4	9
344	Searches for clustering in the time integrated skymap of the ANTARES neutrino telescope. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 001-001.	5.4	9
345	A search for time dependent neutrino emission from microquasars with the ANTARES telescope. Journal of High Energy Astrophysics, 2014, 3-4, 9-17.	6.7	9
346	Search for muon-neutrino emission from GeV and TeV gamma-ray flaring blazars using five years of data of the ANTARES telescope. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 014-014.	5.4	9
347	<i>Suzaku</i> observations of the 2013 outburst of KS 1947+300. Astronomy and Astrophysics, 2016, 591, A65.	5.1	9
348	MURCHISON WIDEFIELD ARRAY LIMITS ON RADIO EMISSION FROM ANTARES NEUTRINO EVENTS. Astrophysical Journal Letters, 2016, 820, L24.	8.3	9
349	The LOFT mission concept: a status update. Proceedings of SPIE, 2016, , .	0.8	9
350	Search for relativistic magnetic monopoles with five years of the ANTARES detector data. Journal of High Energy Physics, 2017, 2017, 1.	4.7	9
351	Quantifying the Effect of Cosmic Ray Showers on the X-IFU Energy Resolution. Journal of Low Temperature Physics, 2020, 199, 240-249.	1.4	9
352	A new luminous supersoft X-ray source in NGC 300. Astronomy and Astrophysics, 2006, 458, 747-751.	5.1	9
353	Accreting on the Edge: A Luminosity-dependent Cyclotron Line in the Be/X-Ray Binary 2S 1553-542 Accompanied by Accretion Regimes Transition. Astrophysical Journal, 2022, 927, 194.	4.5	9
354	The LOFT wide field monitor. Proceedings of SPIE, 2012, , .	0.8	8
355	A <i>CHANDRA</i> OBSERVATION OF THE BURSTING MILLISECOND X-RAY PULSAR IGR J17511–3057. Astrophysical Journal, 2012, 755, 52.	4.5	8
356	Confirming the thermal Comptonization model for black hole X-ray emission in the low-hard state. Astronomy and Astrophysics, 2014, 569, A82.	5.1	8
357	The wide field imager instrument for Athena. Proceedings of SPIE, 2014, , .	0.8	8
358	Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 017-017.	5 . 4	8
359	Science of atmospheric phenomena with JEM-EUSO. Experimental Astronomy, 2015, 40, 239-251.	3.7	8
360	Performances of JEM-EUSO: angular reconstruction. Experimental Astronomy, 2015, 40, 153-177.	3.7	8

#	Article	IF	CITATIONS
361	A method to stabilise the performance of negatively fed KM3NeT photomultipliers. Journal of Instrumentation, 2016, 11, P12014-P12014.	1.2	8
362	Time-dependent search for neutrino emission from X-ray binaries with the ANTARES telescope. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 019-019.	5.4	8
363	Stacked search for time shifted high energy neutrinos from gamma ray bursts with the Antares neutrino telescope. European Physical Journal C, 2017, 77, 1.	3.9	8
364	The search for high-energy neutrinos coincident with fast radio bursts with the ANTARES neutrino telescope. Monthly Notices of the Royal Astronomical Society, 2019, 482, 184-193.	4.4	8
365	Time-Domain Modeling of TES Microcalorimeters Under AC Bias. Journal of Low Temperature Physics, 2020, 199, 569-576.	1.4	8
366	The Control Unit of the KM3NeT Data Acquisition System. Computer Physics Communications, 2020, 256, 107433.	7.5	8
367	High-Precision Determination of Oxygen <mmi:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mswb><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mm< td=""><td>ıml:miz.k<td>nl:sni></td></td></mm<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mswb></mml:mrow></mmi:math>	ıml:mi z.k <td>nl:sni></td>	nl :s ni>
368	Arcus: exploring the formation and evolution of clusters, galaxies, and stars., 2017,,.		8
369	THE GOODNESS OF SIMULTANEOUS FITS IN ISIS. Acta Polytechnica, 2016, 56, 41.	0.6	8
370	Continuum, cyclotron line, and absorption variability in the high-mass X-ray binary Vela X-1. Astronomy and Astrophysics, 2022, 660, A19.	5.1	8
371	Long-term developments in Her X-1: Correlation between the histories of the 35 day turn-on cycle and the 1.24 sec pulse period. AIP Conference Proceedings, 2006, , .	0.4	7
372	The High Time Resolution Spectrometer (HTRS) aboard the International X-ray Observatory (IXO). Proceedings of SPIE, 2010, , .	0.8	7
373	eROSITA. Proceedings of SPIE, 2011, , .	0.8	7
374	Performances of JEM–EUSO: energy and X max reconstruction. Experimental Astronomy, 2015, 40, 183-214.	3.7	7
375	The infrared camera onboard JEM-EUSO. Experimental Astronomy, 2015, 40, 61-89.	3.7	7
376	Results from DROXO. Astronomy and Astrophysics, 2016, 587, A36.	5.1	7
377	Two giant outbursts of V0332+53 observed with INTEGRAL. Astronomy and Astrophysics, 2016, 595, A17.	5.1	7
378	A precessing Be disc as a possible model for occultation events in GX 304â^1. Monthly Notices of the Royal Astronomical Society, 2017, 471, 1553-1564.	4.4	7

#	Article	IF	CITATIONS
379	The X-Ray Pulsar XTE J1858+034 Observed with NuSTAR and Fermi/GBM: Spectral and Timing Characterization plus a Cyclotron Line. Astrophysical Journal, 2021, 909, 153.	4.5	7
380	Development of the wide field imager for Athena. Proceedings of SPIE, 2015, , .	0.8	6
381	Multiband Observations of the Quasar PKS 2326–502 during Active and Quiescent Gamma-Ray States in 2010–2012. Astrophysical Journal, 2017, 835, 182.	4.5	6
382	A Possible Phase-dependent Absorption Feature in the Transient X-Ray Pulsar SAX J2103.5+4545. Astrophysical Journal, 2018, 852, 132.	4.5	6
383	A Search for Cosmic Neutrino and Gamma-Ray Emitting Transients in 7.3 yr of ANTARES and Fermi LAT Data. Astrophysical Journal, 2019, 886, 98.	4.5	6
384	The COSPIX mission: focusing on the energetic and obscured Universe., 2011,,.		6
385	Accurate Treatment of Comptonization in X-Ray Illuminated Accretion Disks. Astrophysical Journal, 2020, 897, 67.	4.5	6
386	Investigating the Mini and Giant Radio Flare Episodes of Cygnus X-3. Astrophysical Journal, 2021, 906, 10.	4.5	6
387	Search for Neutrinos from the Tidal Disruption Events AT2019dsg and AT2019fdr with the ANTARES Telescope. Astrophysical Journal, 2021, 920, 50.	4.5	6
388	The physical interpretation of X-ray phase lags and coherence: RXTE observations of Cygnus X-1 as a case study. Nuclear Physics, Section B, Proceedings Supplements, 1999, 69, 302-307.	0.4	5
389	The wide-field imager for IXO: status and future activities. , 2010, , .		5
390	The large area detector of LOFT: the Large Observatory for X-ray Timing. , 2014, , .		5
391	Calibration aspects of the JEM-EUSO mission. Experimental Astronomy, 2015, 40, 91-116.	3.7	5
392	Time calibration with atmospheric muon tracks in the ANTARES neutrino telescope. Astroparticle Physics, 2016, 78, 43-51.	4.3	5
393	Athena Wide Field Imager key science drivers. , 2016, , .		5
394	Crosstalk in an FDM Laboratory Setup and the Athena X-IFU End-to-End Simulator. Journal of Low Temperature Physics, 2018, 193, 533-538.	1.4	5
395	ANTARES Neutrino Search for Time and Space Correlations with IceCube High-energy Neutrino Events. Astrophysical Journal, 2019, 879, 108.	4.5	5
396	On the Detection Potential of Blazar Flares for Current Neutrino Telescopes. Astrophysical Journal, 2020, 902, 133.	4.5	5

#	Article	IF	Citations
397	INTEGRAL and RXTE power spectra of Cygnus X-1. Advances in Space Research, 2006, 38, 1350-1353.	2.6	4
398	Science with the XEUS high time resolution spectrometer. , 2008, , .		4
399	The silicon drift detector for the IXO high-time resolution spectrometer. Proceedings of SPIE, 2010, , .	0.8	4
400	Simulations of X-Ray Telescopes for eROSITA and IXO. , 2010, , .		4
401	A Suzaku view of cyclotron line sources and candidates. , 2012, , .		4
402	Measurement of the group velocity of light in sea water at the ANTARES site. Astroparticle Physics, 2012, 35, 552-557.	4.3	4
403	SIMULTANEOUS FITS IN ISIS ON THE EXAMPLE OF GRO J1008–57. Acta Polytechnica, 2015, 55, 126-127.	0.6	4
404	Observing the WHIM with Athena. Proceedings of SPIE, 2016, , .	0.8	4
405	Decomposing blazar spectra into leptoâ€hadronic emission components. Astronomische Nachrichten, 2018, 339, 331-335.	1.2	4
406	Investigating source confusion in PMN J1603–4904. Astronomy and Astrophysics, 2018, 610, L8.	5.1	4
407	X-ray spectral and flux variability of the microquasar GRS 1758â^'258 on timescales from weeks to years. Astronomy and Astrophysics, 2020, 636, A51.	5.1	4
408	Modelling of 35-d superorbital cycle of B and V light curves of IMXB HZÂHer/HerÂX-1. Monthly Notices of the Royal Astronomical Society, 2020, 499, 1747-1757.	4.4	4
409	ATHENA X-ray Integral Field Unit on-board event processor: analysis of performance of two triggering algorithms. , 2018, , .		4
410	RXTE studies of cyclotron lines in accreting pulsars. AIP Conference Proceedings, 2000, , .	0.4	3
411	Disappearing pulses in Vela X-1. AIP Conference Proceedings, 2000, , .	0.4	3
412	Spectrum-RG astrophysical project. , 2009, , .		3
413	The LOFT mission: new perspectives in the research field of (accreting) compact objects. EPJ Web of Conferences, 2014, 64, 09002.	0.3	3
414	Luminosity dependent accretion state change in GRO J1008–57. EPJ Web of Conferences, 2014, 64, 06003.	0.3	3

#	Article	IF	CITATIONS
415	Ultra high energy photons and neutrinos with JEM-EUSO. Experimental Astronomy, 2015, 40, 215-233.	3.7	3
416	Millimeter VLBI of NGC 1052: Dynamics. Galaxies, 2016, 4, 48.	3.0	3
417	The impact of crosstalk in the X-IFU instrument on Athena science cases. Proceedings of SPIE, 2016, , .	0.8	3
418	3D mapping of the neutral X-ray absorption in the local interstellar medium: the Gaia and XMM-Newton synergy. Monthly Notices of the Royal Astronomical Society, 2018, 479, 3715-3725.	4.4	3
419	$\langle i \rangle \hat{l}^3 \langle i \rangle$ -ray emission in radio galaxies under the VLBI scope. Astronomy and Astrophysics, 2020, 641, A152.	5.1	3
420	Search for High-redshift Blazars with Fermi/LAT. Astrophysical Journal, 2020, 903, 128.	4.5	3
421	Ray-tracing Arcus in phase A., 2018, , .		3
422	The performance of the ATHENA X-ray Integral Field Unit. , 2018, , .		3
423	Magnetic features in the spectrum of Her X-1. Nuclear Physics, Section B, Proceedings Supplements, 1999, 69, 174-177.	0.4	2
424	XMM-Newton observation of the Marano Field. Astronomische Nachrichten, 2003, 324, 136-136.	1.2	2
425	Monitoring CygnusÂX-1 with RXTE. Nuclear Physics, Section B, Proceedings Supplements, 2004, 132, 420-423.	0.4	2
426	Suzaku observations of 4U 1957+11: The most rapidly spinning black hole in the galaxy?. , 2012, , .		2
427	A method for detection of muon induced electromagnetic showers with the ANTARES detector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 675, 56-62.	1.6	2
428	The evolution of structure and feedback with Arcus. , 2016, , .		2
429	Explaining the asymmetric line profile in CepheusÂX-4 with spectral variation across pulse phase. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	2
430	Model-independent search for neutrino sources with the ANTARES neutrino telescope. Astroparticle Physics, 2020, 114, 35-47.	4.3	2
431	Simulating x-ray observations of galaxy clusters with the X-ray Integral Field Unit onboard the Athena mission. , 2018, , .		2
432	eROSITA ground operations. , 2018, , .		2

#	Article	IF	CITATIONS
433	Evolution of the orbital period of Her X–1: Determination of a new ephemeris using RXTE data. , 1997, , .		1
434	Observations of Vela X–1 with RXTE. , 1997, , .		1
435	RXTE observations of Her X-1. Nuclear Physics, Section B, Proceedings Supplements, 1999, 69, 182-185.	0.4	1
436	Her X-1: Correlation between the histories of the 35 d cycle and the 1.24 sec pulse period. AIP Conference Proceedings, 2000, , .	0.4	1
437	Cygnus X-1 from RXTE: monitoring the short term variability. Advances in Space Research, 2001, 28, 493-498.	2.6	1
438	Broad Iron Lines in Active Galactic Nuclei: A Possible Test of the Kerr Metric?. Lecture Notes in Physics, 0, , 69-79.	0.7	1
439	Different kinds of long-term variability from Cygnus X-1. AIP Conference Proceedings, 2004, , .	0.4	1
440	Fitting along the Fundamental Plane: New comparisons of jet physics across the black hole mass scale. Proceedings of the International Astronomical Union, 2010, 6, 250-254.	0.0	1
441	\hat{I}^3 -ray emission from the Perseus cluster of galaxies observed with the MAGIC telescopes. , 2012, , .		1
442	The LOFT wide field monitor simulator. Proceedings of SPIE, 2012, , .	0.8	1
443	X-RAY TRANSMISSION AND REFLECTION THROUGH A COMPTON-THICK MEDIUM VIA MONTE-CARLO SIMULATIONS. Acta Polytechnica, 2014, 54, 177-182.	0.6	1
444	The design of the wide field monitor for the LOFT mission. , 2014, , .		1
445	Black hole lightning of IC 310 and the days after. AIP Conference Proceedings, 2017, , .	0.4	1
446	Variability in highâ€mass Xâ€ray binaries. Astronomische Nachrichten, 2019, 340, 323-328.	1.2	1
447	X-ray monitoring of the radio and <i>î³</i> -ray loud Narrow-Line Seyfert 1 Galaxy PKS2004–447. EPJ Web of Conferences, 2013, 61, 04017.	0.3	1
448	Multi-Satellite Observations of Cygnus X-1., 2009,,.		1
449	Spinning-up: the case of the symbiotic X-ray binary 3A 1954+319. , 2011, , .		1
450	Cygnus X-1: shedding light on the spectral variability of the hard state of black holes. , 2011, , .		1

#	Article	IF	CITATIONS
451	A new benchmark of soft X-ray transition energies of \$\$mathrm {Ne}\$\$, \$\$mathrm {CO}_2\$\$, and \$\$mathrm {SF}_6\$\$: paving a pathway towards ppm accuracy. European Physical Journal D, 2022, 76, 38.	1.3	1
452	THE 2010 MAY FLARING EPISODE OF CYGNUS X-3 IN RADIO, X-RAYS, AND \hat{I}^3 -RAYS. Astrophysical Journal Letters, 2011, 733, L20.	8.3	1
453	RXTE observation of Cygnus X-1: spectra and timing. , 1997, , .		0
454	RXTE observation of Cygnus X-1: Spectral analysis. Nuclear Physics, Section B, Proceedings Supplements, 1999, 69, 308-311.	0.4	0
455	Monitoring the short-term variability of Cyg X-1: Spectra and timing. AIP Conference Proceedings, 2000, , .	0.4	0
456	RXTE monitoring of LMC X-3: Recurrent hard states. AIP Conference Proceedings, 2000, , .	0.4	0
457	The 1999 Her X-1 Anomalous Low State. AIP Conference Proceedings, 2000, , .	0.4	0
458	Multifrequency observations of the Virgo blazars 3C 273 and 3C 279 in CGRO cycle 8. AIP Conference Proceedings, 2000, , .	0.4	0
459	Wind accretion in HMXRB. AIP Conference Proceedings, 2001, , .	0.4	0
460	Her X-1 X-ray turn-on monitored by RXTE. AIP Conference Proceedings, 2001, , .	0.4	0
461	Two cyclotron lines in Vela X-1?. AIP Conference Proceedings, 2001, , .	0.4	0
462	Monitoring the Short-Term Variability of Cyg X-1., 0,, 133-134.		0
463	Broad Iron Lines in Active Galactic Nuclei. Research in Astronomy and Astrophysics, 2003, 3, 157-168.	1.1	0
464	MIRAX: a hard X-ray imaging mission., 2003,,.		0
465	Discovery and Monitoring of a Broad Iron Line Complex in GRO J1655-40 by RXTE. AIP Conference Proceedings, 2004, , .	0.4	0
466	INTEGRAL/RXTE Observations of Cygnus X-1. AIP Conference Proceedings, 2004, , .	0.4	0
467	Monitoring of persistent accreting pulsating neutron stars observed during the INTEGRAL Core Program. Nuclear Physics, Section B, Proceedings Supplements, 2004, 132, 648-651.	0.4	0
468	The variable cyclotron line of GX 301–2. Nuclear Physics, Section B, Proceedings Supplements, 2004, 132, 612-615.	0.4	0

#	Article	IF	CITATIONS
469	Event preprocessor for the CdZnTe-strip detector on MIRAX., 2004,,.		O
470	Bright source x-ray spectroscopy with XMM-Newton: a modified EPIC-pn timing mode., 2004,,.		0
471	Fast timing instrument for XEUS: scientific expectations. , 2004, , .		0
472	The X-Ray Population of NGC 300. Proceedings of the International Astronomical Union, 2005, 1, 185-188.	0.0	0
473	New insights into ultraluminous X-ray sources from deep XMM-Newton observations. Proceedings of the International Astronomical Union, 2005, 1, 288-292.	0.0	0
474	Fast timing with XEUS: evaluation of different detector concepts., 2006, 6266, 553.		0
475	Test setup for DEPMOSFET matrices for XEUS. , 2006, 6266, 1078.		0
476	Unity among black holes. Nature, 2006, 444, 699-699.	27.8	0
477	Phase resolved study of the CRSF in MX 0656-072. Advances in Space Research, 2006, 38, 2768-2770.	2.6	0
478	MIRAX Software Aspects. AIP Conference Proceedings, 2006, , .	0.4	0
479	Monitoring Neutron Star High-Mass X-Ray Binaries in the INTEGRAL Galactic Plane Survey. AIP Conference Proceedings, 2006, , .	0.4	0
480	The Extragalactic Wolf-Rayetâ^•Black-Hole X-ray Binary Candidates NGC 300 X-1 and IC 10 X-1. AIP Conference Proceedings, 2008, , .	0.4	0
481	Cyclotron Lines in Accreting Neutron Star Spectra. , 2009, , .		0
482	Broad emission lines for a negatively spinning black hole. Proceedings of the International Astronomical Union, 2010, 6, 100-101.	0.0	0
483	Suzaku and INTEGRAL Observations of IGR J16318-4848. , 2010, , .		0
484	New outburst of Aâ \in %.0535+26 observed with INTEGRAL and RXTE. , 2010, , .		0
485	Clumps in the stellar wind of Vela X-1. , 2010, , .		0
486	Long-term variability of Vela X-1., 2010, , .		0

#	Article	IF	CITATIONS
487	Variable precession of the NS in Her X-1., 2010, , .		О
488	The Magnetic Field of Neutron Stars: What Can Cyclotron Lines Tell Us?., 2010,,.		O
489	The TANAMI Program. , 2010, , .		0
490	Properties of a fast state transition in Cygnus X-1., 2010, , .		0
491	A scarcely known accreting X-ray pulsar. , 2011, , .		O
492	Short term and multi-band variability of the active nucleus of IC310., 2012,,.		0
493	First INTEGRAL and Swift observations of a giant outburst of A0535+26. , 2012, , .		O
494	Observing GRBs with the <i>LOFT </i> Wide Field Monitor. EAS Publications Series, 2013, 61, 617-623.	0.3	0
495	Single-Dish Radio Polarimetry in the F-GAMMA Program with the Effelsberg 100-m Radio Telescope. EPJ Web of Conferences, 2013, 61, 06006.	0.3	O
496	NuSTARdetection of 4s Hard X-ray Lags from the Accreting Pulsar GS 0834-430. EPJ Web of Conferences, 2014, 64, 06011.	0.3	0
497	The Magnetospheres of (Accreting) Neutron Stars. EPJ Web of Conferences, 2014, 64, 06001.	0.3	0
498	The LOFT ground segment. Proceedings of SPIE, 2014, , .	0.8	0
499	K-shell transitions in L-shell ions with the EBIT calorimeter spectrometer. Proceedings of the International Astronomical Union, 2015, 11, 295-296.	0.0	О
500	Stellar Winds in Massive X-ray Binaries. Proceedings of the International Astronomical Union, 2016, 12, 355-358.	0.0	0
501	How does the GRS1915+105 plateau state compare to the canonical hard state?., 2009, , .		О
502	Catching up on state transitions in Cygnus X-1., 2009,,.		0
503	Modelling a simultaneous radio/X-ray flare from Cyg X-1. , 2009, , .		0
504	Highly structured wind in Vela X-1., 2009, , .		0

#	Article	IF	CITATIONS
505	INTEGRAL and RXTE view of Her X-1: towards resolving of the system's puzzles. , 2009, , .		O
506	Statistical analysis of archival Vela X-1 data., 2009,,.		0
507	Scanning the Egress of Vela X-1., 2009, , .		О
508	Does the neutron star in Her X-1 really show free precession?. , 2011, , .		0
509	Dipping and Absorption in the stellar wind in GX 301-2., 2011,,.		О
510	IGR J16318-4848: 7 years of INTEGRAL observations. , 2011, , .		0
511	The INTEGRAL Galactic Bulge monitoring program: Spectral study. , 2011, , .		О
512	Orbital Parameters and phase resolved Spectroscopy of 4U 0115+634., 2011,,.		0
513	Simulations of the performance of the HTRS on IXO. , 2011, , .		О
514	X-RAY VARIABILITY STUDY OF POLAR SCATTERED SEYFERT1 GALAXIES. Acta Polytechnica, 2014, 54, 266-270.	0.6	0
515	Detectability of exoplanet transits with Athena's WFI instrument: testing for white and correlated noise. , 2016, , .		О
516	EXO 2030+375 Restarts in Reverse. , 2017, , .		0
517	Dust and gas absorption in the high mass X-ray binary IGR J16318â^'4848. Astronomy and Astrophysics, 2020, 641, A65.	5.1	0
518	RXTE Monitoring of LMC X-3., 0,, 131-132.		0