Nathan J Mayne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/816925/publications.pdf

Version: 2024-02-01

48 2,272 29
papers citations h-index

52 52 52 1165
all docs docs citations times ranked citing authors

47

g-index

#	Article	IF	CITATIONS
1	Accuracy tests of radiation schemes used in hot Jupiter global circulation models. Astronomy and Astrophysics, 2014, 564, A59.	5.1	126
2	The unified model, a fully-compressible, non-hydrostatic, deep atmosphere global circulation model, applied to hot Jupiters. Astronomy and Astrophysics, 2014, 561, A1.	5.1	124
3	An absolute sodium abundance for a cloud-free â€~hot Saturn' exoplanet. Nature, 2018, 557, 526-529.	27.8	114
4	The effects of consistent chemical kinetics calculations on the pressure-temperature profiles and emission spectra of hot Jupiters. Astronomy and Astrophysics, 2016, 594, A69.	5.1	113
5	Advection of Potential Temperature in the Atmosphere of Irradiated Exoplanets: A Robust Mechanism to Explain Radius Inflation. Astrophysical Journal, 2017, 841, 30.	4.5	109
6	The Transiting Exoplanet Community Early Release Science Program for <i>JWST</i> . Publications of the Astronomical Society of the Pacific, 2018, 130, 114402.	3.1	100
7	The mineral clouds on HDÂ209458b and HDÂ189733b. Monthly Notices of the Royal Astronomical Society, 2016, 460, 855-883.	4.4	92
8	Exploring the climate of Proxima B with the Met Office Unified Model. Astronomy and Astrophysics, 2017, 601, A120.	5.1	92
9	The UK Met Office global circulation model with a sophisticated radiation scheme applied to the hot Jupiter HD 209458b. Astronomy and Astrophysics, 2016, 595, A36.	5.1	88
10	A library of ATMO forward model transmission spectra for hot Jupiter exoplanets. Monthly Notices of the Royal Astronomical Society, 2018, 474, 5158-5185.	4.4	86
11	Simulating the cloudy atmospheres of HD 209458 b and HD 189733 b with the 3D Met Office Unified Model. Astronomy and Astrophysics, 2018, 615, A97.	5.1	84
12	Treatment of overlapping gaseous absorption with the correlated- <i>k</i> method in hot Jupiter and brown dwarf atmosphere models. Astronomy and Astrophysics, 2017, 598, A97.	5.1	80
13	Implications of three-dimensional chemical transport in hot Jupiter atmospheres: Results from a consistently coupled chemistry-radiation-hydrodynamics model. Astronomy and Astrophysics, 2020, 636, A68.	5.1	60
14	Observable Signatures of Wind-driven Chemistry with a Fully Consistent Three-dimensional Radiative Hydrodynamics Model of HD 209458b. Astrophysical Journal Letters, 2018, 855, L31.	8.3	56
15	Results from a set of three-dimensional numerical experiments of a hot Jupiter atmosphere. Astronomy and Astrophysics, 2017, 604, A79.	5.1	53
16	TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI): motivations and protocol version 1.0. Geoscientific Model Development, 2020, 13, 707-716.	3.6	52
17	The effect of metallicity on the atmospheres of exoplanets with fully coupled 3D hydrodynamics, equilibrium chemistry, and radiative transfer. Astronomy and Astrophysics, 2018, 612, A105.	5.1	49
18	Using the UM dynamical cores to reproduce idealised 3-D flows. Geoscientific Model Development, 2014, 7, 3059-3087.	3.6	47

#	Article	IF	Citations
19	The 3D Thermal, Dynamical, and Chemical Structure of the Atmosphere of HD 189733b: Implications of Wind-driven Chemistry for the Emission Phase Curve. Astrophysical Journal, 2018, 869, 28.	4.5	47
20	Confirmation of water emission in the dayside spectrum of the ultrahot Jupiter WASP-121b. Monthly Notices of the Royal Astronomical Society, 2020, 496, 1638-1644.	4.4	46
21	Exonephology: transmission spectra from a 3D simulated cloudy atmosphere of HD 209458b. Monthly Notices of the Royal Astronomical Society, 2018, 481, 194-205.	4.4	45
22	Atmospheric Convection Plays a Key Role in the Climate of Tidally Locked Terrestrial Exoplanets: Insights from High-resolution Simulations. Astrophysical Journal, 2020, 894, 84.	4.5	45
23	The Influence of a Substellar Continent on the Climate of a Tidally Locked Exoplanet. Astrophysical Journal, 2018, 854, 171.	4.5	42
24	Overcast on Osiris: 3D radiative-hydrodynamical simulations of a cloudy hot Jupiter using the parametrized, phase-equilibrium cloud formation code EddySed. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1332-1355.	4.4	39
25	Idealised simulations of the deep atmosphere of hot Jupiters. Astronomy and Astrophysics, 2019, 632, A114.	5.1	38
26	A library of self-consistent simulated exoplanet atmospheres. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4680-4704.	4.4	36
27	The Limits of the Primitive Equations of Dynamics for Warm, Slowly Rotating Small Neptunes and Super Earths. Astrophysical Journal, 2019, 871, 56.	4.5	35
28	Fully scalable forward model grid of exoplanet transmission spectra. Monthly Notices of the Royal Astronomical Society, 2019, 482, 4503-4513.	4.4	33
29	Cloud property trends in hot and ultra-hot giant gas planets (WASP-43b, WASP-103b, WASP-121b,) Tj ETQq1 1	0.784314 5.1	rgBT /Overlo
30	TRAPPIST Habitable Atmosphere Intercomparison (THAI) Workshop Report. Planetary Science Journal, 2021, 2, 106.	3.6	29
31	The carbon-to-oxygen ratio: implications for the spectra of hydrogen-dominated exoplanet atmospheres. Monthly Notices of the Royal Astronomical Society, 2019, 486, 1123-1137.	4.4	26
32	Diurnal variations in the stratosphere of the ultrahot giant exoplanet WASP-121b. Nature Astronomy, 2022, 6, 471-479.	10.1	26
33	MOVES – IV. Modelling the influence of stellar XUV-flux, cosmic rays, and stellar energetic particles on the atmospheric composition of the hot Jupiter HDÂ189733b. Monthly Notices of the Royal Astronomical Society, 2021, 502, 6201-6215.	4.4	23
34	Ground-based transmission spectroscopy with FORS2: A featureless optical transmission spectrum and detection of H2O for the ultra-hot Jupiter WASP-103b. Monthly Notices of the Royal Astronomical Society, 2020, 497, 5155-5170.	4.4	20
35	Mineral dust increases the habitability of terrestrial planets but confounds biomarker detection. Nature Communications, 2020, 11 , 2731 .	12.8	20
36	Ozone chemistry on tidally locked M dwarf planets. Monthly Notices of the Royal Astronomical Society, 2020, 492, 1691-1705.	4.4	20

#	Article	IF	CITATIONS
37	3D Radiative Transfer for Exoplanet Atmospheres. gCMCRT: A GPU-accelerated MCRT Code. Astrophysical Journal, 2022, 929, 180.	4.5	20
38	The impact of mixing treatments on cloud modelling in 3D simulations of hot Jupiters. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4500-4515.	4.4	19
39	Acceleration of superrotation in simulated hot Jupiter atmospheres. Astronomy and Astrophysics, 2020, 633, A2.	5.1	17
40	Implications of different stellar spectra for the climate of tidally locked Earth-like exoplanets. Astronomy and Astrophysics, 2020, 639, A99.	5.1	16
41	Solar-to-supersolar sodium and oxygen absolute abundances for a  hot Saturn' orbiting a metal-rich star. Monthly Notices of the Royal Astronomical Society, 2022, 515, 3037-3058.	4.4	15
42	Pseudo-2D modelling of heat redistribution through H2 thermal dissociation/recombination: consequences for ultra-hot Jupiters. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4515-4530.	4.4	14
43	Transmission spectroscopy with VLT FORS2: a featureless spectrum for the low-density transiting exoplanet WASP-88b. Monthly Notices of the Royal Astronomical Society, 2021, 506, 2853-2870.	4.4	9
44	Longitudinally Asymmetric Stratospheric Oscillation on a Tidally Locked Exoplanet. Astrophysical Journal, 2022, 930, 152.	4.5	9
45	Ground-based Transmission Spectroscopy with VLT FORS2: Evidence for Faculae and Clouds in the Optical Spectrum of the Warm Saturn WASP-110b. Astronomical Journal, 2021, 162, 88.	4.7	6
46	Eigenvectors, Circulation, and Linear Instabilities for Planetary Science in 3 Dimensions (ECLIPS3D). Astronomy and Astrophysics, 2019, 631, A36.	5.1	5
47	Continuous Structural Parameterization: A Proposed Method for Representing Different Model Parameterizations Within One Structure Demonstrated for Atmospheric Convection. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002085.	3.8	3
48	Why is it So Hot in Here? Exploring Population Trends in Spitzer Thermal Emission Observations of Hot Jupiters Using Planet-specific, Self-consistent Atmospheric Models. Astrophysical Journal, 2021, 923, 242.	4.5	3