
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8168964/publications.pdf Version: 2024-02-01

FUAHU HELDMAN

#	Article	IF	CITATIONS
1	Characterization of Cationic Bolaamphiphile Vesicles for siRNA Delivery into Tumors and Brain. Molecular Therapy - Nucleic Acids, 2020, 20, 359-372.	5.1	24
2	In-Silico, In-Vitro, and In-Vivo Studies of Sirna Delivery using Cationic Bolaamphiphile Vesicles. Biophysical Journal, 2018, 114, 436a.	0.5	0
3	Bolaamphiphiles as carriers for siRNA delivery: From chemical syntheses to practical applications. Journal of Controlled Release, 2015, 213, 142-151.	9.9	39
4	Newly synthesized bolaamphiphiles from castor oil and their aggregated morphologies for potential use in drug delivery. Tetrahedron, 2015, 71, 8557-8571.	1.9	2
5	Multifunctional RNA Nanoparticles. Nano Letters, 2014, 14, 5662-5671.	9.1	181
6	Steric environment around acetylcholine head groups of bolaamphiphilic nanovesicles influences the release rate of encapsulated compounds. International Journal of Nanomedicine, 2014, 9, 561.	6.7	7
7	Progress in Lipid-Based Nanoparticles for Cancer Therapy. Critical Reviews in Oncogenesis, 2014, 19, 247-260.	0.4	18
8	Delivery of analgesic peptides to the brain by nano-sized bolaamphiphilic vesicles made of monolayer membranes. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 381-389.	4.3	36
9	Activation of different split functionalities on re-association of RNA–DNA hybrids. Nature Nanotechnology, 2013, 8, 296-304.	31.5	106
10	In Silico, In Vitro, and In Vivo Studies Indicate the Potential Use of Bolaamphiphiles for Therapeutic siRNAs Delivery. Molecular Therapy - Nucleic Acids, 2013, 2, e80.	5.1	46
11	Bolaamphiphilic vesicles encapsulating iron oxide nanoparticles: New vehicles for magnetically targeted drug delivery. International Journal of Pharmaceutics, 2013, 450, 241-249.	5.2	26
12	Ectopic ATP synthase facilitates transfer of HIV-1 from antigen-presenting cells to CD4+ target cells. Blood, 2012, 120, 1246-1253.	1.4	25
13	In Silico and in Ex-Vivo Experiments Indicate the Potential of Nanoparticles Composed of RNA-Bolaamphiphile Complexes as a Therapeutic siRNA Delivery Vehicle. Biophysical Journal, 2012, 102, 638a.	0.5	Ο
14	Interfacial and self-assembly properties of bolaamphiphilic compounds derived from a multifunctional oil. Journal of Colloid and Interface Science, 2012, 365, 53-62.	9.4	14
15	Site-directed decapsulation of bolaamphiphilic vesicles with enzymatic cleavable surface groups. Journal of Controlled Release, 2012, 160, 306-314.	9.9	20
16	Delivery of proteins to the brain by bolaamphiphilic nano-sized vesicles. Journal of Controlled Release, 2012, 160, 315-321.	9.9	43
17	Molecular Dynamics Simulations of siRNA Bolaamphiphile Nanoparticle Complexes Suggest Their Potential as a Therapeutic siRNA Delivery Vehicle. Biophysical Journal, 2011, 100, 472a.	0.5	0
18	Asymmetric bolaamphiphiles from vernonia oil designed for drug delivery. European Journal of Lipid Science and Technology, 2010, 112, 137-151.	1.5	34

#	Article	IF	CITATIONS
19	Cationic vesicles from novel bolaamphiphilic compounds. Journal of Liposome Research, 2010, 20, 147-159.	3.3	39
20	Inhibition of specific adenylyl cyclase isoforms by lithium and carbamazepine, but not valproate, may be related to their antidepressant effect. Bipolar Disorders, 2009, 11, 885-896.	1.9	40
21	Lipid-Based Nanoparticles as Pharmaceutical Drug Carriers: From Concepts to Clinic. Critical Reviews in Therapeutic Drug Carrier Systems, 2009, 26, 523-580.	2.2	761
22	Lithium preferentially inhibits adenylyl cyclase V and VII isoforms. International Journal of Neuropsychopharmacology, 2008, 11, 533-9.	2.1	31
23	Digitoxin mimics gene therapy with CFTR and suppresses hypersecretion of IL-8 from cystic fibrosis lung epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7693-7698.	7.1	87
24	Novel m1 muscarinic agonists in treatment and delaying the progression of Alzheimer's disease: An unifying hypothesis. Journal of Physiology (Paris), 1998, 92, 337-340.	2.1	14
25	Expression and localization of muscarinic receptors in P19-derived neurons. Journal of Molecular Neuroscience, 1998, 10, 17-29.	2.3	12
26	Mitogenâ€Activated Protein Kinaseâ€Dependent and Protein Kinase Câ€Dependent Pathways Link the m1 Muscarinic Receptor to βâ€Amyloid Precursor Protein Secretion. Journal of Neurochemistry, 1998, 71, 2094-2103.	3.9	111
27	Muscarinic Modulation of β-Amyloid Precursor Protein (βApp) Processing in Vitro and in Vivo. Advances in Behavioral Biology, 1998, , 509-513.	0.2	0
28	Ml Muscarinic Agonists: From Treatment Toward Delaying Progression of Alzheimer's Disease. Advances in Behavioral Biology, 1998, , 515-522.	0.2	0
29	Quaternary-Lipophilic Carbamates with Blood Brain Barrier Permeability as Potential Drugs for Memory Impairment Associated with Cholinergic Deficiency. Advances in Behavioral Biology, 1998, , 595-600.	0.2	Ο
30	Novel M1 Agonists: From Symptomatic Treatment Towards Delaying the Progression of Alzheimer's Disease. , 1997, , 317-322.		0
31	M1 Agonists for the Treatment of Alzheimer's Disease Annals of the New York Academy of Sciences, 1996, 777, 189-196.	3.8	64
32	Dehydroepiandrosterone (DHEA) increases production and release of Alzheimer's amyloid precursor protein. Life Sciences, 1996, 59, 1651-1657.	4.3	20
33	Pharmacological basis for functional selectivity of partial muscarinic receptor agonists. European Journal of Pharmacology, 1996, 297, 283-291.	3.5	24
34	Muscarinic control of amyloid precursor protein secretion in rat cerebral cortex and cerebellum. Brain Research, 1996, 742, 299-304.	2.2	47
35	NGF-dependent neurotrophic-like effects of AF102B, anM1 Muscarinic agonist, in PC12M1 cells. NeuroReport, 1995, 6, 485-488.	1.2	19
36	NGF Promotes Amyloid Precursor Protein Secretion via Muscarinic Receptor Activation. Biochemical and Biophysical Research Communications, 1995, 213, 15-23.	2.1	37

#	Article	IF	CITATIONS
37	Cannabinomimetic behavioral effects of and adenylate cyclase inhibition by two new endogenous anandamides. European Journal of Pharmacology, 1995, 287, 145-152.	3.5	61
38	Dehydroepiandrosterone Augments M1â€Muscarinic Receptorâ€Stimulated Amyloid Precursor Protein Secretion in Desensitized PC12M1 Cells. Annals of the New York Academy of Sciences, 1995, 774, 300-303.	3.8	15
39	New M1 Agonists: Selective Signaling, Neurotrophic-Like and Cognitive Effects — Implications in the Treatment of Alzheimer's Disease. Advances in Behavioral Biology, 1995, , 449-455.	0.2	3
40	Discrete activation of transduction pathways associated with acetylcholine m1 receptor by several muscarinic ligands. European Journal of Pharmacology, 1994, 267, 21-31.	2.6	121
41	Agonist-stimulated release of von Willebrand factor and procoagulant factor VIII in rats with and without risk factors for stroke. Brain Research, 1994, 647, 265-272.	2.2	10
42	Amyloid Precursor Protein Secretion via Muscarinic Receptors: Reduced Desensitization Using the M1-Selective Agonist AF102B. Biochemical and Biophysical Research Communications, 1994, 203, 652-658.	2.1	47
43	Selective Signaling Via Novel Muscarinic Agonists: Implications for Alzheimer's Disease Treatments and Clinical Update. , 1994, , 219-223.		4
44	Anandamide, a Brain Endogenous Compound, Interacts Specifically with Cannabinoid Receptors and Inhibits Adenylate Cyclase. Journal of Neurochemistry, 1993, 61, 352-355.	3.9	281
45	Selective Signaling via Unique Ml Muscarinic Agonistsa. Annals of the New York Academy of Sciences, 1993, 695, 300-303.	3.8	27
46	Inhibition of choline efflux results in enhanced acetylcholine synthesis and release in the guinea-pig corticocerebral synaptosomes. Neurochemistry International, 1992, 20, 219-227.	3.8	6
47	Differential long-term effect of AF64A on [3H]ACh synthesis and release in rat hippocampal synaptosomes. Brain Research, 1992, 586, 148-151.	2.2	6
48	Comparison of stimulated tissue factor expression by brain microvascular endothelial cells from normotensive (WKY) and hypertensive (SHR) rats. Brain Research, 1992, 597, 346-349.	2.2	4
49	Rigid analogs of acetylcholine can be m1-selective agonists: implications for a rational treatment strategy in Alzheimer's disease. Bioorganic and Medicinal Chemistry Letters, 1992, 2, 839-844.	2.2	10
50	Lipopolysaccharide-induced production of tumor necrosis factor activity in rats with and without risk factors for stroke. Brain Research, 1991, 541, 115-120.	2.2	51
51	Osmotic strength differentiates between two types of calcium transport pathways regulating catecholamine secretion from cultured bovine chromaffin cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1991, 1091, 417-425.	4.1	7
52	Extracellular matrix permits the expression of von willebrand's factor, uptake of Di-I-acetylated low density lipoprotein and secretion of prostacyclin in cultures of endothelial cells from rat brain microvessels. In Vitro Cellular & Developmental Biology, 1991, 27, 689-697.	1.0	10
53	New Muscarinic Agonists with Special Emphasis on AF102B. , 1991, , 354-362.		0
54	Distinct Muscarinic Receptor Subtypes Differentially Modulate Acetylcholine Release from Corticocerebral Synaptosomes. Journal of Neurochemistry, 1990, 55, 665-672.	3.9	32

#	Article	IF	CITATIONS
55	(+)-Cis-Methyl-Spiro(1,3-Oxathiolane-5,3â€2)Quinuclidine (AF102B): A New M1 Agonist as a Rational Treatment Strategy in Alzheimer's Disease - An Overview. Advances in Behavioral Biology, 1990, , 309-319.	0.2	2
56	Cholinotoxicity induced by ethylcholine aziridinium ion after intracarotid and intracerebroventricular administration. Life Sciences, 1989, 44, 1437-1448.	4.3	6
57	Cholinotoxicity of the ethylcholine aziridinium ion in primary cultures from rat central nervous system. Brain Research, 1988, 454, 298-307.	2.2	17
58	Reversible and Irreversible Inhibition of High-Affinity Choline Transport Caused by Ethylcholine Aziridinium Ion. Journal of Neurochemistry, 1987, 49, 468-474.	3.9	46
59	Effects of ?2-Adrenergic Agonists and Antagonists on Photoreceptor Membrane Currents. Journal of Neurochemistry, 1987, 48, 405-416.	3.9	18
60	The role of neurochemical modulation in learning. Neuroscience Research, 1986, 3, 487-497.	1.9	11
61	A novel immunoassay with direct relevance to protection against organophosphate poisoning. FEBS Letters, 1985, 180, 243-248.	2.8	31
62	Optimization of analytical methods based on non-linear asymptotic calibration graphs. Analytica Chimica Acta, 1982, 144, 55-72.	5.4	2
63	Ultrastructure of photoreceptors in the eye ofHermissenda labelled with intracellular injections of horseradish peroxidase. Journal of Neurocytology, 1979, 8, 181-195.	1.5	34
64	Neurotransmitter synthesis in the nervous system of the mollusc Hermissenda. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1978, 59, 117-125.	0.2	7