## Steven M Bischof

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8168874/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                | IF                  | CITATIONS      |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------|
| 1  | Homogeneous Functionalization of Methane. Chemical Reviews, 2017, 117, 8521-8573.                                                                                                                                      | 47.7                | 344            |
| 2  | Designing Catalysts for Functionalization of Unactivated C–H Bonds Based on the CH Activation<br>Reaction. Accounts of Chemical Research, 2012, 45, 885-898.                                                           | 15.6                | 301            |
| 3  | Main-Group Compounds Selectively Oxidize Mixtures of Methane, Ethane, and Propane to Alcohol<br>Esters. Science, 2014, 343, 1232-1237.                                                                                 | 12.6                | 139            |
| 4  | Using Reduced Catalysts for Oxidation Reactions: Mechanistic Studies of the "Periana-Catalytica―<br>System for CH <sub>4</sub> Oxidation. Journal of the American Chemical Society, 2013, 135, 14644-14658.            | 13.7                | 82             |
| 5  | Computational Transition-State Design Provides Experimentally Verified Cr(P,N) Catalysts for Control of Ethylene Trimerization and Tetramerization. ACS Catalysis, 2018, 8, 1138-1142.                                 | 11.2                | 64             |
| 6  | Transition State Energy Decomposition Study of Acetate-Assisted and Internal Electrophilic<br>Substitution Câ^'H Bond Activation by (acac-O,O) <sub>2</sub> 1r(X) Complexes (X =) Tj ETQq0 0 0 rgBT /Overloo           | ck <b>1.0</b> Tf 5( | 0 56307 Td (CH |
| 7  | Benzene Câ^'H Bond Activation in Carboxylic Acids Catalyzed by O-Donor Iridium(III) Complexes: An<br>Experimental and Density Functional Study. Organometallics, 2010, 29, 742-756.                                    | 2.3                 | 52             |
| 8  | Quantum-mechanical transition-state model combined with machine learning provides catalyst design features for selective Cr olefin oligomerization. Chemical Science, 2020, 11, 9665-9674.                             | 7.4                 | 51             |
| 9  | A Mechanistic Change Results in 100 Times Faster CH Functionalization for Ethane versus Methane by a<br>Homogeneous Pt Catalyst. Journal of the American Chemical Society, 2014, 136, 10085-10094.                     | 13.7                | 41             |
| 10 | Mechanism of efficient anti-Markovnikov olefin hydroarylation catalyzed by homogeneous<br>Ir( <scp>iii</scp> ) complexes. Green Chemistry, 2011, 13, 69-81.                                                            | 9.0                 | 39             |
| 11 | Alkene Isomerization–Hydroboration Catalyzed by First-Row Transition-Metal (Mn, Fe, Co, and Ni)<br><i>N</i> -Phosphinoamidinate Complexes: Origin of Reactivity and Selectivity. ACS Catalysis, 2018, 8,<br>9907-9925. | 11.2                | 38             |
| 12 | Functionalization of Rhenium Aryl Bonds by O-Atom Transfer. Organometallics, 2011, 30, 2079-2082.                                                                                                                      | 2.3                 | 35             |
| 13 | Why Less Coordination Provides Higher Reactivity Chromium Phosphinoamidine Ethylene<br>Trimerization Catalysts. ACS Catalysis, 2020, 10, 9674-9683.                                                                    | 11.2                | 21             |
| 14 | The Hydroxideâ€Promoted Catalytic Hydrodefluorination of Fluorocarbons by Ruthenium in Aqueous<br>Media. Advanced Synthesis and Catalysis, 2013, 355, 632-636.                                                         | 4.3                 | 19             |
| 15 | Oxy-Functionalization of Nucleophilic Rhenium(I) Metal Carbon Bonds Catalyzed by Selenium(IV).<br>Journal of the American Chemical Society, 2009, 131, 2466-2468.                                                      | 13.7                | 17             |
| 16 | Dehydrogenative Bâ^'H/C(sp <sup>3</sup> )â^'H Benzylic Borylation within the Coordination Sphere of<br>Platinum(II). Angewandte Chemie - International Edition, 2017, 56, 6312-6316.                                   | 13.8                | 16             |
| 17 | Synthesis, characterization, and C–H activation reactions of novel organometallic O-donor ligated Rh(III) complexes. Journal of Organometallic Chemistry, 2011, 696, 551-558.                                          | 1.8                 | 13             |
| 18 | Synthesis and Reactivity of a Neutral, Threeâ€Coordinate Platinum(II) Complex Featuring Terminal Amido<br>Ligation. Angewandte Chemie - International Edition, 2015, 54, 14498-14502.                                  | 13.8                | 10             |

STEVEN M BISCHOF

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The para-substituent effect and pH-dependence of the organometallic Baeyer–Villiger oxidation of rhenium–carbon bonds. Dalton Transactions, 2012, 41, 3758.                                                            | 3.3 | 9         |
| 20 | Base accelerated generation of N2 and NH3 from an osmium nitride. Journal of Molecular Catalysis A, 2014, 382, 1-7.                                                                                                    | 4.8 | 8         |
| 21 | Challenge of Using Practical DFT to Model Fe Pendant Donor Diimine Catalyzed Ethylene<br>Oligomerization. Journal of Physical Chemistry C, 2019, 123, 3727-3739.                                                       | 3.1 | 8         |
| 22 | Designing Molecular Catalysts for Selective CH Functionalization. Topics in Organometallic Chemistry, 2012, , 195-231.                                                                                                 | 0.7 | 6         |
| 23 | Making Water the Exciting Way: A Classroom Demonstration of Catalysis. Journal of Chemical Education, 2014, 91, 550-553.                                                                                               | 2.3 | 6         |
| 24 | Dehydrogenative Bâ^'H/C(sp <sup>3</sup> )â^'H Benzylic Borylation within the Coordination Sphere of<br>Platinum(II). Angewandte Chemie, 2017, 129, 6409-6413.                                                          | 2.0 | 5         |
| 25 | Computational Evaluation and Design of Polyethylene Zirconocene Catalysts with Noncovalent Dispersion Interactions. Organometallics, 2022, 41, 581-593.                                                                | 2.3 | 4         |
| 26 | lridium( <scp>iii</scp> ) catalyzed trifluoroacetoxylation of aromatic hydrocarbons. RSC Advances, 2014, 4, 35639-35648.                                                                                               | 3.6 | 3         |
| 27 | Computational assessment and understanding of C6 product selectivity for chromium phosphinoamidine catalyzed ethylene trimerization. Journal of Organometallic Chemistry, 2022, 961, 122251.                           | 1.8 | 2         |
| 28 | Density functional theory and <scp>CCSD</scp> (T) evaluation of ionization potentials, redox potentials, and bond energies related to zirconocene polymerization catalysts. Journal of Computational Chemistry, 0, , . | 3.3 | 0         |