
## Jaime Berumen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/816865/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Sequencing of 640,000 exomes identifies <i>GPR75</i> variants associated with protection from obesity. Science, 2021, 373, .                                                                              | 12.6 | 130       |
| 2  | TSC2/PKD1 contiguous gene syndrome, with emphasis on a case with an atypical mild polycystic kidney phenotype and a novel genetic variant. Nefrologia, 2020, 40, 91-98.                                   | 0.4  | 6         |
| 3  | Influence of obesity, parental history of diabetes, and genes in type 2 diabetes: A case-control study.<br>Scientific Reports, 2019, 9, 2748.                                                             | 3.3  | 21        |
| 4  | Curcumin differentially affects cell cycle and cell death in acute and chronic myeloid leukemia cells.<br>Oncology Letters, 2018, 15, 6777-6783.                                                          | 1.8  | 26        |
| 5  | C33-A cells transfected with E6*I or E6*II the short forms of HPV-16 E6, displayed opposite effects on cisplatin-induced apoptosis. Virus Research, 2018, 247, 94-101.                                    | 2.2  | 8         |
| 6  | The invasiveness of human cervical cancer associated to the function of NaV1.6 channels is mediated by MMP-2 activity. Scientific Reports, 2018, 8, 12995.                                                | 3.3  | 34        |
| 7  | Wide allelic heterogeneity with predominance of large <i><scp>IDS</scp></i> gene complex<br>rearrangements in a sample of Mexican patients with Hunter syndrome. Clinical Genetics, 2016, 89,<br>574-583. | 2.0  | 13        |
| 8  | Different Association of Human Papillomavirus 16 Variants with Early and Late Presentation of Cervical Cancer. PLoS ONE, 2016, 11, e0169315.                                                              | 2.5  | 10        |
| 9  | Genome Analysis of Latin American Cervical Cancer: Frequent Activation of the PIK3CA Pathway.<br>Clinical Cancer Research, 2015, 21, 5360-5370.                                                           | 7.0  | 68        |
| 10 | Let-7c overexpression inhibits dengue virus replication in human hepatoma Huh-7 cells. Virus Research,<br>2015, 196, 105-112.                                                                             | 2.2  | 45        |
| 11 | CDKN3 mRNA as a Biomarker for Survival and Therapeutic Target in Cervical Cancer. PLoS ONE, 2015, 10, e0137397.                                                                                           | 2.5  | 32        |
| 12 | Cervical cancer Mitosis Targets as Biomarkers in Cervical Cancer. Biomarkers in Disease, 2015, , 483-505.                                                                                                 | 0.1  | 0         |
| 13 | Impact of Gene Dosage on Gene Expression, Biological Processes and Survival in Cervical Cancer: A<br>Genome-Wide Follow-Up Study. PLoS ONE, 2014, 9, e97842.                                              | 2.5  | 46        |
| 14 | 19q13.11 microdeletion concomitant with ins(2;19)(p25.3;q13.1q13.4)dn in a boy: potential role of UBA2 in<br>the associated phenotype. Molecular Cytogenetics, 2014, 7, 61.                               | 0.9  | 17        |
| 15 | Biochemical and proteomic analysis of spliceosome factors interacting with intron-1 of human papillomavirus type-16. Journal of Proteomics, 2014, 111, 184-197.                                           | 2.4  | 2         |
| 16 | Mitosis Targets as Biomarkers in Cervical Cancer. , 2014, , 1-19.                                                                                                                                         |      | 0         |
| 17 | Trisomy 1q41-qter and monosomy 3p26.3-pter in a family with a translocation (1;3): further delineation of the syndromes. BMC Medical Genomics, 2014, 7, 55.                                               | 1.5  | 2         |
| 18 | Targeting <i>CDKN3</i> in cervical cancer. Expert Opinion on Therapeutic Targets, 2014, 18, 1149-1162.                                                                                                    | 3.4  | 25        |

JAIME BERUMEN

| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The Distribution of High-Risk Human Papillomaviruses Is Different in Young and Old Patients with<br>Cervical Cancer. PLoS ONE, 2014, 9, e109406.                                                                                                                 | 2.5 | 31        |
| 20 | Connexin 30.2 is expressed in mouse pancreatic beta cells. Biochemical and Biophysical Research Communications, 2013, 438, 772-777.                                                                                                                              | 2.1 | 16        |
| 21 | Mitosis Is a Source of Potential Markers for Screening and Survival and Therapeutic Targets in Cervical Cancer. PLoS ONE, 2013, 8, e55975.                                                                                                                       | 2.5 | 74        |
| 22 | Diagnosis of Familial Wolf-Hirschhorn Syndrome due to a Paternal Cryptic Chromosomal<br>Rearrangement by Conventional and Molecular Cytogenetic Techniques. BioMed Research<br>International, 2013, 2013, 1-8.                                                   | 1.9 | 3         |
| 23 | A few nucleotide polymorphisms are sufficient to recruit nuclear factors differentially to the intron<br>1 of HPV-16 intratypic variants. Virus Research, 2012, 166, 43-53.                                                                                      | 2.2 | 12        |
| 24 | The presence of aflatoxin B <sub>1</sub> -FAPY adduct and human papilloma virus in cervical smears<br>from cancer patients in Mexico. Food Additives and Contaminants - Part A Chemistry, Analysis,<br>Control, Exposure and Risk Assessment, 2012, 29, 258-268. | 2.3 | 19        |
| 25 | The Amerindian mtDNA haplogroup B2 enhances the risk of HPV for cervical cancer: de-regulation of mitochondrial genes may be involved. Journal of Human Genetics, 2012, 57, 269-276.                                                                             | 2.3 | 43        |
| 26 | Connexin 36 is Expressed in Beta and Connexins 26 and 32 in Acinar Cells at the End of the Secondary<br>Transition of Mouse Pancreatic Development and Increase During Fetal and Perinatal Life. Anatomical<br>Record, 2012, 295, 980-990.                       | 1.4 | 13        |
| 27 | Overexpression of Na <sub>V</sub> 1.6 channels is associated with the invasion capacity of human cervical cancer. International Journal of Cancer, 2012, 130, 2013-2023.                                                                                         | 5.1 | 77        |
| 28 | Amplified Genes May Be Overexpressed, Unchanged, or Downregulated in Cervical Cancer Cell Lines.<br>PLoS ONE, 2012, 7, e32667.                                                                                                                                   | 2.5 | 43        |
| 29 | Overexpression of glycosylated proteins in cervical cancer recognized by the Machaerocereus eruca agglutinin. Folia Histochemica Et Cytobiologica, 2012, 50, 398-406.                                                                                            | 1.5 | 8         |
| 30 | HPV-16 and HLA-DRB1 Alleles Are Associated with Cervical Carcinoma inÂMexican Mestizo Women.<br>Archives of Medical Research, 2011, 42, 421-425.                                                                                                                 | 3.3 | 13        |
| 31 | The HPV-16 E7 oncoprotein is expressed mainly from the unspliced E6/E7 transcript in cervical carcinoma C33-A cells. Archives of Virology, 2010, 155, 1959-1970.                                                                                                 | 2.1 | 22        |
| 32 | A Hybrid Methodology for Pattern Recognition in Signaling Cervical Cancer Pathways. Lecture Notes in Computer Science, 2010, , 301-310.                                                                                                                          | 1.3 | 0         |
| 33 | Multi-agent System for Gene Expression Analysis to Identify Involved Genes in Cervical Cancer. , 2009, ,                                                                                                                                                         |     | Ο         |
| 34 | HPV-related Carcinogenesis: Basic Concepts, Viral Types and Variants. Archives of Medical Research, 2009, 40, 428-434.                                                                                                                                           | 3.3 | 69        |
| 35 | A great diversity of Amerindian mitochondrial DNA ancestry is present in the Mexican mestizo population. Journal of Human Genetics, 2009, 54, 695-705.                                                                                                           | 2.3 | 37        |
| 36 | Functional expression of voltage-gated sodium channels in primary cultures of human cervical cancer. Journal of Cellular Physiology, 2007, 210, 469-478.                                                                                                         | 4.1 | 83        |

JAIME BERUMEN

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | In Vivo Expression of Immunosuppressive Cytokines in Human Papillomavirus-Transformed Cervical<br>Cancer Cells. Viral Immunology, 2006, 19, 481-491.                                                                               | 1.3  | 84        |
| 38 | A pilot study in patients with established advanced liver fibrosis using pirfenidone. Gut, 2006, 55, 1663-1665.                                                                                                                    | 12.1 | 68        |
| 39 | HPV16-specific cytotoxic T lymphocyte responses are detected in all HPV16-positive cervical cancer patients. Gynecologic Oncology, 2005, 96, 92-102.                                                                               | 1.4  | 23        |
| 40 | Enhanced oncogenicity of Asian-American human papillomavirus 16 is associated with impaired E2 repression of E6/E7 oncogene transcription. Journal of General Virology, 2004, 85, 1433-1444.                                       | 2.9  | 49        |
| 41 | Improved Effects of Viral Gene Delivery of Human uPA plus Biliodigestive Anastomosis Induce Recovery<br>from Experimental Biliary Cirrhosis. Molecular Therapy, 2004, 9, 30-37.                                                    | 8.2  | 12        |
| 42 | Unbalanced collagenases/TIMP-1 expression and epithelial apoptosis in experimental lung fibrosis.<br>American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L1026-L1036.                              | 2.9  | 95        |
| 43 | Interleukin-10 promotes B16-melanoma growth by inhibition of macrophage functions and induction of tumour and vascular cell proliferation. Immunology, 2002, 105, 231-243.                                                         | 4.4  | 86        |
| 44 | Asian-American Variants of Human Papillomavirus 16 and Risk for Cervical Cancer: a Case-Control<br>Study. Journal of the National Cancer Institute, 2001, 93, 1325-1330.                                                           | 6.3  | 248       |
| 45 | Partially deleted SRY gene confined to testicular tissue in a 46,XX true hermaphrodite without SRY in<br>leukocytic DNA. American Journal of Medical Genetics Part A, 2000, 93, 417-420.                                           | 2.4  | 31        |
| 46 | Asian-American variants of human papillomavirus type 16 have extensive mutations in theE2 gene and are highly amplified in cervical carcinomas. , 1999, 83, 449-455.                                                               |      | 57        |
| 47 | Oral manifestations as a hallmark of malignant acanthosis nigricans. Journal of Oral Pathology and<br>Medicine, 1999, 28, 278-281.                                                                                                 | 2.7  | 46        |
| 48 | Asian-American variants of human papillomavirus type 16 have extensive mutations in the E2 gene and are highly amplified in cervical carcinomas. , 1999, 83, 449.                                                                  |      | 1         |
| 49 | Asianâ€American variants of human papillomavirus type 16 have extensive mutations in the E2 gene and are highly amplified in cervical carcinomas. International Journal of Cancer, 1999, 83, 449-455.                              | 5.1  | 1         |
| 50 | Association Between Human Papillomavirus Type 18 Variants and Histopathology of Cervical Cancer.<br>Journal of the National Cancer Institute, 1997, 89, 1227-1231.                                                                 | 6.3  | 55        |
| 51 | Vacunas terapéuticas recombinantes contra el cáncer del cuello uterino. Salud Publica De Mexico,<br>1997, 39, 288-297.                                                                                                             | 0.4  | 5         |
| 52 | The E7 protein of human papillomavirus (HPV) type 16 expressed by recombinant vaccinia virus can be<br>used for detection of antibodies in sera from cervical cancer patients. Journal of Virological<br>Methods, 1996, 62, 81-85. | 2.1  | 9         |
| 53 | Frequency of haplotypes in the beta globin gene cluster in a selected sample of the mexican population. American Journal of Human Biology, 1995, 7, 45-49.                                                                         | 1.6  | 10        |
| 54 | Amplification of human papillomavirus types 16 and 18 in invasive cervical cancer. Human Pathology,<br>1995, 26, 676-681.                                                                                                          | 2.0  | 44        |

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Antibodies against linear and conformational epitopes of the human papillomavirus (HPV) type 16 E6<br>and E7 oncoproteins in sera of cervical cancer patients. Archives of Virology, 1994, 137, 341-353. | 2.1 | 34        |
| 56 | Genome amplification of human papillomavirus types 16 and 18 in cervical carcinomas is related to the retention of E1/E2 genes. International Journal of Cancer, 1994, 56, 640-645.                      | 5.1 | 76        |