Ludger A Wessjohann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8167680/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biosynthesis and Metabolism of Cyclopropane Rings in Natural Compounds. Chemical Reviews, 2003, 103, 1625-1648.	47.7	556
2	Hydrogen peroxide – production, fate and role in redox signaling of tumor cells. Cell Communication and Signaling, 2015, 13, 39.	6.5	390
3	Multiple Multicomponent Macrocyclizations (MiBs): A Strategic Development Toward Macrocycle Diversity. Chemical Reviews, 2009, 109, 796-814.	47.7	282
4	Comparative metabolite profiling and fingerprinting of medicinal licorice roots using a multiplex approach of GC–MS, LC–MS and 1D NMR techniques. Phytochemistry, 2012, 76, 60-72.	2.9	245
5	Selenium in chemistry and biochemistry in comparison to sulfur. Biological Chemistry, 2007, 388, 997-1006.	2.5	240
6	What can a chemist learn from nature?s macrocycles? ? A brief, conceptual view. Molecular Diversity, 2005, 9, 171-186.	3.9	206
7	Recent Advances in Chromium(II)- and Chromium(III)-Mediated Organic Synthesis. Synthesis, 1999, 1999, 1-36.	2.3	199
8	Profiling of Arabidopsis Secondary Metabolites by Capillary Liquid Chromatography Coupled to Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry. Plant Physiology, 2004, 134, 548-559.	4.8	192
9	The Pinene Path to Taxanes. 5. Stereocontrolled Synthesis of a Versatile Taxane Precursor. Journal of the American Chemical Society, 1997, 119, 2755-2756.	13.7	167
10	Differential distribution of tocopherols and tocotrienols in photosynthetic and non-photosynthetic tissues. Phytochemistry, 2006, 67, 1185-1195.	2.9	131
11	Methodology of Drought Stress Research: Experimental Setup and Physiological Characterization. International Journal of Molecular Sciences, 2018, 19, 4089.	4.1	131
12	The Multiple Multicomponent Approach to Natural Product Mimics: Tubugis, N-Substituted Anticancer Peptides with Picomolar Activity. Journal of the American Chemical Society, 2011, 133, 7692-7695.	13.7	126
13	Metabolomics driven analysis of six Nigella species seeds via UPLC-qTOF-MS and GC–MS coupled to chemometrics. Food Chemistry, 2014, 151, 333-342.	8.2	121
14	Synthesis and Selective Anticancer Activity of Organochalcogen Based Redox Catalysts. Journal of Medicinal Chemistry, 2010, 53, 6954-6963.	6.4	119
15	Synthesis of natural-product-based compound libraries. Current Opinion in Chemical Biology, 2000, 4, 303-309.	6.1	118
16	Design and Synthesis of Cyclic RGD Pentapeptoids by Consecutive Ugi Reactions. Organic Letters, 2008, 10, 205-208.	4.6	115
17	Glutathione peroxidase-2 and selenium decreased inflammation and tumors in a mouse model of inflammation-associated carcinogenesis whereas sulforaphane effects differed with selenium supply. Carcinogenesis, 2012, 33, 620-628.	2.8	115
18	Traceless Tosylhydrazoneâ€Based Triazole Formation: A Metalâ€Free Alternative to Strainâ€Promoted Azide–Alkyne Cycloaddition. Angewandte Chemie - International Edition, 2012, 51, 5343-5346.	13.8	104

#	Article	IF	CITATIONS
19	Tailoring the Reactivity of Small Ring Building Blocks for Organic Synthesis. Synlett, 1990, 1990, 20-32.	1.8	102
20	Total Synthesis of Tubulysin U and V. Angewandte Chemie - International Edition, 2006, 45, 7235-7239.	13.8	99
21	Supramolecular Compounds from Multiple Ugi Multicomponent Macrocyclizations:Â Peptoid-based Cryptands, Cages, and Cryptophanes. Journal of the American Chemical Society, 2006, 128, 7122-7123.	13.7	95
22	Phytochemical, phylogenetic, and anti-inflammatory evaluation of 43 Urtica accessions (stinging) Tj ETQq0 0 0 i	rgBT /Over 2.9	lock 10 Tf 50
23	Metabolomics driven analysis of artichoke leaf and its commercial products via UHPLC–q-TOF-MS and chemometrics. Phytochemistry, 2013, 95, 177-187.	2.9	93
24	Metabolite profiling and fingerprinting of commercial cultivars of Humulus lupulus L. (hop): a comparison of MS and NMR methods in metabolomics. Metabolomics, 2012, 8, 492-507.	3.0	91
25	Metabolomic fingerprints of 21 date palm fruit varieties from Egypt using UPLC/PDA/ESI–qTOF-MS and GC–MS analyzed by chemometrics. Food Research International, 2014, 64, 218-226.	6.2	89
26	Diversity Oriented One-Pot Synthesis of Complex Macrocycles: Very Large Steroid-Peptoid Hybrids from Multiple Multicomponent Reactions Including Bifunctional Building Blocks. Angewandte Chemie - International Edition, 2005, 44, 4785-4790.	13.8	88
27	Metabolite profiling and fingerprinting of Hypericum species: a comparison of MS and NMR metabolomics. Metabolomics, 2014, 10, 574-588.	3.0	88
28	Strategies for Total and Diversity-Oriented Synthesis of Natural Product(-Like) Macrocycles. Topics in Current Chemistry, 0, , 137-184.	4.0	87
29	Diacetin, a reliable cue and private communication channel in a specialized pollination system. Scientific Reports, 2015, 5, 12779.	3.3	85
30	Phytochemical Profiles and Antimicrobial Activities of Allium cepa Red cv. and A. sativum Subjected to Different Drying Methods: A Comparative MS-Based Metabolomics. Molecules, 2017, 22, 761.	3.8	84
31	Multiple Multicomponent Macrocyclizations Including Bifunctional Building Blocks (MiBs) Based on Staudinger and Passerini Three-Component Reactions. Journal of Organic Chemistry, 2008, 73, 1762-1767.	3.2	76
32	Architectural Chemistry: Synthesis of Topologically Diverse Macromulticycles by Sequential Multiple Multicomponent Macrocyclizations. Journal of the American Chemical Society, 2009, 131, 3721-3732.	13.7	75
33	Organoselenocyanates and symmetrical diselenides redox modulators: Design, synthesis and biological evaluation. European Journal of Medicinal Chemistry, 2015, 97, 190-201.	5.5	75
34	Chiral diselenide ligands for the asymmetric copper-catalyzed conjugate addition of Grignard reagents to enones. Tetrahedron Letters, 2002, 43, 7329-7331.	1.4	74
35	Macrocycles rapidly produced by multiple multicomponent reactions including bifunctional building blocks (MiBs). Molecular Diversity, 2005, 9, 159-169.	3.9	72
36	Phytochemical, antioxidant and antidiabetic evaluation of eight Bauhinia L. species from Egypt using UHPLC–PDA–qTOF-MS and chemometrics. Phytochemistry, 2015, 119, 41-50.	2.9	72

#	Article	IF	CITATIONS
37	Combinatorial synthesis, in silico , molecular and biochemical studies of tetrazole-derived organic selenides with increased selectivity against hepatocellular carcinoma. European Journal of Medicinal Chemistry, 2016, 122, 55-71.	5.5	72
38	Chemoenzymatic Dynamic Kinetic Resolution of Acyloins. Journal of Organic Chemistry, 2005, 70, 9551-9555.	3.2	71
39	Regiospecific Synthesis of 4-Alkoxy and 4-Amino Substituted 2-Trifluoromethyl Pyrroles. Journal of Organic Chemistry, 2006, 71, 6996-6998.	3.2	71
40	Exploring synthetic avenues for the effective synthesis of selenium- and tellurium-containing multifunctional redox agents. Organic and Biomolecular Chemistry, 2009, 7, 4753.	2.8	71
41	Acceleration of Arylzinc Formation and Its Enantioselective Addition to Aldehydes by Microwave Irradiation and Aziridine-2-methanol Catalysts. Journal of Organic Chemistry, 2008, 73, 2879-2882.	3.2	70
42	Natural products – modifying metabolite pathways in plants. Biotechnology Journal, 2013, 8, 1159-1171.	3.5	70
43	Metabolomics reveals impact of seven functional foods on metabolic pathways in a gut microbiota model. Journal of Advanced Research, 2020, 23, 47-59.	9.5	70
44	The chromium—Reformatsky reaction: Asymmetric synthesis of the aldol fragment of the cytotoxic epothilons from 3-(2-bromoacyl)-2-oxazolidinones. Tetrahedron Letters, 1997, 38, 1363-1366.	1.4	68
45	First Total Synthesis of Tubulysin B. Organic Letters, 2009, 11, 5567-5569.	4.6	68
46	Redox proteomics: Methods for the identification and enrichment of redoxâ€modified proteins and their applications. Proteomics, 2016, 16, 197-213.	2.2	67
47	Facile and practical enantioselective synthesis of propargylic alcohols by direct addition of alkynes to aldehydes catalyzed by chiral disulfide–oxazolidine ligands. Tetrahedron, 2002, 58, 10413-10416.	1.9	64
48	In Vitro and In Vivo Production of New Aminocoumarins by a Combined Biochemical, Genetic, and Synthetic Approach. Chemistry and Biology, 2004, 11, 173-183.	6.0	64
49	Metabolome Classification of Commercial <i>Hypericum perforatum</i> (St.ÂJohn's Wort) Preparations via UPLC-qTOF-MS and Chemometrics. Planta Medica, 2012, 78, 488-496.	1.3	64
50	Multicomponent reactions for the synthesis of multifunctional agents with activity against cancer cells. Chemical Communications, 2009, , 4702.	4.1	63
51	Tradeâ€offs between physical and chemical carbonâ€based leaf defence: of intraspecific variation and trait evolution. Journal of Ecology, 2015, 103, 1667-1679.	4.0	62
52	Volatiles Profiling in Medicinal Licorice Roots Using Steam Distillation and Solidâ€Phase Microextraction (SPME) Coupled to Chemometrics. Journal of Food Science, 2012, 77, C1179-84.	3.1	61
53	The Functional Role of Selenocysteine (Sec) in the Catalysis Mechanism of Large Thioredoxin Reductases: Proposition of a Swapping Catalytic Triad Including a Sec-His-Glu State. ChemBioChem, 2005, 6, 386-394.	2.6	60
54	The UBIAD1 Prenyltransferase Links Menaquione-4 Synthesis to Cholesterol Metabolic Enzymes. Human Mutation, 2013, 34, 317-329.	2.5	60

#	Article	IF	CITATIONS
55	Accumulation ofÂtocopherols andÂtocotrienols during seed development ofÂgrape (VitisÂvinifera L. cv.) Tj ETQq1	10.7843 5.8	14 rgBT /0
56	Rapid generation of macrocycles with natural-product-like side chains by multiple multicomponent macrocyclizations (MiBs). Organic and Biomolecular Chemistry, 2008, 6, 1787.	2.8	58
57	UBIAD1 Mutation Alters a Mitochondrial Prenyltransferase to Cause Schnyder Corneal Dystrophy. PLoS ONE, 2010, 5, e10760.	2.5	58
58	Compositional and structural studies of the oils from two edible seeds: Tiger nut, Cyperus esculentum, and asiato, Pachira insignis, from Ghana. Food Research International, 2012, 47, 259-266.	6.2	58
59	Versatile antitumor potential of isoxanthohumol: Enhancement of paclitaxel activity in vivo. Pharmacological Research, 2016, 105, 62-73.	7.1	58
60	Comparative metabolite profiling and fingerprinting of genus Passiflora leaves using a multiplex approach of UPLC-MS and NMR analyzed by chemometric tools. Analytical and Bioanalytical Chemistry, 2016, 408, 3125-3143.	3.7	58
61	Homoisoflavonoids from Ophiopogon japonicus Ker-Gawler. Phytochemistry, 2003, 62, 1153-1158.	2.9	57
62	Freezing Imine Exchange in Dynamic Combinatorial Libraries with Ugi Reactions:  Versatile Access to Templated Macrocycles. Organic Letters, 2007, 9, 4733-4736.	4.6	57
63	Synthesis and biochemical studies of novel organic selenides with increased selectivity for hepatocellular carcinoma and breast adenocarcinoma. European Journal of Medicinal Chemistry, 2019, 179, 515-526.	5.5	55
64	Expression, regulation and function of the ISGylation system in prostate cancer. Oncogene, 2009, 28, 2606-2620.	5.9	53
65	Characterization of the anticancer properties of monoglycosidic cardenolides isolated from Nerium oleander and Streptocaulon tomentosum. Journal of Ethnopharmacology, 2011, 134, 781-788.	4.1	53
66	Alkylating enzymes. Current Opinion in Chemical Biology, 2013, 17, 229-235.	6.1	53
67	Synthesis of N,N-disubstituted selenoamides by O/Se-exchange with selenium–Lawesson's reagent. Tetrahedron Letters, 2003, 44, 6911-6913.	1.4	52
68	A Structural Model of the Membraneâ€Bound Aromatic Prenyltransferase UbiA from <i>E. coli</i> . ChemBioChem, 2008, 9, 982-992.	2.6	52
69	Helicascolide C, a new lactone from an Indonesian marine algicolous strain of Daldinia eschscholzii (Xylariaceae, Ascomycota). Phytochemistry Letters, 2012, 5, 83-86.	1.2	52
70	NMR approach for the authentication of 10 cinnamon spice accessions analyzed via chemometric tools. LWT - Food Science and Technology, 2018, 90, 491-498.	5.2	52
71	Introducing the Petasis Reaction for Lateâ€Stage Multicomponent Diversification, Labeling, and Stapling of Peptides. Angewandte Chemie - International Edition, 2019, 58, 2700-2704.	13.8	52
72	Synthesis of Steroidâ^Biaryl Ether Hybrid Macrocycles with High Skeletal and Side Chain Variability by Multiple Multicomponent Macrocyclization Including Bifunctional Building Blocks. Journal of Organic Chemistry, 2006, 71, 7521-7526.	3.2	51

#	Article	IF	CITATIONS
73	Rapid Access to N-Substituted Diketopiperazines by One-Pot Ugi-4CR/Deprotection+Activation/Cyclization (UDAC). ACS Combinatorial Science, 2009, 11, 1078-1082.	3.3	51
74	Comparative analysis of Hibiscus sabdariffa (roselle) hot and cold extracts in respect to their potential for α-glucosidase inhibition. Food Chemistry, 2018, 250, 236-244.	8.2	51
75	Molecular and structural basis of metabolic diversity mediated by prenyldiphosphate converting enzymes. Phytochemistry, 2009, 70, 1758-1775.	2.9	50
76	Macrocyclization of Peptide Side Chains by the Ugi Reaction: Achieving Peptide Folding and Exocyclic <i>N</i> -Functionalization in One Shot. Journal of Organic Chemistry, 2015, 80, 6697-6707.	3.2	50
77	Natural Products from Microalgae with Potential against Alzheimer's Disease: Sulfolipids Are Potent Glutaminyl Cyclase Inhibitors. Marine Drugs, 2016, 14, 203.	4.6	50
78	A new functionalized, chiral disulfide derived from l-cysteine: (R,R)-bis[(3-benzyloxazolan-4-yl)-methane] disulfide as a catalyst in the diethylzinc addition to aldehydes. Tetrahedron: Asymmetry, 1999, 10, 1733-1738.	1.8	48
79	Flavonoid production in transgenic hop (Humulus lupulus L.) altered by PAP1/MYB75 from Arabidopsis thaliana L Plant Cell Reports, 2012, 31, 111-119.	5.6	48
80	Palladium-Catalyzed Direct Arylation of Selenophene. Journal of Organic Chemistry, 2014, 79, 5987-5992.	3.2	48
81	Soft Corals Biodiversity in the Egyptian Red Sea: A Comparative MS and NMR Metabolomics Approach of Wild and Aquarium Grown Species. Journal of Proteome Research, 2016, 15, 1274-1287.	3.7	48
82	Chromium(II)-Mediated Reformatsky Reactions of Carboxylic Esters with Aldehydes. Journal of Organic Chemistry, 1997, 62, 3772-3774.	3.2	47
83	One pot synthesis of selenocysteine containing peptoid libraries by Ugi multicomponent reactions in water. Chemical Communications, 2006, , 541-543.	4.1	47
84	Osmotic stress is accompanied by protein glycation in <i>Arabidopsis thaliana</i> . Journal of Experimental Botany, 2016, 67, 6283-6295.	4.8	47
85	A New Route to Protected Acyloins and Their Enzymatic Resolution with Lipases. European Journal of Organic Chemistry, 2004, 2004, 1063-1074.	2.4	46
86	<i>Arabidopsis thaliana</i> isoprenyl diphosphate synthases produce the C ₂₅ intermediate geranylfarnesyl diphosphate. Plant Journal, 2015, 84, 847-859.	5.7	46
87	Integrated comparative metabolite profiling via MS and NMR techniques for Senna drug quality control analysis. Analytical and Bioanalytical Chemistry, 2015, 407, 1937-1949.	3.7	46
88	Variation in Ceratonia siliqua pod metabolome in context of its different geographical origin, ripening stage and roasting process. Food Chemistry, 2019, 283, 675-687.	8.2	46
89	Stereoselective synthesis of Boc-protected l-seleno- and tellurolanthionine, l-seleno- and tellurocystine and derivatives. Tetrahedron Letters, 2006, 47, 1019-1021.	1.4	45
90	NMR, GC–MS and ESIâ€FTICRâ€MS Profiling of Fatty Acids and Triacylglycerols in Some Botswana Seed Oils. JAOCS, Journal of the American Oil Chemists' Society, 2008, 85, 1021-1032.	1.9	45

#	Article	IF	CITATIONS
91	Acetylcholinesterase inhibitors from the toadstool Cortinarius infractus. Bioorganic and Medicinal Chemistry, 2010, 18, 2173-2177.	3.0	45
92	The Bladder Tumor Suppressor Protein TERE1 (UBIAD1)Modulates Cell Cholesterol: Implications for Tumor Progression. DNA and Cell Biology, 2011, 30, 851-864.	1.9	44
93	Global proteomic analysis of advanced glycation end products in the Arabidopsis proteome provides evidence for age-related glycation hot spots. Journal of Biological Chemistry, 2017, 292, 15758-15776.	3.4	44
94	A Multicomponent Stapling Approach to Exocyclic Functionalized Helical Peptides: Adding Lipids, Sugars, PEGs, Labels, and Handles to the Lactam Bridge. Bioconjugate Chemistry, 2019, 30, 253-259.	3.6	44
95	Fast and efficient microwave-assisted synthesis of functionalized peptoids via Ugi reactions. Organic and Biomolecular Chemistry, 2011, 9, 5024.	2.8	43
96	A Multiple Multicomponent Approach to Chimeric Peptide–Peptoid Podands . Chemistry - A European Journal, 2013, 19, 6417-6428.	3.3	43
97	Natural products – learning chemistry from plants. Biotechnology Journal, 2014, 9, 326-336.	3.5	43
98	Isolation and anticancer, anthelminthic, and antiviral (HIV) activity of acylphloroglucinols, and regioselective synthesis of empetrifranzinans from Hypericum roeperianum. Bioorganic and Medicinal Chemistry, 2015, 23, 6327-6334.	3.0	43
99	Solution- and Solid-Phase Macrocyclization of Peptides by the Ugi–Smiles Multicomponent Reaction: Synthesis of <i>N</i> -Aryl-Bridged Cyclic Lipopeptides. Organic Letters, 2016, 18, 4096-4099.	4.6	43
100	A Snapshot of the Plant Glycated Proteome. Journal of Biological Chemistry, 2016, 291, 7621-7636.	3.4	43
101	Antimicrobial, Antioxidant, and Cytotoxic Activities of Ocimum forskolei and Teucrium yemense (Lamiaceae) Essential Oils. Medicines (Basel, Switzerland), 2017, 4, 17.	1.4	43
102	Interactions between dietary flavonoids and the gut microbiome: a comprehensive review. British Journal of Nutrition, 2022, 128, 577-591.	2.3	43
103	Benzeneselenenyl Reagents in Organic Synthesis. Journal Für Praktische Chemie, Chemiker-Zeitung, 1998, 340, 189-203.	0.5	42
104	Hygrophorones A–G: fungicidal cyclopentenones from Hygrophorus species (Basidiomycetes). Phytochemistry, 2004, 65, 1061-1071.	2.9	42
105	Profiling of Phytosterols, Tocopherols and Tocotrienols in Selected Seed Oils from Botswana by GC–MS and HPLC. JAOCS, Journal of the American Oil Chemists' Society, 2009, 86, 617-625.	1.9	42
106	Cyclic Peptidomimetics and Pseudopeptides from Multicomponent Reactions. Topics in Heterocyclic Chemistry, 2010, , 199-226.	0.2	42
107	Acetylenic 2-phenylethylamides and new isobutylamides from Acmella oleracea (L.) R. K. Jansen, a Brazilian spice with larvicidal activity on Aedes aegypti. Phytochemistry Letters, 2013, 6, 67-72.	1.2	42
108	Early responses of mature Arabidopsis thaliana plants to reduced water potential in the agar-based polyethylene glycol infusion drought model. Journal of Plant Physiology, 2017, 208, 70-83.	3.5	42

#	Article	IF	CITATIONS
109	Isolation of a New Natural Product and Cytotoxic and Antimicrobial Activities of Extracts from Fungi of Indonesian Marine Habitats. Marine Drugs, 2011, 9, 294-306.	4.6	41
110	Epothilones: Promising Natural Products with Taxol-Like Activity. Angewandte Chemie International Edition in English, 1997, 36, 715-718.	4.4	40
111	Identification of Enterodiol as a Masker for Caffeine Bitterness by Using a Pharmacophore Model Based on Structural Analogues of Homoeriodictyol. Journal of Agricultural and Food Chemistry, 2012, 60, 6303-6311.	5.2	40
112	Oneâ€Pot Assembly of Amino Acid Bridged Hybrid Macromulticyclic Cages through Multiple Multicomponent Macrocyclizations. Angewandte Chemie - International Edition, 2017, 56, 3501-3505.	13.8	40
113	Furoquinolines and dihydrooxazole alkaloids with cytotoxic activity from the stem bark of Araliopsis soyauxii. Fìtoterapìâ, 2019, 133, 193-199.	2.2	40
114	A New Versatile Synthesis of Ringâ€Substituted 2â€Cyclopropylglycines and Related Amino Acids. Chemische Berichte, 1992, 125, 867-882.	0.2	39
115	Breakdown products of neoglucobrassicin inhibit activation of Nrf2 target genes mediated by myrosinase-derived glucoraphanin hydrolysis products. Biological Chemistry, 2010, 391, 1281-93.	2.5	39
116	One-pot synthesis of organophosphate monoesters from alcohols. Tetrahedron Letters, 2013, 54, 1690-1692.	1.4	39
117	Assessment of sensory metabolites distribution in 3 cactus Opuntia ficus-indica fruit cultivars using UV fingerprinting and GC/MS profiling techniques. LWT - Food Science and Technology, 2017, 80, 145-154.	5.2	39
118	Catalytic enantioselective aryl transfer: asymmetric addition of boronic acids to aldehydes using pyrrolidinylmethanols as ligands. Tetrahedron Letters, 2005, 46, 7827-7830.	1.4	38
119	Brunneins A–C, β-Carboline Alkaloids from <i>Cortinarius brunneus</i> . Journal of Natural Products, 2007, 70, 1529-1531.	3.0	38
120	Cm-p5: an antifungal hydrophilic peptide derived from the coastal mollusk <i>Cenchritis muricatus</i> (Gastropoda: Littorinidae). FASEB Journal, 2015, 29, 3315-3325.	0.5	38
121	Unraveling the active hypoglycemic agent trigonelline in Balanites aegyptiaca date fruit using metabolite fingerprinting by NMR. Journal of Pharmaceutical and Biomedical Analysis, 2015, 115, 383-387.	2.8	38
122	The chromium-Reformatsky reaction: anti-selective Evans-type aldol reactions with excellent inverse induction at ambient temperature. Tetrahedron Letters, 1997, 38, 4387-4388.	1.4	37
123	Mutational Studies Confirm the Catalytic Triad in the Human Selenoenzyme Thioredoxin Reductase Predicted by Molecular Modeling. ChemBioChem, 2006, 7, 1649-1652.	2.6	37
124	Metabolite profiling in 18 Saudi date palm fruit cultivars and their antioxidant potential via UPLC-qTOF-MS and multivariate data analyses. Food and Function, 2016, 7, 1077-1086.	4.6	37
125	No Silver Bullet – Canonical Poly(ADP-Ribose) Polymerases (PARPs) Are No Universal Factors of Abiotic and Biotic Stress Resistance of Arabidopsis thaliana. Frontiers in Plant Science, 2017, 08, 59.	3.6	37
126	Introducing the Petasis Reaction for Lateâ€Stage Multicomponent Diversification, Labeling, and Stapling of Peptides. Angewandte Chemie, 2019, 131, 2726-2730.	2.0	37

#	Article	IF	CITATIONS
127	Prenylation of Benzoic Acid Derivatives Catalyzed by a Transferase fromEscherichia coli Overproduction: Method Development and Substrate Specificity. Angewandte Chemie International Edition in English, 1996, 35, 1697-1699.	4.4	36
128	A Proposed Mechanism for the Reductive Ring Opening of the Cyclodiphosphate MEcPP, a Crucial Transformation in the New DXP/MEP Pathway to Isoprenoids Based on Modeling Studies and Feeding Experiments. ChemBioChem, 2004, 5, 311-323.	2.6	36
129	An efficient synthesis of the phytoestrogen 8-prenylnaringenin from xanthohumol by a novel demethylation process. Tetrahedron, 2006, 62, 6961-6966.	1.9	36
130	RDC-Based Determination of the Relative Configuration of the Fungicidal Cyclopentenone 4,6-Diacetylhygrophorone A ¹² . Journal of Natural Products, 2013, 76, 839-844.	3.0	36
131	Developmental changes in leaf phenolics composition from three artichoke cvs. (Cynara scolymus) as determined via UHPLC–MS and chemometrics. Phytochemistry, 2014, 108, 67-76.	2.9	36
132	Bidirectional macrocyclization of peptides by double multicomponent reactions. Organic and Biomolecular Chemistry, 2015, 13, 438-446.	2.8	36
133	Authentication of saffron spice accessions from its common substitutes via a multiplex approach of UV/VIS fingerprints and UPLC/MS using molecular networking and chemometrics. Food Chemistry, 2022, 367, 130739.	8.2	36
134	Synthesis of Novel Steroid-Peptoid Hybrid Macrocycles by Multiple Multicomponent Macrocyclizations Including Bifunctional Building Blocks (MiBs). Molecules, 2007, 12, 1890-1899.	3.8	35
135	A Biomimetic Approach for Polyfunctional Secocholanes: Tuning Flexibility and Functionality on Peptidic and Macrocyclic Scaffolds Derived from Bile Acids. Journal of Organic Chemistry, 2008, 73, 6229-6238.	3.2	35
136	Flavonoids and a neolignan glucoside from Guarea macrophylla (Meliaceae). Quimica Nova, 2012, 35, 1123-1126.	0.3	35
137	1,4-Addition of (Diphenylmethylene)amine to Acceptor Substituted Olefins. A Versatile Synthesis of Protected β-Amino Acids, Nitriles, and Ketones. Synthesis, 1989, 1989, 359-363.	2.3	34
138	New C 2 -symmetric chiral disulfide ligands derived from (R)-cysteine. Tetrahedron, 2001, 57, 3291-3295.	1.9	34
139	The facile synthesis of chiral oxazoline catalysts for the diethylzinc addition to aldehydes. Tetrahedron: Asymmetry, 2003, 14, 3291-3295.	1.8	34
140	One-Step Synthesis of Natural Product-Inspired Biaryl Ether-Cyclopeptoid Macrocycles by Double Ugi Multiple-Component Reactions of Bifunctional Building Blocks. European Journal of Organic Chemistry, 2007, 2007, 149-157.	2.4	34
141	(Iso)-Quinoline Alkaloids from Fungal Fruiting Bodies of <i>Cortinarius subtortus</i> . Journal of Natural Products, 2008, 71, 1092-1094.	3.0	34
142	Classification of commercial cultivars of Humulus lupulus L. (hop) by chemometric pixel analysis of two dimensional nuclear magnetic resonance spectra. Metabolomics, 2014, 10, 21-32.	3.0	34
143	Anti-Inflammatory Activity of A Polyphenolic Extract from Arabidopsis thaliana in In Vitro and In Vivo Models of Alzheimer's Disease. International Journal of Molecular Sciences, 2019, 20, 708.	4.1	34
144	4-Isocyanopermethylbutane-1,1,3-triol (IPB): a convertible isonitrile for multicomponent reactions. Tetrahedron Letters, 2012, 53, 5360-5363.	1.4	33

#	Article	IF	CITATIONS
145	Chemical composition and biological activity of essential oil from Pulicaria undulata from Yemen. Natural Product Communications, 2012, 7, 257-60.	0.5	33
146	Antifungal rosane diterpenes and other constituents of Hugonia castaneifolia. Phytochemistry, 2008, 69, 200-205.	2.9	32
147	Chilenopeptins A and B, Peptaibols from the Chilean <i>Sepedonium</i> aff. <i>chalcipori</i> KSH 883. Journal of Natural Products, 2016, 79, 929-938.	3.0	32
148	Droplet-Assisted Microfluidic Fabrication and Characterization of Multifunctional Polysaccharide Microgels Formed by Multicomponent Reactions. Polymers, 2018, 10, 1055.	4.5	32
149	First Generation Cysteine- and Methionine-Derived Oxazolidine and Thiazolidine Ligands for Palladium-Catalyzed Asymmetric Allylations. European Journal of Organic Chemistry, 2004, 2004, 2715-2722.	2.4	31
150	Synthesis of Selenocysteine and Its Derivatives with an Emphasis on Selenenylsulfide (SeS) Formation. Chemistry and Biodiversity, 2008, 5, 375-388.	2.1	31
151	Ceanothane and Lupane Type Triterpenes from <i>Zizyphus joazeiro</i> – An Anti-Staphylococcal Evaluation. Planta Medica, 2010, 76, 47-52.	1.3	31
152	Chemoinformatic Analysis of Biologically Active Macrocycles. Current Topics in Medicinal Chemistry, 2010, 10, 1361-1379.	2.1	31
153	Gas Chromatography/Mass Spectrometry-Based Metabolite Profiling of Nutrients and Antinutrients in Eight <i>Lens</i> and <i>Lupinus</i> Seeds (Fabaceae). Journal of Agricultural and Food Chemistry, 2018, 66, 4267-4280.	5.2	31
154	Metabolites profiling of Ziziphus leaf taxa via UHPLC/PDA/ESI-MS in relation to their biological activities. Food Chemistry, 2019, 293, 233-246.	8.2	31
155	Cyclopropyl building blocks for organic synthesis. Part 22. Facile synthesis of stable analogs of 2-oxocyclobutanecarboxylates: 2-[(diphenylmethylene)amino]cyclobutenecarboxylates, derivatives and reactions. Journal of Organic Chemistry, 1993, 58, 6442-6450.	3.2	30
156	Microwave-accelerated asymmetric allylations using cysteine derived oxazolidine and thiazolidine palladium complexes. Journal of Molecular Catalysis A, 2005, 239, 235-238.	4.8	30
157	Characterization of Constituents and Anthelmintic Properties of Hagenia abyssinica. Scientia Pharmaceutica, 2012, 80, 433-446.	2.0	30
158	In Situ Formation of Allyl Ketones via Hiyamaâ^'Nozaki Reactions Followed by a Chromium-Mediated Oppenauer Oxidation. Journal of Organic Chemistry, 2002, 67, 1975-1981.	3.2	29
159	Improved Mutasynthetic Approaches for the Production of Modified Aminocoumarin Antibiotics. Chemistry and Biology, 2007, 14, 955-967.	6.0	29
160	Fast and efficient MCR-based synthesis of clickable rhodamine tags for protein profiling. Organic and Biomolecular Chemistry, 2012, 10, 958-965.	2.8	29
161	Phytochemical and allelopathic studies of Terminalia catappa L.Â(Combretaceae). Biochemical Systematics and Ecology, 2012, 41, 119-125.	1.3	29
162	Consecutive isocyanide-based multicomponent reactions: synthesis of cyclic pentadepsipeptoids. Beilstein Journal of Organic Chemistry, 2014, 10, 1017-1022.	2.2	29

#	Article	IF	CITATIONS
163	Expeditious Entry to Functionalized Pseudo-peptidic Organoselenide Redox Modulators via Sequential Ugi/SN Methodology. Anti-Cancer Agents in Medicinal Chemistry, 2016, 16, 621-632.	1.7	29
164	A Multicomponent Conjugation Strategy to Unique <i>Nâ€</i> Steroidal Peptides: First Evidence of the Steroidal Nucleus as a l²â€Turn Inducer in Acyclic Peptides. Chemistry - A European Journal, 2014, 20, 13150-13161.	3.3	28
165	Validation of the Antioxidant and Enzyme Inhibitory Potential of Selected Triterpenes Using In Vitro and In Silico Studies, and the Evaluation of Their ADMET Properties. Molecules, 2021, 26, 6331.	3.8	28
166	Synthesis and resolution of a key building block for epothilones: a comparison of asymmetric synthesis, chemical and enzymatic resolution. Tetrahedron: Asymmetry, 2004, 15, 2861-2869.	1.8	27
167	Quinolone alkaloids from Waltheria douradinha. Phytochemistry, 2008, 69, 994-999.	2.9	27
168	Anti-fungal flavonoids from Tibouchina grandifolia. Biochemical Systematics and Ecology, 2009, 37, 63-65.	1.3	27
169	Total Synthesis of Epothilone D: The Nerol/Macroaldolization Approach. Journal of Organic Chemistry, 2013, 78, 10588-10595.	3.2	27
170	Hierarchical cluster analysis and chemical characterisation of <i>Myrtus communis</i> L. essential oil from Yemen region and its antimicrobial, antioxidant and anti-colorectal adenocarcinoma properties. Natural Product Research, 2017, 31, 2158-2163.	1.8	27
171	Discovery of key regulators of dark gland development and hypericin biosynthesis in St. John's Wort (<i>Hypericum perforatum</i>). Plant Biotechnology Journal, 2019, 17, 2299-2312.	8.3	27
172	Cation–̀ and π–π stacking interactions allow selective inhibition of butyrylcholinesterase by modified quinine and cinchonidine alkaloids. Biochemical and Biophysical Research Communications, 2011, 404, 935-940.	2.1	26
173	Interactions of polysulfanes with components of red blood cells. MedChemComm, 2011, 2, 196.	3.4	26
174	Carbohydrate–steroid conjugation by Ugi reaction: one-pot synthesis of triple sugar/pseudo-peptide/spirostane hybrids. Carbohydrate Research, 2012, 359, 102-110.	2.3	26
175	Peptide Macrocyclization Assisted by Traceless Turn Inducers Derived from Ugi Peptide Ligation with Cleavable and Resin-Linked Amines. Organic Letters, 2017, 19, 4022-4025.	4.6	26
176	Modeling the E. coli 4-hydroxybenzoic acid oligoprenyltransferase (ubiA transferase) and characterization of potential active sites. Journal of Molecular Modeling, 2004, 10, 317-327.	1.8	25
177	Systematic conformational investigations of peptoids and peptoid–peptide chimeras. Biopolymers, 2011, 96, 651-668.	2.4	25
178	Metabolomics reveals biotic and abiotic elicitor effects on the soft coral Sarcophyton ehrenbergi terpenoid content. Scientific Reports, 2017, 7, 648.	3.3	25
179	A multicomponent macrocyclization strategy to natural product-like cyclic lipopeptides: synthesis and anticancer evaluation of surfactin and mycosubtilin analogues. Organic and Biomolecular Chemistry, 2017, 15, 3628-3637.	2.8	25
180	Individual effects of different selenocompounds on the hepatic proteome and energy metabolism of mice. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3323-3334.	2.4	25

#	Article	IF	CITATIONS
181	Comparative Metabolomics Approach Detects Stress-Specific Responses during Coral Bleaching in Soft Corals. Journal of Proteome Research, 2018, 17, 2060-2071.	3.7	25
182	Drug Delivery System for Emodin Based on Mesoporous Silica SBA-15. Nanomaterials, 2018, 8, 322.	4.1	25
183	NFDI4Chem - Towards a National Research Data Infrastructure for Chemistry in Germany. Research Ideas and Outcomes, 0, 6, .	1.0	25
184	Highly Substituted Tetrahydropyrones from Hetero-Dielsâ^'Alder Reactions of 2-Alkenals with Stereochemical Induction from Chiral Dienes. Journal of Organic Chemistry, 2005, 70, 2820-2823.	3.2	24
185	Non-volatile floral oils of Diascia spp. (Scrophulariaceae). Phytochemistry, 2008, 69, 1372-1383.	2.9	24
186	Cytotoxic Effects of Sarcophyton sp. Soft Corals—Is There a Correlation to Their NMR Fingerprints?. Marine Drugs, 2017, 15, 211.	4.6	24
187	Dissecting coffee seeds metabolome in context of genotype, roasting degree, and blending in the Middle East using NMR and GC/MS techniques. Food Chemistry, 2022, 373, 131452.	8.2	24
188	The First Total Syntheses of Taxol. Angewandte Chemie International Edition in English, 1994, 33, 959-961.	4.4	23
189	A New Type of Floral Oil fromMalpighia coccigera (Malpighiaceae) and Chemical Considerations on the Evolution of Oil Flowers. Chemistry and Biodiversity, 2004, 1, 1519-1528.	2.1	23
190	Microwave-Mediated Palladium-Catalyzed Asymmetric Allylic Alkylation Using Chiral -Seleno Amides. European Journal of Organic Chemistry, 2006, 2006, 4993-4997.	2.4	23
191	Synthesis of antibacterial 1,3-diyne-linked peptoids from an Ugi-4CR/Glaser coupling approach. Beilstein Journal of Organic Chemistry, 2015, 11, 25-30.	2.2	23
192	Lemairones A and B: Two new antibacterial tetraflavonoids from the leaves of Zanthoxylum lemairei (Rutaceae). Phytochemistry Letters, 2015, 14, 1-7.	1.2	23
193	Memory enhancement by ferulic acid ester across species. Science Advances, 2018, 4, eaat6994.	10.3	23
194	How Does LC/MS Compare to UV in Coffee Authentication and Determination of Antioxidant Effects? Brazilian and Middle Eastern Coffee as Case Studies. Antioxidants, 2022, 11, 131.	5.1	23
195	Epothilone: vielversprechende Naturstoffe mit Taxolâ€Ã¤nlicher Aktivitä Angewandte Chemie, 1997, 109, 738-742.	2.0	22
196	A chiral disulfide derived from (R)-cysteine in the enantioselective addition of diethylzinc to aldehydes: loading effect and asymmetric amplification. Journal of Molecular Catalysis A, 2005, 229, 47-50.	4.8	22
197	PdII/IV catalyzed oxidative cyclization of 1,6-enynes derived by Ugi-4-component reaction. Tetrahedron Letters, 2011, 52, 6295-6297.	1.4	22
198	Furanocoumarins from Dorstenia foetida. Phytochemistry, 2011, 72, 929-934.	2.9	22

#	Article	IF	CITATIONS
199	Cyclopeptide alkaloids of Discaria febrifuga (Rhamnaceae). Phytochemistry, 1995, 39, 431-434.	2.9	21
200	(E)-4-Hydroxy-3-methylbut-2-enyl Diphosphate: An Intermediate in the Formation of Terpenoids in Plant Chromoplasts. Angewandte Chemie - International Edition, 2002, 41, 2604-2607.	13.8	21
201	Enantioselective reduction of prochiral ketones by chromium(II) amino acid complexes. Tetrahedron: Asymmetry, 2004, 15, 1735-1744.	1.8	21
202	Topical anti-inflammatory activity of quillaic acid from <i>Quillaja saponaria</i> Mol. and some derivatives. Journal of Pharmacy and Pharmacology, 2011, 63, 718-724.	2.4	21
203	Rare biscoumarin derivatives and flavonoids from Hypericum riparium. Phytochemistry, 2014, 105, 171-177.	2.9	21
204	Structure and Absolute Configuration of Pseudohygrophorones A ¹² and B ¹² , Alkyl Cyclohexenone Derivatives from <i>Hygrophorus abieticola </i> (Basidiomycetes). Journal of Natural Products, 2016, 79, 74-80.	3.0	21
205	Identification of Phenolic Compounds from Hancornia speciosa (Apocynaceae) Leaves by UHPLC Orbitrap-HRMS. Molecules, 2017, 22, 143.	3.8	21
206	Straightforward Method for the Synthesis of Selenocysteine and Selenocystine Derivatives from I-Serine Methyl Ester. Synthesis, 2010, 2010, 3131-3137.	2.3	20
207	Cytotoxic effect of commercial Humulus lupulus L. (hop) preparations – In comparison to its metabolomic fingerprint. Journal of Advanced Research, 2013, 4, 417-421.	9.5	20
208	Multiple readout assay for hormonal (androgenic and antiandrogenic) and cytotoxic activity of plant and fungal extracts based on differential prostate cancer cell line behavior. Journal of Ethnopharmacology, 2014, 155, 721-730.	4.1	20
209	Tricyclic Acylphloroglucinols from <i>Hypericum lanceolatum</i> and Regioselective Synthesis of Selancins A and B. Journal of Natural Products, 2016, 79, 743-753.	3.0	20
210	Modulation of MHC class I surface expression in B16F10 melanoma cells by methylseleninic acid. Oncolmmunology, 2017, 6, e1259049.	4.6	20
211	Excellent Aldehyde and Ketone Selectivity in Chromium(II)-Mediated Reformatsky Reactions. Synlett, 1997, 1997, 731-733.	1.8	19
212	Cyclopeptide alkaloids of Scutia buxifolia. Phytochemistry, 1998, 47, 125-129.	2.9	19
213	New Scavenger Resin for the Reversible Linking and Monoprotection of Functionalized Aromatic Aldehydes. Organic Letters, 2004, 6, 3921-3924.	4.6	19
214	Kopetdaghins Aâ^'E, Sesquiterpene Derivatives from the Aerial Parts and the Roots of <i>Dorema kopetdaghense</i> . Journal of Natural Products, 2007, 70, 1240-1243.	3.0	19
215	Neuroprotection and enhanced neurogenesis by extract from the tropical plant Knema laurina after inflammatory damage in living brain tissue. Journal of Neuroimmunology, 2009, 206, 91-99.	2.3	19
216	Palladium and copper catalyzed cyclizations of hydrazine derived Ugi products: facile synthesis of substituted indazolones and hydroxytriazafluorendiones. Tetrahedron Letters, 2012, 53, 2298-2301.	1.4	19

#	Article	IF	CITATIONS
217	Profiling the chemical content of <i>Ficus lyrata</i> extracts <i>via</i> UPLC-PDA-qTOF-MS and chemometrics. Natural Product Research, 2014, 28, 1549-1556.	1.8	19
218	Isolation and Asymmetric Total Synthesis of Fungal Secondary Metabolite Hygrophorone B ¹² . European Journal of Organic Chemistry, 2015, 2015, 2357-2365.	2.4	19
219	Applications of Convertible Isonitriles in the Ligation and Macrocyclization of Multicomponent Reaction-Derived Peptides and Depsipeptides. Journal of Organic Chemistry, 2016, 81, 6535-6545.	3.2	19
220	Evaluation of plant sources for antiinfective lead compound discovery by correlating phylogenetic, spatial, and bioactivity data. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12444-12451.	7.1	19
221	Nutrient and Sensory Metabolites Profiling of Averrhoa Carambola L. (Starfruit) in the Context of Its Origin and Ripening Stage by GC/MS and Chemometric Analysis. Molecules, 2020, 25, 2423.	3.8	19
222	Influence of pH and flanking serine on the redox potential of S-S and S-Se bridges of Cys-Cys and Cys-Cys and Cys-Sec peptides. Biological Chemistry, 2007, 388, 1099-1101.	2.5	18
223	Reaction of secondary and tertiary aliphatic halides with aromatic aldehydes mediated by chromium(II): a selective cross-coupling of alkyl and ketyl radicals. Tetrahedron, 2008, 64, 2134-2142.	1.9	18
224	Antioomycete Activity of γ-Oxocrotonate Fatty Acids against <i>P. infestans</i> . Journal of Agricultural and Food Chemistry, 2009, 57, 9607-9612.	5.2	18
225	Direct synthesis of sensitive selenocysteine peptides by the Ugi reaction. Organic and Biomolecular Chemistry, 2012, 10, 9330.	2.8	18
226	Ericoside, a new antibacterial biflavonoid from Erica mannii (Ericaceae). Fìtoterapìâ, 2016, 109, 206-211.	2.2	18
227	Die ersten Totalsynthesen von Taxol. Angewandte Chemie, 1994, 106, 1011-1013.	2.0	17
228	Unusual Bioactive 4-Oxo-2-alkenoic Fatty Acids from Hygrophorus eburneus. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2005, 60, 25-32.	0.7	17
229	Synthesis of N-(β-d-glucopyranosyl) monoamides of dicarboxylic acids as potential inhibitors of glycogen phosphorylase. Carbohydrate Research, 2006, 341, 947-956.	2.3	17
230	Analysis of fungal cyclopentenone derivatives fromHygrophorus spp. by liquid chromatography/electrospray-tandem mass spectrometry. Journal of Mass Spectrometry, 2006, 41, 361-371.	1.6	17
231	<i>N</i> â€Glucosylâ€1 <i>H</i> â€indole Derivatives from <i>Cortinarius brunneus</i> (Basidiomycetes). Chemistry and Biodiversity, 2008, 5, 664-669.	2.1	17
232	Nuclear Magnetic Resonance Metabolomics Approach for the Analysis of Major Legume Sprouts Coupled to Chemometrics. Molecules, 2021, 26, 761.	3.8	17
233	Loss of epithelium-specific CPx2 results in aberrant cell fate decisions during intestinal differentiation. Oncotarget, 2018, 9, 539-552.	1.8	17
234	Diallylpolysulfides induce growth arrest and apoptosis. International Journal of Oncology, 2010, 36, 743-9.	3.3	16

#	Article	IF	CITATIONS
235	Boron-Zinc Exchange in The Diastereoselective Arylation of Sugar-Based AldehydesÂ : Stereoselective Synthesis of (+)-7-epi-Goniofufurone and Analogues. Synthesis, 2013, 45, 2222-2233.	2.3	16
236	Isolation and Total Synthesis of AlbuÂpeptins A–D: 11â€Residue Peptaibols from the Fungus <i>Gliocladium album</i> . European Journal of Organic Chemistry, 2015, 2015, 7449-7459.	2.4	16
237	Prenylated phenyl polyketides and acylphloroglucinols from Hypericum peplidifolium. Phytochemistry, 2016, 124, 108-113.	2.9	16
238	Leaf litter diversity positively affects the decomposition of plant polyphenols. Plant and Soil, 2017, 419, 305-317.	3.7	16
239	Stabilization of Cyclic β-Hairpins by Ugi-Reaction-Derived <i>N</i> -Alkylated Peptides: The Quest for Functionalized β-Turns. Organic Letters, 2019, 21, 7307-7310.	4.6	16
240	Influence of Pickling Process on Allium cepa and Citrus limon Metabolome as Determined via Mass Spectrometry-Based Metabolomics. Molecules, 2019, 24, 928.	3.8	16
241	Downy mildew resistance is genetically mediated by prophylactic production of phenylpropanoids in hop. Plant, Cell and Environment, 2021, 44, 323-338.	5.7	16
242	On-resin multicomponent protocols for biopolymer assembly and derivatization. Nature Protocols, 2021, 16, 561-578.	12.0	16
243	The pinene path to taxol: Readily accessible a-ring building blocks based on novel alkyl- and alkenyllithium reagents with internal carbonyl groups. Tetrahedron Letters, 1995, 36, 7181-7184.	1.4	15
244	Comparison of impurity profiles of Orlistat pharmaceutical products using HPLC tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2010, 53, 767-772.	2.8	15
245	Synthesis of (â^')-julocrotine and a diversity oriented Ugi-approach to analogues and probes. Beilstein Journal of Organic Chemistry, 2011, 7, 1504-1507.	2.2	15
246	Chemical Composition and Biological Activity of Essential Oil from <i>Pulicaria undulata</i> from Yemen. Natural Product Communications, 2012, 7, 1934578X1200700.	0.5	15
247	Screening of synthetic and natural product databases: Identification of novel androgens and antiandrogens. European Journal of Medicinal Chemistry, 2015, 90, 267-279.	5.5	15
248	Passerini Reactions on Biocatalytically Derived Chiral Azetidines. Molecules, 2016, 21, 1153.	3.8	15
249	Sensory Metabolite Profiling in a Date Pit Based Coffee Substitute and in Response to Roasting as Analyzed via Mass Spectrometry Based Metabolomics. Molecules, 2019, 24, 3377.	3.8	15
250	Fluorescent spherical mesoporous silica nanoparticles loaded with emodin: Synthesis, cellular uptake and anticancer activity. Materials Science and Engineering C, 2021, 119, 111619.	7.3	15
251	In Vitro Evaluation of Antiproliferative Properties of Novel Organotin(IV) Carboxylate Compounds with Propanoic Acid Derivatives on a Panel of Human Cancer Cell Lines. Molecules, 2021, 26, 3199.	3.8	15
252	Metabolic and biotransformation effects on dietary glucosinolates, their bioavailability, catabolism and biological effects in different organisms. Biotechnology Advances, 2022, 54, 107784.	11.7	15

#	Article	IF	CITATIONS
253	Mining seed proteome: from protein dynamics to modification profiles. Biological Communications, 2018, 63, 43-58.	0.8	15
254	Natural Product Inspired meta/para'-Biaryl Ether Lactam Macrocycles by Double Ugi Multicomponent Reactions. Heterocycles, 2007, 73, 863.	0.7	15
255	Metabolomics-Based Approach for Coffee Beverage Improvement in the Context of Processing, Brewing Methods, and Quality Attributes. Foods, 2022, 11, 864.	4.3	15
256	Involvement of an Oxidation-Reduction Equilibrium in Chromium-Mediated Enantioselective Nozaki–Hiyama Reactions. Advanced Synthesis and Catalysis, 2004, 346, 731-736.	4.3	14
257	Takai–Utimoto reactions of oxoalkylhalides catalytic in chromium and cobalt. Tetrahedron Letters, 2007, 48, 4323-4325.	1.4	14
258	Composition of Essential Oil from <i>Tagetes minuta</i> and its Cytotoxic, Antioxidant and Antimicrobial Activities. Natural Product Communications, 2014, 9, 1934578X1400900.	0.5	14
259	Unequivocal glycyrrhizin isomer determination and comparative in vitro bioactivities of root extracts in four Glycyrrhiza species. Journal of Advanced Research, 2015, 6, 99-104.	9.5	14
260	The hop-derived prenylflavonoid isoxanthohumol inhibits the formation of lung metastasis in B16-F10 murine melanoma model. Food and Chemical Toxicology, 2019, 129, 257-268.	3.6	14
261	Chlorambucil Conjugated Ugi Dendrimers with PAMAM-NH2 Core and Evaluation of Their Anticancer Activity. Pharmaceutics, 2019, 11, 59.	4.5	14
262	The Chromium Reformatsky Reaction: Acces to Adjacent Quarternary Centers. Synthesis, 1997, 1997, 512-514.	2.3	13
263	Determination of <i>β</i> â€carboline alkaloids in fruiting bodies of <i>Hygrophorus</i> spp. by liquid chromatography/electrospray ionisation tandem mass spectrometry. Phytochemical Analysis, 2008, 19, 335-341.	2.4	13
264	1- <i>O</i> -Substituted derivatives of murrayafoline A and their antifungal properties. Natural Product Research, 2008, 22, 950-954.	1.8	13
265	The multicomponent approach to <i>N</i> -methyl peptides: total synthesis of antibacterial (–)-viridic acid and analogues. Beilstein Journal of Organic Chemistry, 2012, 8, 2085-2090.	2.2	13
266	Comparative metabolome-based classification of Senna drugs: a prospect for phyto-equivalency of its different commercial products. Metabolomics, 2019, 15, 80.	3.0	13
267	Synthesis, characterization and in vitro biological evaluation of novel organotin(IV) compounds with derivatives of 2-(5-arylidene-2,4-dioxothiazolidin-3-yl)propanoic acid. Journal of Inorganic Biochemistry, 2020, 211, 111207.	3.5	13
268	Apoptosis Caused by Triterpenes and Phytosterols and Antioxidant Activity of an Enriched Flavonoid Extract from Passiflora mucronata. Anti-Cancer Agents in Medicinal Chemistry, 2019, 18, 1405-1416.	1.7	13
269	New short syntheses of isoquinoline-4-carboxylic acid and 2-aza-3,3a-dihydroazulene-3a-carboxylic acid derivatives. Journal of the Chemical Society Chemical Communications, 1990, , 574-576.	2.0	12
270	Rapid Combinatorial Access to Macrocyclic Ansapeptoids and Ansapeptides with Natural-Product-like Core Structures. Synthesis, 2006, 2006, 3997-4004.	2.3	12

#	Article	IF	CITATIONS
271	The application of chiral, non-racemic N-alkylephedrine and N,N-dialkylnorephedrine as ligands for the enantioselective aryl transfer reaction to aldehydes. Journal of Molecular Catalysis A, 2007, 261, 120-124.	4.8	12
272	Virtual screening for plant PARP inhibitors – what can be learned from human PARP inhibitors?. Journal of Cheminformatics, 2012, 4, .	6.1	12
273	Synthesis of substituted imidazolines by an Ugi/Staudinger/aza-Wittig sequence. Tetrahedron Letters, 2015, 56, 1025-1029.	1.4	12
274	A Peptide Backbone Stapling Strategy Enabled by the Multicomponent Incorporation of Amide Nâ€5ubstituents. Chemistry - A European Journal, 2019, 25, 769-774.	3.3	12
275	Anthelmintic and antimicrobial activities of three new depsides and ten known depsides and phenols from Indonesian lichen: <i>Parmelia cetrata</i> Ach Natural Product Research, 2021, 35, 5001-5010.	1.8	12
276	Synthesis of Lactam-Bridged and Lipidated Cyclo-Peptides as Promising Anti-Phytopathogenic Agents. Molecules, 2020, 25, 811.	3.8	12
277	UPLC-MS Metabolome-Based Seed Classification of 16 Vicia Species: A Prospect for Phyto-Equivalency and Chemotaxonomy of Different Accessions. Journal of Agricultural and Food Chemistry, 2021, 69, 5252-5266.	5.2	12
278	A New Cysteine-Derived Ligand as Catalyst for the Addition of Diethylzinc to Aldehydes: The Importance of a †Free' Sulfide Site for Enantioselectivity. Synthesis, 2005, 2005, 588-594.	2.3	11
279	A Stable, Convertible Isonitrile as a Formic Acid Carbanion [-COOH] Equivalent and Its Application in Multicomponent Reactions. Synlett, 2007, 2007, 3188-3192.	1.8	11
280	The Chromium(II)-Mediated Coupling of Secondary Alkylhalides with Aromatic Aldehydes. Synlett, 2007, 2007, 2139-2141.	1.8	11
281	Anticholinesterase activity of endemic plant extracts from Soqotra. Tropical Journal of Obstetrics and Gynaecology, 2011, 8, 296-9.	0.3	11
282	A Whole-Plant Microtiter Plate Assay for Drought Stress Tolerance-Inducing Effects. Journal of Plant Growth Regulation, 2011, 30, 504-511.	5.1	11
283	Compositional and Structural Studies of the Major and Minor Components in Three Cameroonian Seed Oils by GC–MS, ESIâ€FTICRâ€MS and HPLC. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 1539-1549.	1.9	11
284	Rats' urinary metabolomes reveal the potential roles of functional foods and exercise in obesity management. Food and Function, 2017, 8, 985-996.	4.6	11
285	Oneâ€Pot Assembly of Amino Acid Bridged Hybrid Macromulticyclic Cages through Multiple Multicomponent Macrocyclizations. Angewandte Chemie, 2017, 129, 3555-3559.	2.0	11
286	A Distinct Aromatic Prenyltransferase Associated with the Futalosine Pathway. ChemistrySelect, 2017, 2, 9319-9325.	1.5	11
287	New compounds of Siolmatra brasiliensis and inhibition of in vitro protein glycation damage. Fìtoterapìâ, 2019, 133, 109-119.	2.2	11
288	Engineered Bacterial Flavinâ€Dependent Monooxygenases for the Regiospecific Hydroxylation of Polycyclic Phenols. ChemBioChem, 2022, 23, .	2.6	11

#	Article	IF	CITATIONS
289	Chromium-mediated aldol and homoaldol reactions on solid support directed towards an iterative polyol strategy. Tetrahedron Letters, 2004, 45, 9073-9078.	1.4	10
290	Aziridine-Modified Amino Alcohols as Efficient Modular Catalysts for Highly Enantioselective Alkenylzinc Additions to Aldehydes. Synlett, 2007, 2007, 0917-0920.	1.8	10
291	Triterpenoids from Gouania ulmifolia. Planta Medica, 2007, 73, 499-501.	1.3	10
292	Antibacterial and antioxidant activities and acute toxicity of Bumelia sartorum Mart., Sapotaceae, a Brazilian medicinal plant. Revista Brasileira De Farmacognosia, 2011, 21, 86-91.	1.4	10
293	Penarines A–F, (nor-)sesquiterpene carboxylic acids from Hygrophorus penarius (Basidiomycetes). Phytochemistry, 2014, 108, 229-233.	2.9	10
294	Metabolite Profiling and Fingerprinting of <i>Suillus</i> Species (Basidiomycetes) by Electrospray Mass Spectrometry. European Journal of Mass Spectrometry, 2014, 20, 85-97.	1.0	10
295	Stereoselective glycoconjugation of steroids with selenocarbohydrates. RSC Advances, 2016, 6, 93905-93914.	3.6	10
296	Structural and stereochemical elucidation of new hygrophorones from Hygrophorus abieticola (Basidiomycetes). Tetrahedron, 2017, 73, 1682-1690.	1.9	10
297	Coenzyme A onjugated Cinnamic Acids – Enzymatic Synthesis of a CoAâ€Ester Library and Application in Biocatalytic Cascades to Vanillin Derivatives. Advanced Synthesis and Catalysis, 2019, 361, 5346-5350.	4.3	10
298	Insights into the Phytochemistry of the Cuban Endemic Medicinal Plant Phyllanthus orbicularis: Fideloside, a Novel Bioactive 8-C-glycosyl 2,3-Dihydroflavonol. Molecules, 2019, 24, 2855.	3.8	10
299	Synthesis of a tubugi-1-toxin conjugate by a modulizable disulfide linker system with a neuropeptide Y analogue showing selectivity for hY1R-overexpressing tumor cells. Beilstein Journal of Organic Chemistry, 2019, 15, 96-105.	2.2	10
300	Multicomponent synthesis of α-acylamino and α-acyloxy amide derivatives of desmycosin and their activity against gram-negative bacteria. Bioorganic and Medicinal Chemistry, 2019, 27, 3237-3247.	3.0	10
301	Dammarane-type triterpenoids from the stem of Ziziphus glaziovii Warm. (Rhamnaceae). Phytochemistry, 2019, 162, 250-259.	2.9	10
302	Predicting the Substrate Scope of the Flavinâ€Đependent Halogenase BrvH. ChemBioChem, 2020, 21, 3282-3288.	2.6	10
303	Unraveling the metabolome composition and its implication for Salvadora persica L. use as dental brush via a multiplex approach of NMR and LC–MS metabolomics. Journal of Pharmaceutical and Biomedical Analysis, 2021, 193, 113727.	2.8	10
304	Squalene and amentoflavone from <i>Antidesma laciniatum</i> . Bulletin of the Chemical Society of Ethiopia, 2006, 20, .	1.1	9
305	Enzymatic C–C-Coupling Prenylation: Bioinformatics – Modelling – Mechanism – Protein-Redesign – Biocatalytic Application. Chimia, 2009, 63, 340.	0.6	9
306	Secondary metabolites from Helichrysum foetidum and their chemotaxonomic significance. Biochemical Systematics and Ecology, 2011, 39, 166-167.	1.3	9

#	Article	IF	CITATIONS
307	Analysis of furanocoumarins from Yemenite <i>Dorstenia</i> species by liquid chromatography/electrospray tandem mass spectrometry. Journal of Mass Spectrometry, 2012, 47, 7-22.	1.6	9
308	Protease-inhibiting, molecular modeling and antimicrobial activities of extracts and constituents from Helichrysum foetidum and Helichrysum mechowianum (compositae). Chemistry Central Journal, 2015, 9, 32.	2.6	9
309	A fluorescence-based bioassay for antibacterials and its application in screening natural product extracts. Journal of Antibiotics, 2015, 68, 734-740.	2.0	9
310	A study on the biosynthesis of hygrophorone B12 in the mushroom Hygrophorus abieticola reveals an unexpected labelling pattern in the cyclopentenone moiety. Phytochemistry, 2015, 118, 174-180.	2.9	9
311	HPTLC-DESI-HRMS-Based Profiling of Anthraquinones in Complex Mixtures—A Proof-of-Concept Study Using Crude Extracts of Chilean Mushrooms. Foods, 2020, 9, 156.	4.3	9
312	Analysis of Unusual Sulfated Constituents and Anti-infective Properties of Two Indonesian Mangroves, Lumnitzera littorea and Lumnitzera racemosa (Combretaceae). Separations, 2021, 8, 82.	2.4	9
313	In Vitro Anticancer Screening and Preliminary Mechanistic Study of A-Ring Substituted Anthraquinone Derivatives. Cells, 2022, 11, 168.	4.1	9
314	Chemical composition, antimicrobial, antiradical and anticholinesterase activity of the essential oil of Pulicaria stephanocarpa from Soqotra. Natural Product Communications, 2012, 7, 113-6.	0.5	9
315	Catalyst-Dependent Selective Synthesis of O/S- and S/S-Acetals from Enol Ethers. Synthetic Communications, 1995, 25, 3155-3162.	2.1	8
316	Lewis Acid Mediated Selective Chalcogenalkylation of Silyl Enol Ethers with [O,S]-Acetals. Synthesis, 1999, 1999, 562-564.	2.3	8
317	Phytoconstituents from the root of Streptocaulon tomentosum and their chemotaxonomical relevance for separation from S. juventas. Biochemical Systematics and Ecology, 2007, 35, 517-524.	1.3	8
318	Photoaffinity-Labeled Peptoids and Depsipeptides by Multicomponent Reactions. Synthesis, 2010, 2010, 2997-3003.	2.3	8
319	Growing and Processing Conditions Lead to Changes in the Carotenoid Profile of Spinach. Journal of Agricultural and Food Chemistry, 2014, 62, 4960-4967.	5.2	8
320	Diazatruxenes from the Condensation Reaction of Indoles with Ninhydrin. Journal of Heterocyclic Chemistry, 2017, 54, 1077-1083.	2.6	8
321	Improved Stability and Tunable Functionalization of Parallel β‣heets via Multicomponent Nâ€Alkylation of the Turn Moiety. Angewandte Chemie - International Edition, 2020, 59, 259-263.	13.8	8
322	PSYCHE—A Valuable Experiment in Plant NMR-Metabolomics. Molecules, 2020, 25, 5125.	3.8	8
323	Characterization of Antibacterial Proanthocyanidins of Dalbergia monetaria, an Amazonian Medicinal Plant, by UHPLC-HRMS/MS. Planta Medica, 2020, 86, 858-866.	1.3	8
324	Prenylierung von Benzoesärederivaten, katalysiert durch eine Transferase aus <i>Escherichiaâ€coli</i> â€Ãœberproduzenten: Verfahrensentwicklung und Substratspezifitä Angewandte Chemie, 1996, 108, 1821-1823.	2.0	7

#	Article	IF	CITATIONS
325	Epothilone D affects cell cycle and microtubular pattern in plant cells. Journal of Experimental Botany, 2005, 56, 2131-2137.	4.8	7
326	Amino Alcohols in Organocatalysed Acylation and Deacylation: The Effect of Dialkylamino Substituents on the Rate. Advanced Synthesis and Catalysis, 2008, 350, 107-112.	4.3	7
327	Alkaloids from the Mushroom <i>Pseudobaeospora pyrifera</i> , Pyriferines Aâ^'C. Journal of Natural Products, 2008, 71, 1620-1622.	3.0	7
328	Analysis of cytokinin nucleotides by capillary zone electrophoresis with diode array and mass spectrometric detection in a recombinant enzyme in vitro reaction. Analytica Chimica Acta, 2012, 751, 176-181.	5.4	7
329	Chemical Composition, Antimicrobial, Antioxidant and Cytotoxic Activity of Essential Oils of <i>Plectranthus cylindraceus</i> and <i>Meriandra benghalensis</i> from Yemen. Natural Product Communications, 2012, 7, 1934578X1200700.	0.5	7
330	Solid-phase synthesis of reduced selenocysteine tetrapeptides and their oxidized analogs containing selenenylsulfide eight-membered rings. Molecular Diversity, 2013, 17, 537-545.	3.9	7
331	An efficient method for the preparation of silyl esters of diphosphoric, phosphoric, and phosphorous acid. Polyhedron, 2014, 70, 133-137.	2.2	7
332	Methionine and seleno-methionine type peptide and peptoid building blocks synthesized by five-component five-center reactions. Chemical Communications, 2017, 53, 3777-3780.	4.1	7
333	Effect of Oxylipins, Terpenoid Precursors and Wounding on Soft Corals' Secondary Metabolism as Analyzed via UPLC/MS and Chemometrics. Molecules, 2017, 22, 2195.	3.8	7
334	Salicylic acid and its derivatives elicit the production of diterpenes and sterols in corals and their algal symbionts: a metabolomics approach to elicitor SAR. Metabolomics, 2018, 14, 127.	3.0	7
335	Nor-guanacastepene pigments from the Chilean mushroom Cortinarius pyromyxa. Phytochemistry, 2019, 165, 112048.	2.9	7
336	The synthetic tubulysin derivative, tubugi-1, improves the innate immune response by macrophage polarization in addition to its direct cytotoxic effects in a murine melanoma model. Experimental Cell Research, 2019, 380, 159-170.	2.6	7
337	The Genus Lagochilus (Lamiaceae): A Review of Its Diversity, Ethnobotany, Phytochemistry, and Pharmacology. Plants, 2021, 10, 132.	3.5	7
338	Synthesis, inhibitory and activation properties of prenyldiphosphate mimics for aromatic prenylations with ubiA-prenyl transferase. Arkivoc, 2004, 2004, 79-96.	0.5	7
339	Synthetic Access to Epothilones-Natural Products with Extraordinary Anticancer Activity. , 0, , 251-267.		6
340	A new cardenolide from the roots of Streptocaulon tomentosum. Fìtoterapìâ, 2004, 75, 779-781.	2.2	6
341	Chemical Composition, Antimicrobial, Antiradical and Anticholinesterase activity of the Essential Oil of Pulicaria stephanocarpa from Soqotra. Natural Product Communications, 2012, 7, 1934578X1200700.	0.5	6
342	Reconstitution of Vanadium Haloperoxidase's Catalytic Activity by Boric Acid—Towards a Potential Biocatalytic Role of Boron. Chemistry - A European Journal, 2017, 23, 4973-4980.	3.3	6

#	Article	IF	CITATIONS
343	Altered protein expression pattern in colon tissue of mice upon supplementation with distinct selenium compounds. Proteomics, 2017, 17, 1600486.	2.2	6
344	Mesoporous silica nanoparticles SBA-15 loaded with emodin upregulate the antioxidative defense of Euproctis chrysorrhoea (L.) larvae. Turkish Journal of Biology, 2017, 41, 935-942.	0.8	6
345	Insights into the secondary structures of lactam <i>N</i> -substituted stapled peptides. Organic and Biomolecular Chemistry, 2020, 18, 3838-3842.	2.8	6
346	Penicillin G Amidase-Catalysed Hydrolysis of Phenylacetic Hydrazides on a Solid Phase: A New Route to Enzyme-Cleavable Linkers. Advanced Synthesis and Catalysis, 2005, 347, 963-966.	4.3	5
347	One-Pot Multicomponent Synthesis of N-Substituted Tryptophan-Derived Diketopiperazines. Synthesis, 2008, 2077-2082.	2.3	5
348	Negative ion tandem mass spectrometry of prenylated fungal metabolites and their derivatives. Analytical and Bioanalytical Chemistry, 2013, 405, 177-189.	3.7	5
349	Synthesis of αâ€alkenylâ€Î²â€hydroxy adducts by αâ€addition of unprotected 4â€bromocrotonic acid and amide with aldehydes and ketones by chromium(II)â€mediated reactions. Applied Organometallic Chemistry, 2016, 30, 674-679.	2S 3.5	5
350	Total Synthesis of Cordyheptapeptide A. Synlett, 2017, 28, 1971-1974.	1.8	5
351	Iridoids and volatile pheromones of Tapinoma darioi ants: chemical differences to the closely related species Tapinoma magnum. Chemoecology, 2019, 29, 51-60.	1.1	5
352	NMR Metabolome-Based Classification of Cymbopogon Species: a Prospect for Phyto-equivalency of its Different Accessions Using Chemometric Tools. Food Analytical Methods, 2022, 15, 2095-2106.	2.6	5
353	Bioactive Phenolic Compounds from Peperomia obtusifolia. Molecules, 2022, 27, 4363.	3.8	5
354	Title is missing!. Angewandte Chemie, 2002, 114, 2716-2719.	2.0	4
355	Ampullosine, a new Isoquinoline Alkaloid from <i>Sepedonium ampullosporum</i> (Ascomycetes). Natural Product Communications, 2010, 5, 1934578X1000500.	0.5	4
356	Chemical constituents of Psorospermum densipunctatum (Hypericaceae). Biochemical Systematics and Ecology, 2015, 59, 174-176.	1.3	4
357	Tulasporins A–D, 19-Residue Peptaibols from the Mycoparasitic Fungus Sepedonium tulasneanum. Natural Product Communications, 2016, 11, 1934578X1601101.	0.5	4
358	The unusual fragmentation of longâ€chain feruloyl esters under negative ion electrospray conditions. Journal of Mass Spectrometry, 2019, 54, 549-556.	1.6	4
359	Synthesis of Tripeptide Fragments of 14-Membered Cyclopeptide Alkaloids. Journal Für Praktische Chemie, Chemiker-Zeitung, 1997, 339, 467-472.	0.5	3
360	2″-O-Glucosylvitexin, a chemotaxonomic marker for the genus Cryptocoryne (Araceae). Biochemical Systematics and Ecology, 2006, 34, 546-548.	1.3	3

#	Article	IF	CITATIONS
361	Combinatorial Synthesis of Macrocycles by Multiple Multicomponent Macrocyclization Including Bifunctional Building Blocks (MiB). Synlett, 2007, 2007, 0308-0312.	1.8	3
362	Triterpene acids and polyphenols from Eriobotrya poilanei. Biochemical Systematics and Ecology, 2012, 40, 198-200.	1.3	3
363	Anti-Friedel-Crafts-Type Substitution To Form Biaryl Linkages. Synthesis, 2013, 45, 3038-3043.	2.3	3
364	Antimicrobial, Antioxidant, and Cytotoxic Activities of the Essential Oil of <i>Tarchonanthus camphoratus</i> . Natural Product Communications, 2013, 8, 1934578X1300800.	0.5	3
365	Sugar Containing Compounds and Biological Activities of Lagochilus setulosus. Molecules, 2021, 26, 1755.	3.8	3
366	Probing glycation potential of dietary sugars in human blood by an integrated in vitro approach. Food Chemistry, 2021, 347, 128951.	8.2	3
367	On the scope of the double Ugi multicomponent stapling to produce helical peptides. Bioorganic Chemistry, 2021, 113, 104987.	4.1	3
368	Computational Applications in Secondary Metabolite Discovery (CAiSMD): an online workshop. Journal of Cheminformatics, 2021, 13, 64.	6.1	3
369	Glycation of Plant Proteins under Environmental Stress — Methodological Approaches, Potential Mechanisms and Biological Role. , 2016, , .		2
370	Synthetic Tubulysin Derivative, Tubugi-1, Against Invasive Melanoma Cells: The Cell Death Triangle. Anticancer Research, 2019, 39, 5403-5415.	1.1	2
371	Improved Stability and Tunable Functionalization of Parallel βâ€5heets via Multicomponent Nâ€Alkylation of the Turn Moiety. Angewandte Chemie, 2020, 132, 265-269.	2.0	2
372	Rewarding compounds identified from the medicinal plant Rhodiola rosea. Journal of Experimental Biology, 2020, 223, .	1.7	2
373	Cyclopropyl Group Containing Amino Acids From Î \pm -Chlorocyclopropylidenacetates. , 1989, , 509-512.		2
374	In vitro anticancer evaluation of novel triphenyltin(IV) compounds with some N-acetyl-S-naphthoquinonylcysteine derivatives. Journal of the Serbian Chemical Society, 2019, 84, 1119-1127.	0.8	2
375	Passiflora mucronata leaves extracts obtained from different methodologies: a phytochemical study based on cytotoxic and apoptosis activities of triterpenes and phytosterols constituents. Brazilian Journal of Pharmaceutical Sciences, 0, 56, .	1.2	2
376	Antioxidant capacity and fragmentation features of C â€glycoside isoflavones using HRESI IDâ€MS n and HRESIâ€HCDâ€MS n techniques. Journal of Mass Spectrometry, 2021, 56, e4793.	1.6	2
377	A Comparative Metabolomics Approach for Egyptian Mango Fruits Classification Based on UV and UPLC/MS and in Relation to Its Antioxidant Effect. Foods, 2022, 11, 2127.	4.3	2

The First Total Syntheses of Taxol. , 0, , 295-305.

#	Article	IF	CITATIONS
379	R,R-(+)-Bis[(3-benzyloxazolan-4-yl)methyl] disulfide. Acta Crystallographica Section E: Structure Reports Online, 2001, 57, o41-o42.	0.2	1
380	What Can a Chemist Learn from Nature′s Macrocycles? A Brief, Conceptual View. ChemInform, 2005, 36, no.	0.0	1
381	Strategies for Total and Diversity-Oriented Synthesis of Natural Product(-like) Macrocycles. ChemInform, 2005, 36, no.	0.0	1
382	Kleine, ungewöhnliche Peptide gegen Krebs. Nachrichten Aus Der Chemie, 2010, 58, 526-532.	0.0	1
383	Multi-Component Reactions in Supramolecular Chemistry and Material Science. Advances in Experimental Medicine and Biology, 2011, , 173-201.	1.6	1
384	Alkaloids from <i>Papaver coreanum</i> . Natural Product Communications, 2011, 6, 1934578X1100601.	0.5	1
385	Quantification of Important Flavor Compounds in Beef Stocks and Correlation to Sensory Results by "Reverse Metabolomicsâ€, 2014, , 15-19.		1
386	11th German Conference on Chemoinformatics (GCC 2015). Journal of Cheminformatics, 2016, 8, 18.	6.1	1
387	Rothtalazepane, A New Azepane from the Wood of Rothmannia talbotii (Rubiaceae). Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	1
388	Chemical constituents of the roots of Ormocarpum sennoides subsp. zanzibaricum. Biochemical Systematics and Ecology, 2020, 93, 104142.	1.3	1
389	Synthesis and Biological Evaluation of Highly Potent Fungicidal Deoxy â€Hygrophorones. European Journal of Organic Chemistry, 2021, 2021, 3827-3836.	2.4	1
390	Lehmanniaside, a new cycloartane triterpene glycoside from Astragalus lehmannianus. Natural Product Research, 2021, , 1-6.	1.8	1
391	Ligation, Macrocyclization, and Simultaneous Functionalization of Peptides by Multicomponent Reactions (MCR). Methods in Molecular Biology, 2022, 2371, 143-157.	0.9	1
392	Chalcogen-Based Organocatalysis. , 2011, , 209-314.		1
393	Synthesis of Methylene-Bridged Trifluoromethyl Azoles Using 5-(1,2,3-Triazol-1-yl)enones. Synthesis, 0, ,	2.3	1
394	Structural Elucidation of an Atropisomeric Entcassiflavan-(4β→8)-Epicatechin Isolated from Dalbergia monetaria L.f. Based on NMR and ECD Calculations in Comparison to Experimental Data. Molecules, 2022, 27, 2512.	3.8	1
395	The Pinene Path to Taxanes. ACS Symposium Series, 1994, , 326-339.	0.5	0
396	Facile and Practical Enantioselective Synthesis of Propargylic Alcohols by Direct Addition of Alkynes to Aldehydes Catalyzed by Chiral Disulfide—Oxazolidine Ligands ChemInform, 2003, 34, no.	0.0	0

#	Article	IF	CITATIONS
397	Biosynthesis and Metabolism of Cyclopropane Rings in Natural Compounds. ChemInform, 2003, 34, no.	0.0	0
398	Synthesis of N,N-Disubstituted Selenoamides by O/Se-Exchange with Selenium—Lawesson′s Reagent ChemInform, 2003, 34, no.	0.0	0
399	The Facile Synthesis of Chiral Oxazoline Catalysts for the Diethylzinc Addition to Aldehydes ChemInform, 2004, 35, no.	0.0	0
400	Wo sich der Syntheseaufwand versteckt: Dead Ends and Detours. Direct Ways to Successful Total Synthesis. Von Miguel A. Sierra, Maria C. de la Torre, Wileyâ€VCH, Weinheim 2004. 276 Seiten, brosch., 59,― Euro. ISBN 3â€527â€30644â€7. Nachrichten Aus Der Chemie, 2005, 53, 1267-1268.	0.0	0
401	A New Cysteine-Derived Ligand as Catalyst for the Addition of Diethylzinc to Aldehydes: The Importance of a "Free―Sulfide Site for Enantioselectivity ChemInform, 2005, 36, no.	0.0	0
402	Highly Substituted Tetrahydropyrones from Hetero-Diels—Alder Reactions of 2-Alkenals with Stereochemical Induction from Chiral Dienes ChemInform, 2005, 36, no.	0.0	0
403	Macrocycles Rapidly Produced by Multiple Multicomponent Reactions Including Bifunctional Building Blocks (MiBs). ChemInform, 2005, 36, no.	0.0	0
404	First Synthesis of Dimethyl-1H-Isochromeno[3,4-b]Carbazoles. Natural Product Communications, 2009, 4, 1934578X0900400.	0.5	0
405	Frontispiece: A Multicomponent Conjugation Strategy to UniqueN-Steroidal Peptides: First Evidence of the Steroidal Nucleus as a β-Turn Inducer in Acyclic Peptides. Chemistry - A European Journal, 2014, 20, n/a-n/a.	3.3	0
406	Application of Ugi Consecutive Protocol in the Synthesis of a Peptoid Analogue of Verticilide. , 0, , .		0
407	UHPLC-ESI-Orbitrap-HR-MS Analysis of Cyclopeptide Alkaloids From Ziziphus joazeiro. Natural Product Communications, 2021, 16, 1934578X2110549.	0.5	0