
Martin Meyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8166136/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lower glutamate and GABA levels in auditory cortex of tinnitus patients: a 2D-JPRESS MR spectroscopy study. Scientific Reports, 2022, 12, 4068.	3.3	8
2	Better speech-in-noise comprehension is associated with enhanced neural speech tracking in older adults with hearing impairment. Cortex, 2022, 151, 133-146.	2.4	18
3	Cognitive Benefits of Learning Additional Languages in Old Adulthood? Insights from an Intensive Longitudinal Intervention Study. Applied Linguistics, 2022, 43, 653-676.	2.4	5
4	Transcranial electric and acoustic stimulation for tinnitus: study protocol for a randomized double-blind controlled trial assessing the influence of combined transcranial random noise and acoustic stimulation on tinnitus loudness and distress. Trials, 2022, 23, 418.	1.6	1
5	Cross-linguistic differences in case marking shape neural power dynamics and gaze behavior during sentence planning. Brain and Language, 2022, 230, 105127.	1.6	4
6	Word stress processing integrates phonological abstraction with lexical access – An ERP study. Journal of Neurolinguistics, 2021, 57, 100959.	1.1	3
7	Application of Latent Growth Curve modeling to predict individual trajectories during neurofeedback treatment for tinnitus. Progress in Brain Research, 2021, 263, 109-136.	1.4	5
8	On the relationship between tinnitus distress, cognitive performance and aging. Progress in Brain Research, 2021, 262, 263-285.	1.4	13
9	EEG Resting-State and Event-Related Potentials as Markers of Learning Success in Older Adults Following Second Language Training: A Pilot Study. Brain Plasticity, 2021, 7, 143-162.	3.5	6
10	Selective attention modulates neural envelope tracking of informationally masked speech in healthy older adults. Human Brain Mapping, 2021, 42, 3042-3057.	3.6	9
11	Interacting effects of frontal lobe neuroanatomy and working memory capacity to older listeners' speech recognition in noise. Neuropsychologia, 2021, 158, 107892.	1.6	11
12	Bilateral age-related atrophy in the planum temporale is associated with vowel discrimination difficulty in healthy older adults. Hearing Research, 2021, 406, 108252.	2.0	3
13	Neural signatures of syntactic variation in speech planning. PLoS Biology, 2021, 19, e3001038.	5.6	13
14	Combining neurofeedback with source estimation: Evaluation of an sLORETA neurofeedback protocol for chronic tinnitus treatment. Restorative Neurology and Neuroscience, 2020, 38, 283-299.	0.7	7
15	Case Syncretism, Animacy, and Word Order in Continental West Germanic: Neurolinguistic Evidence from a Comparative Study on Standard German, Zurich German, and Fering (North Frisian). Journal of Germanic Linguistics, 2020, 32, 217-310.	0.1	4
16	Individual Differences in Peripheral Hearing and Cognition Reveal Sentence Processing Differences in Healthy Older Adults. Frontiers in Neuroscience, 2020, 14, 573513.	2.8	15
17	Working memory and not acoustic sensitivity is related to stress processing ability in a foreign language: An ERP study. Journal of Neurolinguistics, 2020, 55, 100897.	1.1	7
18	Accounting for Heterogeneity: Mixed-Effects Models in Resting-State EEG Data in a Sample of Tinnitus Sufferers. Brain Topography, 2020, 33, 413-424.	1.8	14

#	Article	IF	CITATIONS
19	Cortical thickness of left Heschl's gyrus correlates with hearing acuity in adults – A surface-based morphometry study. Hearing Research, 2019, 384, 107823.	2.0	22
20	When right becomes less right: Neural dedifferentiation during suprasegmental speech processing in the aging brain. Neurolmage, 2019, 189, 886-895.	4.2	14
21	Bridging the brain structure—brain function gap in prosodic speech processing in older adults. Neurobiology of Aging, 2019, 80, 116-126.	3.1	23
22	Investigating the Efficacy of an Individualized Alpha/Delta Neurofeedback Protocol in the Treatment of Chronic Tinnitus. Neural Plasticity, 2019, 2019, 1-15.	2.2	31
23	Comparison of Amplitude Modulated Sounds and Pure Tones at the Tinnitus Frequency: Residual Tinnitus Suppression and Stimulus Evaluation. Trends in Hearing, 2019, 23, 233121651983384.	1.3	18
24	Editorial: Towards an Understanding of Tinnitus Heterogeneity. Frontiers in Aging Neuroscience, 2019, 11, 53.	3.4	157
25	Transcranial electrical stimulation improves phoneme processing in developmental dyslexia. Brain Stimulation, 2019, 12, 930-937.	1.6	33
26	Ecological Momentary Assessment based Differences between Android and iOS Users of the TrackYourHearing mHealth Crowdsensing Platform. , 2019, 2019, 3951-3955.		11
27	Active listening to tinnitus and its relation to resting state EEG activity. Neuroscience Letters, 2019, 694, 176-183.	2.1	8
28	Neuroanatomical and resting state EEG power correlates of central hearing loss in older adults. Brain Structure and Function, 2018, 223, 145-163.	2.3	40
29	Are you surprised to hear this? Longitudinal spectral speech exposure in older compared to middleâ€aged normal hearing adults. European Journal of Neuroscience, 2018, 47, 58-68.	2.6	7
30	Speech perception in tinnitus is related to individual distress level - A neurophysiological study. Hearing Research, 2018, 367, 48-58.	2.0	18
31	EEG oscillatory power dissociates between distress- and depression-related psychopathology in subjective tinnitus. Brain Research, 2017, 1663, 194-204.	2.2	30
32	The impact of hearing aids and age-related hearing loss on auditory plasticity across three months – An electrical neuroimaging study. Hearing Research, 2017, 353, 162-175.	2.0	42
33	Tinnitus functional index: validation of the German version for Switzerland. Health and Quality of Life Outcomes, 2017, 15, 94.	2.4	15
34	Longitudinal auditory learning facilitates auditory cognition as revealed by microstate analysis. Biological Psychology, 2017, 123, 25-36.	2.2	18
35	4. Research on Second Language Acquisition in Old Adulthood: What We Have and What We Need. , 2017, , 48-75.		8
36	Alexithymia Is Associated with Tinnitus Severity. Frontiers in Psychiatry, 2017, 8, 223.	2.6	9

#	Article	IF	CITATIONS
37	10 Hz Amplitude Modulated Sounds Induce Short-Term Tinnitus Suppression. Frontiers in Aging Neuroscience, 2017, 9, 130.	3.4	27
38	Neurofeedback for Tinnitus Treatment – Review and Current Concepts. Frontiers in Aging Neuroscience, 2017, 9, 386.	3.4	32
39	Innovations in Doctoral Training and Research on Tinnitus: The European School on Interdisciplinary Tinnitus Research (ESIT) Perspective. Frontiers in Aging Neuroscience, 2017, 9, 447.	3.4	72
40	On the relationship between auditory cognition and speech intelligibility in cochlear implant users: An ERP study. Neuropsychologia, 2016, 87, 169-181.	1.6	85
41	Age-Related Neural Oscillation Patterns During the Processing of Temporally Manipulated Speech. Brain Topography, 2016, 29, 440-458.	1.8	8
42	Transcranial Alternating Current Stimulation (tACS) differentially modulates speech perception in young and older adults. Brain Stimulation, 2016, 9, 560-565.	1.6	43
43	Differential tinnitus-related neuroplastic alterations of cortical thickness and surface area. Hearing Research, 2016, 342, 1-12.	2.0	47
44	Validation of PRISM (Pictorial Representation of Illness and Self Measure) as a novel visual assessment tool for the burden of suffering in tinnitus patients. Health and Quality of Life Outcomes, 2016, 14, 47.	2.4	20
45	40Hz-Transcranial alternating current stimulation (tACS) selectively modulates speech perception. International Journal of Psychophysiology, 2016, 101, 18-24.	1.0	45
46	Which tinnitus-related characteristics affect current health-related quality of life and depression? A cross-sectional cohort study. Psychiatry Research, 2016, 237, 114-121.	3.3	47
47	fMRI reveals lateralized pattern of brain activity modulated by the metrics of stimuli during auditory rhyme processing. Brain and Language, 2015, 147, 41-50.	1.6	13
48	Language in the brain at rest: new insights from resting state data and graph theoretical analysis. Frontiers in Human Neuroscience, 2014, 8, 228.	2.0	55
49	The hypothesis of neuronal interconnectivity as a function of brain sizeââ,¬â€a general organization principle of the human connectome. Frontiers in Human Neuroscience, 2014, 8, 915.	2.0	113
50	Music and Language Expertise Influence the Categorization of Speech and Musical Sounds: Behavioral and Electrophysiological Measurements. Journal of Cognitive Neuroscience, 2014, 26, 2356-2369.	2.3	30
51	Ageâ€related differences in auditory evoked potentials as a function of task modulation during speech–nonspeech processing. Brain and Behavior, 2014, 4, 21-28.	2.2	33
52	Cortical Surface Area and Cortical Thickness Demonstrate Differential Structural Asymmetry in Auditory-Related Areas of the Human Cortex. Cerebral Cortex, 2014, 24, 2541-2552.	2.9	86
53	Disentangling Tinnitus Distress and Tinnitus Presence by Means of EEG Power Analysis. Neural Plasticity, 2014, 2014, 1-13.	2.2	52
54	Plasticity of Neural Systems in Tinnitus. Neural Plasticity, 2014, 2014, 1-2.	2.2	8

#	Article	lF	CITATIONS
55	Effects of prior information on decoding degraded speech: An fMRI study. Human Brain Mapping, 2014, 35, 61-74.	3.6	48
56	On the planum temporale lateralization in suprasegmental speech perception: Evidence from a study investigating behavior, structure, and function. Human Brain Mapping, 2014, 35, 1779-1789.	3.6	20
57	Right and left perisylvian cortex and left inferior frontal cortex mediate sentenceâ€level rhyme detection in spoken language as revealed by sparse fMRI. Human Brain Mapping, 2013, 34, 3182-3192.	3.6	13
58	The encoding of vowels and temporal speech cues in the auditory cortex of professional musicians: An EEG study. Neuropsychologia, 2013, 51, 1608-1618.	1.6	73
59	Increased cortical surface area of the left planum temporale in musicians facilitates the categorization of phonetic and temporal speech sounds. Cortex, 2013, 49, 2812-2821.	2.4	74
60	An Empirical Reevaluation of Absolute Pitch: Behavioral and Electrophysiological Measurements. Journal of Cognitive Neuroscience, 2013, 25, 1736-1753.	2.3	30
61	Musicianship Boosts Perceptual Learning of Pseudoword-Chimeras: An Electrophysiological Approach. Brain Topography, 2013, 26, 110-125.	1.8	33
62	Auditorisches System. , 2013, , 345-358.		0
63	Neurofunctional and Behavioral Correlates of Phonetic and Temporal Categorization in Musically Trained and Untrained Subjects. Cerebral Cortex, 2012, 22, 650-658.	2.9	82
64	Visual activation of auditory cortex reflects maladaptive plasticity in cochlear implant users. Brain, 2012, 135, 555-568.	7.6	195
65	Cortical thickness of supratemporal plane predicts auditory N1 amplitude. NeuroReport, 2012, 23, 1026-1030.	1.2	29
66	The spatiotemporal characteristics of elementary audiovisual speech and music processing in musically untrained subjects. International Journal of Psychophysiology, 2012, 83, 259-268.	1.0	8
67	Pre-attentive modulation of brain responses to tones in coloured-hearing synesthetes. BMC Neuroscience, 2012, 13, 151.	1.9	20
68	Reducing the Interval Between Volume Acquisitions Improves "Sparse―Scanning Protocols in Event-related Auditory fMRI. Brain Topography, 2012, 25, 182-193.	1.8	16
69	Musical expertise induces neuroplasticity of the planum temporale. Annals of the New York Academy of Sciences, 2012, 1252, 116-123.	3.8	34
70	Processing of voiced and unvoiced acoustic stimuli in musicians. Frontiers in Psychology, 2011, 2, 195.	2.1	50
71	Intensive language training and attention modulate the involvement of fronto-parietal regions during a non-verbal auditory discrimination task. European Journal of Neuroscience, 2011, 34, 165-175.	2.6	25
72	Long-term exposure to music enhances the sensitivity of the auditory system in children. European Journal of Neuroscience, 2011, 34, 755-765.	2.6	43

#	Article	IF	CITATIONS
73	Refinement of metre perception - training increases hierarchical metre processing. European Journal of Neuroscience, 2011, 34, 2064-2064.	2.6	0
74	Multi- and unisensory decoding of words and nonwords result in differential brain responses in dyslexic and nondyslexic adults. Brain and Language, 2011, 119, 136-148.	1.6	38
75	Computer-based learning of spelling skills in children with and without dyslexia. Annals of Dyslexia, 2011, 61, 177-200.	1.7	41
76	Differential language expertise related to white matter architecture in regions subserving sensoryâ€motor coupling, articulation, and interhemispheric transfer. Human Brain Mapping, 2011, 32, 2064-2074.	3.6	57
77	Simultaneous interpreters as a model for neuronal adaptation in the domain of language processing. Brain Research, 2010, 1317, 147-156.	2.2	48
78	Evolution of striatal degeneration in McLeod syndrome. European Journal of Neurology, 2010, 17, 612-618.	3.3	24
79	Refinement of metre perception – training increases hierarchical metre processing. European Journal of Neuroscience, 2010, 32, 1979-1985.	2.6	66
80	Absolute PitchFunctional Evidence of Speech-Relevant Auditory Acuity. Cerebral Cortex, 2010, 20, 447-455.	2.9	103
81	Neurophysiological evidence of impaired musical sound perception in cochlear-implant users. Clinical Neurophysiology, 2010, 121, 2070-2082.	1.5	82
82	ERP differences of pre-lexical processing between dyslexic and non-dyslexic children. International Journal of Psychophysiology, 2010, 77, 59-69.	1.0	43
83	Evaluation of evoked potentials to dyadic tones after cochlear implantation. Brain, 2009, 132, 1967-1979.	7.6	70
84	Cortical and subcortical correlates of functional electrical stimulation of wrist extensor and flexor muscles revealed by fMRI. Human Brain Mapping, 2009, 30, 963-975.	3.6	74
85	Differential force scaling of fineâ€graded power grip force in the sensorimotor network. Human Brain Mapping, 2009, 30, 2453-2465.	3.6	76
86	Pre-attentive Spectro-temporal Feature Processing in the Human Auditory System. Brain Topography, 2009, 22, 97-108.	1.8	27
87	Early electrophysiological correlates of meter and rhythm processing in music perception. Cortex, 2009, 45, 93-102.	2.4	99
88	Direct current induced short-term modulation of the left dorsolateral prefrontal cortex while learning auditory presented nouns. Behavioral and Brain Functions, 2009, 5, 29.	3.3	87
89	White matter plasticity in the corticospinal tract of musicians: A diffusion tensor imaging study. NeuroImage, 2009, 46, 600-607.	4.2	247
90	The plasticity of the superior longitudinal fasciculus as a function of musical expertise: a diffusion tensor imaging study. Frontiers in Human Neuroscience, 2009, 3, 76.	2.0	122

#	Article	IF	CITATIONS
91	Silent and continuous fMRI scanning differentially modulate activation in an auditory language comprehension task. Human Brain Mapping, 2008, 29, 46-56.	3.6	56
92	Segmental processing in the human auditory dorsal stream. Brain Research, 2008, 1220, 179-190.	2.2	79
93	Enhancement of Auditory-evoked Potentials in Musicians Reflects an Influence of Expertise but not Selective Attention. Journal of Cognitive Neuroscience, 2008, 20, 2238-2249.	2.3	94
94	The Neural Correlate of Speech Rhythm as Evidenced by Metrical Speech Processing. Journal of Cognitive Neuroscience, 2008, 20, 541-552.	2.3	107
95	Functions of the left and right posterior temporal lobes during segmental and suprasegmental speech perception. Zeitschrift Für Neuropsychologie = Journal of Neuropsychology, 2008, 19, 101-115.	0.6	22
96	How the brain laughs. Behavioural Brain Research, 2007, 182, 245-260.	2.2	51
97	Comparison of "silent―clustered and sparse temporal fMRI acquisitions in tonal and speech perception tasks. NeuroImage, 2007, 37, 1195-1204.	4.2	44
98	Electrical brain imaging evidences left auditory cortex involvement in speech and non-speech discrimination based on temporal features. Behavioral and Brain Functions, 2007, 3, 63.	3.3	51
99	fMRI in Patients With Motor Conversion Symptoms and Controls With Simulated Weakness. Psychosomatic Medicine, 2007, 69, 961-969.	2.0	147
100	Hemodynamic responses in human multisensory and auditory association cortex to purely visual stimulation. BMC Neuroscience, 2007, 8, 14.	1.9	29
101	A network for audio–motor coordination in skilled pianists and non-musicians. Brain Research, 2007, 1161, 65-78.	2.2	201
102	Neuroplasticity of sign language: implications from structural and functional brain imaging. Restorative Neurology and Neuroscience, 2007, 25, 335-51.	0.7	25
103	Short-term plasticity in the auditory system: differential neural responses to perception and imagery of speech and music. Restorative Neurology and Neuroscience, 2007, 25, 411-31.	0.7	37
104	Electrical brain imaging reveals spatio-temporal dynamics of timbre perception in humans. NeuroImage, 2006, 32, 1510-1523.	4.2	64
105	Neural control of playing a reversed piano: empirical evidence for an unusual cortical organization of musical functions. NeuroReport, 2006, 17, 447-451.	1.2	17
106	Lateralization of emotional prosody in the brain: an overview and synopsis on the impact of study design. Progress in Brain Research, 2006, 156, 285-294.	1.4	72
107	Spectro-temporal processing during speech perception involves left posterior auditory cortex. NeuroReport, 2005, 16, 1985-1989.	1.2	54
108	A Network for Sensory-Motor Integration: What Happens in the Auditory Cortex during Piano Playing without Acoustic Feedback?. Annals of the New York Academy of Sciences, 2005, 1060, 186-188.	3.8	51

#	Article	IF	CITATIONS
109	Distinct fMRI responses to laughter, speech, and sounds along the human peri-sylvian cortex. Cognitive Brain Research, 2005, 24, 291-306.	3.0	103
110	Real-time functional magnetic resonance imaging (rt-fMRI) in patients with brain tumours: preliminary findings using motor and language paradigms. British Journal of Neurosurgery, 2005, 19, 25-32.	0.8	28
111	Evidence for rapid auditory perception as the foundation of speech processing: a sparse temporal sampling fMRI study. European Journal of Neuroscience, 2004, 20, 2447-2456.	2.6	134
112	Brain activity varies with modulation of dynamic pitch variance in sentence melody. Brain and Language, 2004, 89, 277-289.	1.6	204
113	The brain knows the difference: two types of grammatical violations. Brain Research, 2004, 1000, 72-77.	2.2	62
114	Sequential effects of propofol on functional brain activation induced by auditory language processing: an event-related functional magnetic resonance imaging study. British Journal of Anaesthesia, 2004, 92, 641-650.	3.4	78
115	The functional anatomy of inspection time: an event-related fMRI study. NeuroImage, 2004, 22, 1466-1479.	4.2	151
116	Neural predictive error signal correlates with depressive illness severity in a game paradigm. NeuroImage, 2004, 23, 269-280.	4.2	41
117	On the lateralization of emotional prosody: An event-related functional MR investigation. Brain and Language, 2003, 86, 366-376.	1.6	273
118	Functional MR imaging exposes differential brain responses to syntax and prosody during auditory sentence comprehension. Journal of Neurolinguistics, 2003, 16, 277-300.	1.1	35
119	FMRI reveals brain regions mediating slow prosodic modulations in spoken sentences. Human Brain Mapping, 2002, 17, 73-88.	3.6	307
120	Auditory Language Comprehension: An Event-Related fMRI Study on the Processing of Syntactic and Lexical Information. Brain and Language, 2000, 74, 289-300.	1.6	385
121	Neurocognition of auditory sentence comprehension: event related fMRI reveals sensitivity to syntactic violations and task demands. Cognitive Brain Research, 2000, 9, 19-33.	3.0	186
122	Working memory constraints on syntactic ambiguity resolution as revealed by electrical brain responses. Biological Psychology, 1998, 47, 193-221.	2.2	122
123	Recovering Hidden Responder Groups in Individuals Receiving Neurofeedback for Tinnitus. Frontiers in Neuroscience, 0, 16, .	2.8	0