
Diana Priscila Pires

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8165171/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Applied Microbiology and Biotechnology, 2016, 100, 2141-2151.	3.6	334
2	Genetically Engineered Phages: a Review of Advances over the Last Decade. Microbiology and Molecular Biology Reviews, 2016, 80, 523-543.	6.6	310
3	Engineering Modular Viral Scaffolds for Targeted Bacterial Population Editing. Cell Systems, 2015, 1, 187-196.	6.2	294
4	Phage Therapy: Going Temperate?. Trends in Microbiology, 2019, 27, 368-378.	7.7	164
5	Current challenges and future opportunities of phage therapy. FEMS Microbiology Reviews, 2020, 44, 684-700.	8.6	151
6	Phage Therapy: a Step Forward in the Treatment of Pseudomonas aeruginosa Infections. Journal of Virology, 2015, 89, 7449-7456.	3.4	142
7	Use of newly isolated phages for control of Pseudomonas aeruginosa PAO1 and ATCC 10145 biofilms. Research in Microbiology, 2011, 162, 798-806.	2.1	130
8	Phage therapy efficacy: a review of the last 10 years of preclinical studies. Critical Reviews in Microbiology, 2020, 46, 78-99.	6.1	90
9	A Genotypic Analysis of Five P. aeruginosa Strains after Biofilm Infection by Phages Targeting Different Cell Surface Receptors. Frontiers in Microbiology, 2017, 8, 1229.	3.5	41
10	Understanding the Complex Phage-Host Interactions in Biofilm Communities. Annual Review of Virology, 2021, 8, 73-94.	6.7	40
11	Designing P. aeruginosa synthetic phages with reduced genomes. Scientific Reports, 2021, 11, 2164.	3.3	37
12	Exploitation of a <i>Klebsiella</i> Bacteriophage Receptor-Binding Protein as a Superior Biorecognition Molecule. ACS Infectious Diseases, 2021, 7, 3077-3087.	3.8	17
13	An overview of the current state of phage therapy for the treatment of biofilm-related infections. Current Opinion in Virology, 2022, 53, 101209.	5.4	17
14	Differential transcription profiling of the phage LUZ19 infection process in different growth media. RNA Biology, 2021, 18, 1778-1790.	3.1	14
15	Pseudomonas Bacteriophage Isolation and Production. Methods in Molecular Biology, 2014, 1149, 23-32.	0.9	8
16	Evaluation of the ability of <i>C. albicans</i> to form biofilm in the presence of phage-resistant phenotypes of <i>P. aeruginosa</i> . Biofouling, 2013, 29, 1169-1180.	2.2	7
17	Complete Genome Sequence of the Pseudomonas aeruginosa Bacteriophage philBB-PAA2. Genome Announcements, 2014, 2, .	0.8	7
18	In Vitro Activity of Bacteriophages Against Planktonic and Biofilm Populations Assessed by Flow Cytometry. Methods in Molecular Biology, 2018, 1693, 33-41.	0.9	7

#	Article	IF	CITATIONS
19	Complete Genome Sequence of Pseudomonas aeruginosa Phage vB_PaeM_CEB_DP1. Genome Announcements, 2015, 3, .	0.8	6
20	Phage Therapy of Infectious Biofilms: Challenges and Strategies. , 2019, , 295-313.		6
21	Phage-Host Interaction Analysis by Flow Cytometry Allows for Rapid and Efficient Screening of Phages. Antibiotics, 2022, 11, 164.	3.7	4
22	Synthetic Biology to Engineer Bacteriophage Genomes. Methods in Molecular Biology, 2018, 1693, 285-300.	0.9	3
23	The Influence of P. fluorescens Cell Morphology on the Lytic Performance and Production of Phage ï•IBB-PF7A. Current Microbiology, 2011, 63, 347-353.	2.2	2
24	Unpuzzling Friunavirus-Host Interactions One Piece at a Time: Phage Recognizes Acinetobacter pittii via a New K38 Capsule Depolymerase. Antibiotics, 2021, 10, 1304.	3.7	2
25	The use of bacteriophages for P. aeruginosa biofilm control. , 2011, , .		1
26	Phage Therapy. WikiJournal of Medicine, 2021, 8, 4.	1.0	1