Ludger Klein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8164474/publications.pdf

Version: 2024-02-01

76326 128289 14,655 63 40 60 citations h-index g-index papers 63 63 63 18473 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	LAMP2 regulates autophagy in the thymic epithelium and thymic stroma-dependent CD4 T cell development. Autophagy, 2023, 19, 426-439.	9.1	12
2	Recollections of the discovery of promiscuous antigen expression in mTECs. Nature Immunology, 2020, 21, 1303-1305.	14.5	0
3	Toll-like receptor signaling in thymic epithelium controls monocyte-derived dendritic cell recruitment and Treg generation. Nature Communications, 2020, 11, 2361.	12.8	39
4	Reverse TCR repertoire evolution toward dominant low-affinity clones during chronic CMV infection. Nature Immunology, 2020, 21, 434-441.	14.5	85
5	Aire-expressing ILC3-like cells in the lymph node display potent APC features. Journal of Experimental Medicine, 2019, 216, 1027-1037.	8.5	55
6	Inventories of naive and tolerant mouse CD4 T cell repertoires reveal a hierarchy of deleted and diverted T cell receptors. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18537-18543.	7.1	23
7	B cells latently infected with murine gammaherpesvirus 68 (MHVâ€68) are present in the mouse thymus–A step toward immune evasion?. European Journal of Immunology, 2019, 49, 351-352.	2.9	2
8	Central CD4+ T cell tolerance: deletion versus regulatory T cell differentiation. Nature Reviews Immunology, 2019, 19, 7-18.	22.7	159
9	Bruno Kyewski 1950–2018. Nature Immunology, 2018, 19, 509-509.	14.5	1
10	A novel conditional <i>Aire</i> allele enables cellâ€specific ablation of the immune tolerance regulator Aire. European Journal of Immunology, 2018, 48, 546-548.	2.9	8
11	Epitope-Specific Tolerance Modes Differentially Specify Susceptibility to Proteolipid Protein-Induced Experimental Autoimmune Encephalomyelitis. Frontiers in Immunology, 2017, 8, 1511.	4.8	10
12	Thymic CD4 T cell selection requires attenuation of March8-mediated MHCII turnover in cortical epithelial cells through CD83. Journal of Experimental Medicine, 2016, 213, 1685-1694.	8.5	72
13	Retrotransposon derepression leads to activation of the unfolded protein response and apoptosis in pro-B cells. Development (Cambridge), 2016, 143, 1788-99.	2.5	22
14	Thymic B Cells and Central T Cell Tolerance. Frontiers in Immunology, 2015, 6, 376.	4.8	20
15	Thymic B Cells Are Licensed to Present Self Antigens for Central T Cell Tolerance Induction. Immunity, 2015, 42, 1048-1061.	14.3	201
16	Induced miRâ€99a expression represses <i>Mtor</i> cooperatively with miRâ€150 to promote regulatory Tâ€cell differentiation. EMBO Journal, 2015, 34, 1195-1213.	7.8	83
17	Aire Gets Company for Immune Tolerance. Cell, 2015, 163, 794-795.	28.9	29
18	Continuous T Cell Receptor Signals Maintain a Functional Regulatory T Cell Pool. Immunity, 2014, 41, 722-736.	14.3	262

#	Article	IF	CITATIONS
19	Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). Nature Reviews Immunology, 2014, 14, 377-391.	22.7	1,043
20	Macroautophagy substrates are loaded onto MHC class II of medullary thymic epithelial cells for central tolerance. Journal of Experimental Medicine, 2013, 210, 287-300.	8.5	139
21	Thymic epithelial cells use macroautophagy to turn their inside out for CD4 T cell tolerance. Autophagy, 2013, 9, 931-932.	9.1	7
22	Macroautophagy substrates are loaded onto MHC class II of medullary thymic epithelial cells for central tolerance. Journal of Cell Biology, 2013, 200, i8-i8.	5.2	0
23	Regulatory T Cell Differentiation: Turning Harmful into Useful. Immunity, 2012, 37, 441-443.	14.3	3
24	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
25	Probing gene function in thymic epithelial cells. European Journal of Cell Biology, 2012, 91, 24-30.	3.6	5
26	Autonomous versus dendritic cell-dependent contributions of medullary thymic epithelial cells to central tolerance. Trends in Immunology, 2011, 32, 188-193.	6.8	53
27	Regulatory T cell lineage commitment in the thymus. Seminars in Immunology, 2011, 23, 401-409.	5.6	45
28	B7/CD28 in Central Tolerance: Costimulation Promotes Maturation of Regulatory T Cell Precursors and Prevents Their Clonal Deletion. Frontiers in Immunology, 2011, 2, 30.	4.8	32
29	Regulatory Tâ€cell differentiation versus clonal deletion of autoreactive thymocytes. Immunology and Cell Biology, 2011, 89, 45-53.	2.3	78
30	Loss of Roquin induces early death and immune deregulation but not autoimmunity. Journal of Experimental Medicine, 2011, 208, 1749-1756.	8.5	88
31	Autophagyâ€mediated antigen processing in CD4 ⁺ T cell tolerance and immunity. FEBS Letters, 2010, 584, 1405-1410.	2.8	20
32	Autonomous role of medullary thymic epithelial cells in central CD4+ T cell tolerance. Nature Immunology, 2010, 11, 512-519.	14.5	216
33	Regulatory T cell differentiation of thymocytes does not require a dedicated antigen-presenting cell but is under T cell-intrinsic developmental control. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10278-10283.	7.1	95
34	Macroautophagy, endogenous MHC II loading and T cell selection: the benefits of breaking the rules. Current Opinion in Immunology, 2009, 21, 92-97.	5.5	44
35	Dead man walking: how thymocytes scan the medulla. Nature Immunology, 2009, 10, 809-811.	14.5	20
36	Antigen presentation in the thymus for positive selection and central tolerance induction. Nature Reviews Immunology, 2009, 9, 833-844.	22.7	452

#	Article	IF	CITATIONS
37	Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature, 2008, 455, 396-400.	27.8	452
38	A novel role for autophagy in T cell education. Autophagy, 2008, 4, 1090-1092.	9.1	9
39	Autophagy and T-cell education in the thymus: Eat yourself to know yourself. Cell Cycle, 2008, 7, 3625-3628.	2.6	9
40	IL-2 Signaling and CD4+ CD25+ Regulatory T Cells. , 2008, , 77-89.		0
41	Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nature Immunology, 2007, 8, 351-358.	14.5	513
42	A CENTRAL ROLE FOR CENTRAL TOLERANCE. Annual Review of Immunology, 2006, 24, 571-606.	21.8	631
43	Development and function of agonist-induced CD25+Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nature Immunology, 2005, 6, 1152-1159.	14.5	419
44	Expression of a Natural Tumor Antigen by Thymic Epithelial Cells Impairs the Tumor-Protective CD4+ T-Cell Repertoire. Cancer Research, 2005, 65, 6443-6449.	0.9	55
45	Expression of the B7.1 Costimulatory Molecule on Pancreatic \hat{l}^2 Cells Abrogates the Requirement for CD4 T Cells in the Development of Type 1 Diabetes. Journal of Immunology, 2004, 173, 787-796.	0.8	13
46	Visualizing the course of antigen-specific CD8 and CD4 T cell responses to a growing tumor. European Journal of Immunology, 2003, 33, 806-814.	2.9	47
47	Thymic selection revisited: how essential is it?. Immunological Reviews, 2003, 191, 62-78.	6.0	176
48	<i>In vivo</i> dynamics of antigen-specific regulatory T cells not predicted from behavior <i>in vitro</i> . Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8886-8891.	7.1	359
49	Normal Incidence of Diabetes in NOD Mice Tolerant to Glutamic Acid Decarboxylase. Journal of Experimental Medicine, 2003, 197, 1635-1644.	8.5	84
50	Cutting Edge: Attenuated Experimental Autoimmune Encephalomyelitis in Eta-1/Osteopontin-Deficient Mice. Journal of Immunology, 2002, 168, 2096-2099.	0.8	169
51	Projection of an Immunological Self Shadow Within the Thymus by the Aire Protein. Science, 2002, 298, 1395-1401.	12.6	2,159
52	Promiscuous gene expression and central T-cell tolerance: more than meets the eye. Trends in Immunology, 2002, 23, 364-371.	6.8	180
53	Stabilization of \hat{I}^2 -catenin induces lesions reminiscent of prostatic intraepithelial neoplasia, but terminal squamous transdifferentiation of other secretory epithelia. Oncogene, 2002, 21, 4099-4107.	5.9	102
54	Response to 'Lymphoid organs contain diverse cells expressing self-molecules'. Nature Immunology, 2002, 3, 336-336.	14.5	3

LUDGER KLEIN

#	Article	IF	CITATION
55	Origin of regulatory T cells with known specificity for antigen. Nature Immunology, 2002, 3, 756-763.	14.5	781
56	Sampling of complementing self-antigen pools by thymic stromal cells maximizes the scope of central T cell tolerance. European Journal of Immunology, 2001, 31, 2476-2486.	2.9	87
57	Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nature Immunology, 2001, 2, 1032-1039.	14.5	933
58	Self-antigen presentation by thymic stromal cells: a subtle division of labor. Current Opinion in Immunology, 2000, 12, 179-186.	5.5	120
59	Shaping of the autoreactive T-cell repertoire by a splice variant of self protein expressed in thymic epithelial cells. Nature Medicine, 2000, 6, 56-61.	30.7	355
60	Promiscuous expression of tissue antigens in the thymus: a key to T-cell tolerance and autoimmunity?. Journal of Molecular Medicine, 2000, 78, 483-494.	3.9	92
61	CD4 T Cell Tolerance to Human C-reactive Protein, an Inducible Serum Protein, Is Mediated by Medullary Thymic Epithelium. Journal of Experimental Medicine, 1998, 188, 5-16.	8.5	151
62	Selection of a Broad Repertoire of CD4+ T Cells in H-2Ma0/0 Mice. Immunity, 1997, 7, 187-195.	14.3	115
63	BPF-1, a pathogen-induced DNA-binding protein involved in the plant defense response. Plant Journal, 1993, 4, 125-135.	5.7	96