
Michael J Mitchell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8163814/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The involvement of the nuclear lamina in human and rodent spermiogenesis: a systematic review. Basic and Clinical Andrology, 2018, 28, 7.	1.9	3
2	Loss of Calmodulin- and Radial-Spoke-Associated Complex Protein CFAP251 Leads to Immotile Spermatozoa Lacking Mitochondria and Infertility in Men. American Journal of Human Genetics, 2018, 103, 413-420.	6.2	74
3	<scp>SPINK</scp> 2 deficiency causes infertility by inducing sperm defects in heterozygotes and azoospermia inAhomozygotes. EMBO Molecular Medicine, 2017, 9, 1132-1149.	6.9	95
4	Abnormal retention of nuclear lamina and disorganization of chromatin-related proteins in spermatozoa from DPY19L2-deleted globozoospermic patients. Reproductive BioMedicine Online, 2017, 35, 562-570.	2.4	8
5	LEM-domain proteins are lost during human spermiogenesis but BAF and BAF-L persist. Reproduction, 2017, 154, 387-401.	2.6	15
6	Homozygous deletion of SUN5 in three men with decapitated spermatozoa. Human Molecular Genetics, 2017, 26, 3167-3171.	2.9	45
7	Mouse Y-Encoded Transcription Factor Zfy2 Is Essential for Sperm Head Remodelling and Sperm Tail Development. PLoS ONE, 2016, 11, e0145398.	2.5	17
8	Two genes substitute for the mouse Y chromosome for spermatogenesis and reproduction. Science, 2016, 351, 514-516.	12.6	46
9	Recombination between the mouse Y chromosome short arm and an additional Y short arm-derived chromosomal segment attached distal to the X chromosome PAR. Chromosoma, 2016, 125, 177-188.	2.2	3
10	The nuclear lamina during human spermiogenesis. Orphanet Journal of Rare Diseases, 2015, 10, .	2.7	0
11	Nuclear envelope remodelling during human spermiogenesis involves somatic B-type lamins and a spermatid-specific B3 lamin isoform. Molecular Human Reproduction, 2015, 21, 225-236.	2.8	20
12	Mouse Y-Linked Zfy1 and Zfy2 Are Expressed during the Male-Specific Interphase between Meiosis I and Meiosis II and Promote the 2nd Meiotic Division. PLoS Genetics, 2014, 10, e1004444.	3.5	39
13	Human and mouse ZFY genes produce a conserved testis-specific transcript encoding a zinc finger protein with a short acidic domain and modified transactivation potential. Human Molecular Genetics, 2012, 21, 2631-2645.	2.9	45
14	HSFY genes and the P4 palindrome in the AZFb interval of the human Y chromosome are not required for spermatocyte maturation. Human Reproduction, 2012, 27, 615-624.	0.9	28
15	Case report of apoptosis in testis of four AZFc-deleted patients: increased DNA fragmentation during meiosis, but decreased apoptotic markers in post-meiotic germ cells. Human Reproduction, 2012, 27, 1939-1945.	0.9	6
16	Genetic diversity on the Comoros Islands shows early seafaring as major determinant of human biocultural evolution in the Western Indian Ocean. European Journal of Human Genetics, 2011, 19, 89-94.	2.8	65
17	The Y-Encoded Gene Zfy2 Acts to Remove Cells with Unpaired Chromosomes at the First Meiotic Metaphase in Male Mice. Current Biology, 2011, 21, 787-793.	3.9	51
18	The coming of the Greeks to Provence and Corsica: Y-chromosome models of archaic Greek colonization of the western Mediterranean. BMC Evolutionary Biology, 2011, 11, 69.	3.2	37

MICHAEL J MITCHELL

#	Article	IF	CITATIONS
19	The emergence of Y-chromosome haplogroup J1e among Arabic-speaking populations. European Journal of Human Genetics, 2010, 18, 348-353.	2.8	71
20	Complete deletion of the AZFb interval from the Y chromosome in an oligozoospermic man. Human Reproduction, 2010, 25, 2655-2663.	0.9	40
21	In human pachytene spermatocytes, SUMO protein is restricted to the constitutive heterochromatin. Chromosome Research, 2008, 16, 761-782.	2.2	30
22	Haploinsufficiency of the germ cell-specific nuclear RNA binding protein hnRNP G-T prevents functional spermatogenesis in the mouse. Human Molecular Genetics, 2008, 17, 2803-2818.	2.9	29
23	Meiotic arrest at the midpachytene stage in a patient with complete azoospermia factor b deletion of the Y chromosome. Fertility and Sterility, 2006, 85, 494.e5-494.e8.	1.0	15
24	Pachytene Asynapsis Drives Meiotic Sex Chromosome Inactivation and Leads to Substantial Postmeiotic Repression in Spermatids. Developmental Cell, 2006, 10, 521-529.	7.0	258
25	No partial DAZ deletions but frequent gene conversion events on the Y chromosome of fertile men. Journal of Assisted Reproduction and Genetics, 2005, 22, 141-148.	2.5	9
26	Identification of the Immunodominant HY H2-DkEpitope and Evaluation of the Role of Direct and Indirect Antigen Presentation in HY Responses. Journal of Immunology, 2005, 175, 7209-7217.	0.8	25
27	TSPY, the Candidate Gonadoblastoma Gene on the Human Y Chromosome, has a Widely Expressed Homologue on the X - Implications for Y Chromosome Evolution. Chromosome Research, 2004, 12, 345-356.	2.2	63
28	Usp9y (ubiquitin-specific protease 9 gene on the Y) is associated with a functional promoter and encodes an intact open reading frame homologous to Usp9x that is under selective constraint. Mammalian Genome, 2003, 14, 437-447.	2.2	13
29	Expression and conservation of processed copies of the RBMX gene. Mammalian Genome, 2001, 12, 538-545.	2.2	50
30	A Y-encoded subunit of the translation initiation factor Eif2 is essential for mouse spermatogenesis. Nature Genetics, 2001, 29, 49-53.	21.4	144
31	The ubiquitin-activating enzyme E1 homologous genes on the mouse Y Chromosome (Ube1y) represent one functional gene and six partial pseudogenes. Mammalian Genome, 2000, 11, 164-168.	2.2	7
32	Conservation of PCDHX in mammals; expression of human X/Y genes predominantly in brain. Mammalian Genome, 2000, 11, 906-914.	2.2	117
33	Dendritic Cells Permit Identification of Genes Encoding MHC Class II–Restricted Epitopes of Transplantation Antigens. Immunity, 2000, 12, 711-720.	14.3	120
34	Spermatogenesis and the Mouse Y Chromosome: Specialisation Out of Decay. Results and Problems in Cell Differentiation, 2000, 28, 233-270.	0.7	14
35	A Novel Gene (PLU-1) Containing Highly Conserved Putative DNA/Chromatin Binding Motifs Is Specifically Up-regulated in Breast Cancer. Journal of Biological Chemistry, 1999, 274, 15633-15645.	3.4	203
36	RBMY evolved on the Y chromosome from a ubiquitously transcribed X-Y identical gene. Nature Genetics, 1999, 22, 224-226.	21.4	80

MICHAEL J MITCHELL

#	Article	IF	CITATIONS
37	Mouse H-Y encoding Smcy gene and its X Chromosomal homolog Smcx. Mammalian Genome, 1999, 10, 926-929.	2.2	39
38	Mouse Y Chromosome. Mammalian Genome, 1999, 10, 962-962.	2.2	2
39	Mouse chromosome Y. Mammalian Genome, 1998, 8, S378-S381.	2.2	1
40	The origin and loss of the ubiquitin activating enzyme gene on the mammalian Y chromosome. Human Molecular Genetics, 1998, 7, 429-434.	2.9	41
41	Rodent Y chromosome TSPY gene is functional in rat and non-functional in mouse. Human Molecular Genetics, 1998, 7, 557-562.	2.9	38
42	Characterisation of the coding sequence and fine mapping of the human DFFRY gene and comparative expression analysis and mapping to the Sxrb interval of the mouse Y chromosome of the Dffry gene. Human Molecular Genetics, 1998, 7, 97-107.	2.9	196
43	The Mouse Y Chromosome Interval Necessary for Spermatogonial Proliferation is Gene Dense with Syntenic Homology to the Human AZFa Region. Human Molecular Genetics, 1998, 7, 1713-1724.	2.9	96
44	A novel X gene with a widely transcribed Y-linked homologue escapes X-inactivation in mouse and human. Human Molecular Genetics, 1994, 3, 879-884.	2.9	167
45	A mouse Y chromosome gene encoded by a region essential for spermatogenesis and expression of male-specific minor histocompatibility antigens. Human Molecular Genetics, 1994, 3, 873-878.	2.9	127
46	Deletion Mapping by Immunoselection against the H-Y Histocompatibility Antigen Further Resolves the Sxra Region of the Mouse Y Chromosome and Reveals Complexity of the Hya Locus. Genomics, 1994, 24, 159-168.	2.9	65
47	Recombination between the X and Y chromosomes and the Sxr region of the mouse. Genetical Research, 1992, 60, 175-184.	0.9	11
48	A structural analysis of the Sxr region of the mouse Y chromosome. Genomics, 1992, 12, 26-34.	2.9	30
49	Evolution of DNA sequence homologies between the sex chromosomes in primate species. Genomics, 1992, 14, 1032-1040.	2.9	84
50	Marsupial Y chromosome encodes a homologue of the mouse Y-linked candidate spermatogenesis gene Ube1y. Nature, 1992, 359, 528-531.	27.8	44
51	Homology of a candidate spermatogenic gene from the mouse Y chromosome to the ubiquitin-activating enzyme El. Nature, 1991, 354, 483-486.	27.8	170