Gisbert Schneider

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/816294/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	De Novo Molecular Design with Chemical Language Models. Methods in Molecular Biology, 2022, 2390, 207-232.	0.9	3
2	Perplexity-Based Molecule Ranking and Bias Estimation of Chemical Language Models. Journal of Chemical Information and Modeling, 2022, 62, 1199-1206.	5.4	8
3	Δ-Quantum machine-learning for medicinal chemistry. Physical Chemistry Chemical Physics, 2022, 24, 10775-10783.	2.8	21
4	Identification of novel off targets of baricitinib and tofacitinib by machine learning with a focus on thrombosis and viral infection. Scientific Reports, 2022, 12, 7843.	3.3	5
5	Translating from Proteins to Ribonucleic Acids for Ligandâ€binding Site Detection. Molecular Informatics, 2022, 41, .	2.5	3
6	TBIO-08. The molecular basis for rational targeting of FGFR-driven growth and invasiveness in pediatric brain tumors. Neuro-Oncology, 2022, 24, i184-i184.	1.2	0
7	QMugs, quantum mechanical properties of drug-like molecules. Scientific Data, 2022, 9, .	5.3	37
8	Engineering of a functional Î ³ -tocopherol transfer protein. Redox Biology, 2021, 38, 101773.	9.0	5
9	Molecular Scaffold Hopping via Holistic Molecular Representation. Methods in Molecular Biology, 2021, 2266, 11-35.	0.9	4
10	Coloring Molecules with Explainable Artificial Intelligence for Preclinical Relevance Assessment. Journal of Chemical Information and Modeling, 2021, 61, 1083-1094.	5.4	45
11	Artificial intelligence in drug discovery: recent advances and future perspectives. Expert Opinion on Drug Discovery, 2021, 16, 949-959.	5.0	128
12	POS0091â€OFF-TARGET PROFILING OF JANUS KINASE (JAK) INHIBITORS IN RHEUMATOID ARTHRITIS: A COMPUTER-BASED APPROACH FOR DRUG SAFETY STUDIES AND REPURPOSING. Annals of the Rheumatic Diseases, 2021, 80, 255.2-255.	0.9	0
13	Combining generative artificial intelligence and on-chip synthesis for de novo drug design. Science Advances, 2021, 7, .	10.3	52
14	Learning from Nature: From a Marine Natural Product to Synthetic Cyclooxygenaseâ€∃ Inhibitors by Automated De Novo Design. Advanced Science, 2021, 8, e2100832.	11.2	17
15	Beam Search for Automated Design and Scoring of Novel ROR Ligands with Machine Intelligence**. Angewandte Chemie - International Edition, 2021, 60, 19477-19482.	13.8	40
16	High-mass MALDI-MS unravels ligand-mediated G protein–coupling selectivity to GPCRs. Proceedings of the United States of America, 2021, 118, .	7.1	9
17	Beamâ€Search zum automatisierten Entwurf und Scoring neuer RORâ€Liganden mithilfe maschineller Intelligenz**. Angewandte Chemie, 2021, 133, 19626-19632.	2.0	1
18	Bioaffinity Screening with a Rapid and Sample-Efficient Autosampler for Native Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2021, 93, 13342-13350.	6.5	3

#	Article	IF	CITATIONS
19	A critical overview of computational approaches employed for COVID-19 drug discovery. Chemical Society Reviews, 2021, 50, 9121-9151.	38.1	128
20	Computer-Aided Design and Synthesis of a New Class of PEX14 Inhibitors: Substituted 2,3,4,5-Tetrahydrobenzo[F][1,4]oxazepines as Potential New Trypanocidal Agents. Journal of Chemical Information and Modeling, 2021, 61, 5256-5268.	5.4	1
21	Geometric deep learning on molecular representations. Nature Machine Intelligence, 2021, 3, 1023-1032.	16.0	98
22	Identification of Synthetic Activators of Cancer Cell Migration by Hybrid Deep Learning. ChemBioChem, 2020, 21, 500-507.	2.6	1
23	Bidirectional Molecule Generation with Recurrent Neural Networks. Journal of Chemical Information and Modeling, 2020, 60, 1175-1183.	5.4	101
24	Rethinking drug design in the artificial intelligence era. Nature Reviews Drug Discovery, 2020, 19, 353-364.	46.4	394
25	Structural insights into the interaction of botulinum neurotoxin a with its neuronal receptor SV2C. Toxicon, 2020, 175, 36-43.	1.6	3
26	Drug discovery with explainable artificial intelligence. Nature Machine Intelligence, 2020, 2, 573-584.	16.0	411
27	Morphing of Amphipathic Helices to Explore the Activity and Selectivity of Membranolytic Antimicrobial Peptides. Biochemistry, 2020, 59, 3772-3781.	2.5	4
28	Introducing the CSP Analyzer: A novel Machine Learning-based application for automated analysis of two-dimensional NMR spectra in NMR fragment-based screening. Computational and Structural Biotechnology Journal, 2020, 18, 603-611.	4.1	13
29	Virtual Screening and Design with Machine Intelligence Applied to Pimâ€1 Kinase Inhibitors. Molecular Informatics, 2020, 39, e2000109.	2.5	7
30	Filovirus Antiviral Activity of Cationic Amphiphilic Drugs Is Associated with Lipophilicity and Ability To Induce Phospholipidosis. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	13
31	Generative molecular design in low data regimes. Nature Machine Intelligence, 2020, 2, 171-180.	16.0	111
32	Shape Similarity by Fractal Dimensionality: An Application in the de novo Design of (â^)â€Englerin A Mimetics. ChemMedChem, 2020, 15, 566-570.	3.2	6
33	Interaction analysis of glycoengineered antibodies with CD16a: a native mass spectrometry approach. MAbs, 2020, 12, 1736975.	5.2	7
34	A novel FRET peptide assay reveals efficient Helicobacter pylori HtrA inhibition through zinc and copper binding. Scientific Reports, 2020, 10, 10563.	3.3	19
35	Al reflections in 2019. Nature Machine Intelligence, 2020, 2, 2-9.	16.0	6
36	In silico design and optimization of selective membranolytic anticancer peptides. Scientific Reports, 2019, 9, 11282.	3.3	40

#	Article	IF	CITATIONS
37	Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery. Chemical Reviews, 2019, 119, 10520-10594.	47.7	499
38	Automated de novo molecular design by hybrid machine intelligence and rule-driven chemical synthesis. Nature Machine Intelligence, 2019, 1, 307-315.	16.0	47
39	Machine learning models for hydrogen bond donor and acceptor strengths using large and diverse training data generated by first-principles interaction free energies. Journal of Cheminformatics, 2019, 11, 59.	6.1	19
40	ldentifizierung von Chemokinliganden durch biochemische Rezeptorfragmentierung und simulierte Peptidevolution. Angewandte Chemie, 2019, 131, 7212-7216.	2.0	0
41	SIG-02. RATIONAL TARGETING OF PRO-INVASIVE FGFR SIGNALING IN MEDULLOBLASTOMA. Neuro-Oncology, 2019, 21, ii113-ii113.	1.2	1
42	Identification of Chemokine Ligands by Biochemical Fragmentation and Simulated Peptide Evolution. Angewandte Chemie - International Edition, 2019, 58, 7138-7142.	13.8	2
43	Design of Naturalâ€Productâ€Inspired Multitarget Ligands by Machine Learning. ChemMedChem, 2019, 14, 1129-1134.	3.2	27
44	De novo design of anticancer peptides by ensemble artificial neural networks. Journal of Molecular Modeling, 2019, 25, 112.	1.8	36
45	Automated De Novo Drug Design: Are We Nearly There Yet?. Angewandte Chemie - International Edition, 2019, 58, 10792-10803.	13.8	99
46	Automated De Novo Drug Design: Are We Nearly There Yet?. Angewandte Chemie, 2019, 131, 10906-10917.	2.0	12
47	Mind and machine in drug design. Nature Machine Intelligence, 2019, 1, 128-130.	16.0	45
48	De novo Molecular Design with Generative Long Short-term Memory. Chimia, 2019, 73, 1006.	0.6	15
49	Synthetic Activators of Cell Migration Designed by Constructive Machine Learning. ChemistryOpen, 2019, 8, 1303-1308.	1.9	9
50	Discovery of Novel Molecular Frameworks of Farnesoidâ€X Receptor Modulators by Ensemble Machine Learning. ChemistryOpen, 2019, 8, 3-3.	1.9	2
51	Discovery of Novel Molecular Frameworks of Farnesoidâ€X Receptor Modulators by Ensemble Machine Learning. ChemistryOpen, 2019, 8, 7-14.	1.9	2
52	In Silico Target Prediction for Small Molecules. Methods in Molecular Biology, 2019, 1888, 273-309.	0.9	19
53	Simulated Molecular Evolution for Anticancer Peptide Design. Angewandte Chemie - International Edition, 2019, 58, 1674-1678.	13.8	20
54	Simulated Molecular Evolution for Anticancer Peptide Design. Angewandte Chemie, 2019, 131, 1688-1692.	2.0	0

#	Article	IF	CITATIONS
55	Gaussian Process Regression Models for the Prediction of Hydrogen Bond Acceptor Strengths. Molecular Informatics, 2019, 38, 1800115.	2.5	10
56	[Special Issue for Honor Award dedicating to Prof Kimito Funatsu]Molecular Design With Long Short-Term Memory Networks. Journal of Computer Aided Chemistry, 2019, 20, 35-42.	0.3	0
57	Generative Models for Artificiallyâ€intelligent Molecular Design. Molecular Informatics, 2018, 37, 1880131.	2.5	30
58	Advancing drug discovery via GPU-based deep learning. Expert Opinion on Drug Discovery, 2018, 13, 579-582.	5.0	62
59	Designing Anticancer Peptides by Constructive Machine Learning. ChemMedChem, 2018, 13, 1300-1302.	3.2	67
60	Cheminformatics and the Mean. Molecular Informatics, 2018, 37, 1880132.	2.5	1
61	Recurrent Neural Network Model for Constructive Peptide Design. Journal of Chemical Information and Modeling, 2018, 58, 472-479.	5.4	165
62	<i>De Novo</i> Design of Bioactive Small Molecules by Artificial Intelligence. Molecular Informatics, 2018, 37, 1700153.	2.5	246
63	Total Synthesis of Ripostatin B and Structure–Activity Relationship Studies on Ripostatin Analogs. Journal of Organic Chemistry, 2018, 83, 7150-7172.	3.2	22
64	Binding Specificities of Nanobody•Membrane Protein Complexes Obtained from Chemical Cross-Linking and High-Mass MALDI Mass Spectrometry. Analytical Chemistry, 2018, 90, 5306-5313.	6.5	15
65	Generative Recurrent Networks for <i>De Novo</i> Drug Design. Molecular Informatics, 2018, 37, 1700111.	2.5	305
66	Automating drug discovery. Nature Reviews Drug Discovery, 2018, 17, 97-113.	46.4	456
67	Scaffold-Hopping from Synthetic Drugs by Holistic Molecular Representation. Scientific Reports, 2018, 8, 16469.	3.3	24
68	Tuning artificial intelligence on the de novo design of natural-product-inspired retinoid X receptor modulators. Communications Chemistry, 2018, 1, .	4.5	69
69	MetScore: Site of Metabolism Prediction Beyond Cytochrome P450 Enzymes. ChemMedChem, 2018, 13, 2281-2289.	3.2	21
70	Polypharmacological Drugâ^'target Inference for Chemogenomics. Molecular Informatics, 2018, 37, e1800050.	2.5	7
71	Combined Proteomic and In Silico Target Identification Reveal a Role for 5-Lipoxygenase in Developmental Signaling Pathways. Cell Chemical Biology, 2018, 25, 1095-1106.e23.	5.2	13
72	Quantification of hydrolyzed peptides and proteins by amino acid fluorescence. Journal of Peptide Science, 2018, 24, e3113.	1.4	11

#	Article	IF	CITATIONS
73	Native Electrospray Ionization Mass Spectrometry Reveals Multiple Facets of Aptamer–Ligand Interactions: From Mechanism to Binding Constants. Journal of the American Chemical Society, 2018, 140, 7486-7497.	13.7	42
74	Lipophilicity prediction of peptides and peptide derivatives by consensus machine learning. MedChemComm, 2018, 9, 1538-1546.	3.4	17
75	Scaffold hopping from natural products to synthetic mimetics by holistic molecular similarity. Communications Chemistry, 2018, 1, .	4.5	42
76	Scaffold hopping from synthetic RXR modulators by virtual screening and <i>de novo</i> design. MedChemComm, 2018, 9, 1289-1292.	3.4	19
77	Computer-Assisted Discovery of Retinoid X Receptor Modulating Natural Products and Isofunctional Mimetics. Journal of Medicinal Chemistry, 2018, 61, 5442-5447.	6.4	39
78	Hybrid Network Model for "Deep Learning―of Chemical Data: Application to Antimicrobial Peptides. Molecular Informatics, 2017, 36, 1600011.	2.5	39
79	Big Data and Deep Learning: A New Age of Molecular Informatics?. Molecular Informatics, 2017, 36, 1780132.	2.5	3
80	<i>De novo</i> Drug Design – Ye olde Scoring Problem Revisited. Molecular Informatics, 2017, 36, 1681031.	2.5	12
81	De-orphaning the marine natural product (±)-marinopyrrole A by computational target prediction and biochemical validation. Chemical Communications, 2017, 53, 2272-2274.	4.1	34
82	Bacterial serine protease HtrA as a promising new target for antimicrobial therapy?. Cell Communication and Signaling, 2017, 15, 4.	6.5	39
83	modlAMP: Python for antimicrobial peptides. Bioinformatics, 2017, 33, 2753-2755.	4.1	106
84	Exploring the Structural Space of the Galectinâ€l–Ligand Interaction. ChemBioChem, 2017, 18, 1477-1481.	2.6	7
85	Privileged Structures Revisited. Angewandte Chemie - International Edition, 2017, 56, 7971-7974.	13.8	85
86	Active learning for computational chemogenomics. Future Medicinal Chemistry, 2017, 9, 381-402.	2.3	75
87	Site of Metabolism Prediction Based on abâ€initio Derived Atom Representations. ChemMedChem, 2017, 12, 606-612.	3.2	23
88	Macromolecular target prediction by self-organizing feature maps. Expert Opinion on Drug Discovery, 2017, 12, 271-277.	5.0	26
89	Discovery of a Novel Inhibitor of the Hedgehog Signaling Pathway through Cellâ€based Compound Discovery and Target Prediction. Angewandte Chemie, 2017, 129, 13201-13205.	2.0	7
90	Discovery of a Novel Inhibitor of the Hedgehog Signaling Pathway through Cellâ€based Compound Discovery and Target Prediction. Angewandte Chemie - International Edition, 2017, 56, 13021-13025.	13.8	22

#	Article	IF	CITATIONS
91	A Computational Method for Unveiling the Target Promiscuity of Pharmacologically Active Compounds. Angewandte Chemie - International Edition, 2017, 56, 11520-11524.	13.8	39
92	Peptide–Membrane Interaction between Targeting and Lysis. ACS Chemical Biology, 2017, 12, 2254-2259.	3.4	12
93	Privilegierte Strukturen neu betrachtet. Angewandte Chemie, 2017, 129, 8079-8083.	2.0	8
94	A Computational Method for Unveiling the Target Promiscuity of Pharmacologically Active Compounds. Angewandte Chemie, 2017, 129, 11678-11682.	2.0	7
95	Rational Design of Membraneâ€Poreâ€Forming Peptides. Small, 2017, 13, 1701316.	10.0	24
96	Characterisation of anticancer peptides at the single-cell level. Lab on A Chip, 2017, 17, 2933-2940.	6.0	26
97	Matrixâ€based Molecular Descriptors for Prospective Virtual Compound Screening. Molecular Informatics, 2017, 36, 1600091.	2.5	18
98	Scoring of <i>de novo</i> Designed Chemical Entities by Macromolecular Target Prediction. Molecular Informatics, 2017, 36, 1600110.	2.5	5
99	New use of an old drug: inhibition of breast cancer stem cells by benztropine mesylate. Oncotarget, 2017, 8, 1007-1022.	1.8	22
100	Characterisation of worldwide <i>Helicobacter pylori</i> strains reveals genetic conservation and essentiality of serine protease HtrA. Molecular Microbiology, 2016, 99, 925-944.	2.5	70
101	Counting on natural products for drug design. Nature Chemistry, 2016, 8, 531-541.	13.6	879
102	Sparse Neural Network Models of Antimicrobial Peptideâ€Activity Relationships. Molecular Informatics, 2016, 35, 606-614.	2.5	15
103	Deorphaning the Macromolecular Targets of the Natural Anticancer Compound Doliculide. Angewandte Chemie - International Edition, 2016, 55, 12408-12411.	13.8	31
104	Designing Multiâ€ŧarget Compound Libraries with Gaussian Process Models. Molecular Informatics, 2016, 35, 192-198.	2.5	9
105	Deep Learning in Drug Discovery. Molecular Informatics, 2016, 35, 3-14.	2.5	502
106	<i>Molecular Informatics</i> : From Models to Systems and Beyond. Molecular Informatics, 2016, 35, 2-2.	2.5	0
107	Identification of E-cadherin signature motifs functioning as cleavage sites for Helicobacter pylori HtrA. Scientific Reports, 2016, 6, 23264.	3.3	77
108	Membranolytic anticancer peptides. MedChemComm, 2016, 7, 2232-2245.	3.4	68

#	Article	IF	CITATIONS
109	Deorphaning the Macromolecular Targets of the Natural Anticancer Compound Doliculide. Angewandte Chemie, 2016, 128, 12596-12599.	2.0	3
110	Coping with Complexity in Ligand-Based De Novo Design. ACS Symposium Series, 2016, , 143-158.	0.5	1
111	Calcium binding protects E-cadherin from cleavage by Helicobacter pylori HtrA. Gut Pathogens, 2016, 8, 29.	3.4	29
112	Von komplexen Naturstoffen zu synthetisch leicht zugäglichen Mimetika mithilfe von computergestütztem Deâ€novoâ€Design. Angewandte Chemie, 2016, 128, 6901-6904.	2.0	11
113	From Complex Natural Products to Simple Synthetic Mimetics by Computational De Novo Design. Angewandte Chemie - International Edition, 2016, 55, 6789-6792.	13.8	42
114	Robust molecular representations for modelling and design derived from atomic partial charges. Chemical Communications, 2016, 52, 681-684.	4.1	25
115	De Novo Design at the Edge of Chaos. Journal of Medicinal Chemistry, 2016, 59, 4077-4086.	6.4	124
116	Multi-objective active machine learning rapidly improves structure–activity models and reveals new protein–protein interaction inhibitors. Chemical Science, 2016, 7, 3919-3927.	7.4	55
117	Spotting and designing promiscuous ligands for drug discovery. Chemical Communications, 2016, 52, 1135-1138.	4.1	33
118	The quantum chemical search for novel materials and the issue of data processing: The InfoMol project. Journal of Computational Science, 2016, 15, 65-73.	2.9	5
119	Attractors in Sequence Space: Peptide Morphing by Directed Simulated Evolution. Molecular Informatics, 2015, 34, 709-714.	2.5	5
120	Computer-assisted quantification of motile and invasive capabilities of cancer cells. Scientific Reports, 2015, 5, 15338.	3.3	23
121	Aryl Bisâ€Sulfonamide Inhibitors of IspF from <i>Arabidopsis thaliana</i> and <i>Plasmodium falciparum</i> . ChemMedChem, 2015, 10, 2090-2098.	3.2	15
122	De Novo Fragment Design for Drug Discovery and Chemical Biology. Angewandte Chemie - International Edition, 2015, 54, 15079-15083.	13.8	30
123	Fragmentâ€Based Deâ€Novo Design Reveals a Smallâ€Molecule Inhibitor of <i>Helicobacter Pylori</i> HtrA. Angewandte Chemie - International Edition, 2015, 54, 10244-10248.	13.8	37
124	Revealing the Macromolecular Targets of Fragment‣ike Natural Products. Angewandte Chemie - International Edition, 2015, 54, 10516-10520.	13.8	54
125	Structural insights on cholesterol endosynthesis: Binding of squalene and 2,3-oxidosqualene to supernatant protein factor. Journal of Structural Biology, 2015, 190, 261-270.	2.8	21
126	Systems Approaches and Big Data in <i>Molecular Informatics</i> . Molecular Informatics, 2015, 34, 2-2.	2.5	2

#	Article	IF	CITATIONS
127	Unraveling the Activation Mechanism of Taspase1 which Controls the Oncogenic AF4–MLL Fusion Protein. EBioMedicine, 2015, 2, 386-395.	6.1	9
128	Dual-display of small molecules enables the discovery of ligand pairs and facilitates affinity maturation. Nature Chemistry, 2015, 7, 241-249.	13.6	181
129	Multidimensional Deâ€Novo Design Reveals 5â€HT _{2B} Receptorâ€Selective Ligands. Angewandte Chemie - International Edition, 2015, 54, 1551-1555.	13.8	39
130	In Silico Screening. , 2015, , 141-160.		1
131	Chemography of Natural Product Space. Planta Medica, 2015, 81, 429-435.	1.3	23
132	Fragmentation of GW4064 led to a highly potent partial farnesoid X receptor agonist with improved drug-like properties. Bioorganic and Medicinal Chemistry, 2015, 23, 3490-3498.	3.0	15
133	Predicting drug metabolism: experiment and/or computation?. Nature Reviews Drug Discovery, 2015, 14, 387-404.	46.4	355
134	Repurposing de novo designed entities reveals phosphodiesterase 3B and cathepsin L modulators. Chemical Communications, 2015, 51, 7478-7481.	4.1	10
135	Multidimensional Design of Anticancer Peptides. Angewandte Chemie - International Edition, 2015, 54, 10370-10374.	13.8	32
136	Boswellic acids target the human immune system-modulating antimicrobial peptide LL-37. Pharmacological Research, 2015, 102, 53-60.	7.1	14
137	Active-learning strategies in computer-assisted drug discovery. Drug Discovery Today, 2015, 20, 458-465.	6.4	169
138	In Silico Adoption of an Orphan Nuclear Receptor NR4A1. PLoS ONE, 2015, 10, e0135246.	2.5	6
139	Flashback Forward: Reaction-Driven De Novo Design of Bioactive Compounds. Synlett, 2014, 25, 170-178.	1.8	14
140	Machine Learning Estimates of Natural Product Conformational Energies. PLoS Computational Biology, 2014, 10, e1003400.	3.2	30
141	Coping with Polypharmacology by Computational Medicinal Chemistry. Chimia, 2014, 68, 648.	0.6	6
142	Piloting the Membranolytic Activities of Peptides with a Selfâ€organizing Map. ChemBioChem, 2014, 15, 2225-2231.	2.6	8
143	Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4067-4072.	7.1	196
144	Binding to Large Enzyme Pockets: Smallâ€Molecule Inhibitors of Trypanothione Reductase. ChemMedChem, 2014, 9, 1880-1891.	3.2	40

#	Article	IF	CITATIONS
145	Future De Novo Drug Design. Molecular Informatics, 2014, 33, 397-402.	2.5	28
146	Combining On hip Synthesis of a Focused Combinatorial Library with Computational Target Prediction Reveals Imidazopyridine GPCR Ligands. Angewandte Chemie - International Edition, 2014, 53, 582-585.	13.8	66
147	Accessing New Chemical Entities through Microfluidic Systems. Angewandte Chemie - International Edition, 2014, 53, 5750-5758.	13.8	86
148	Molecular Informatics Going "Fully Online― Molecular Informatics, 2014, 33, 2-2.	2.5	1
149	Fractal Dimensions of Macromolecular Structures. Molecular Informatics, 2014, 33, 588-596.	2.5	12
150	Revealing the macromolecular targets of complex natural products. Nature Chemistry, 2014, 6, 1072-1078.	13.6	114
151	Inhibiting Helicobacter pylori HtrA protease by addressing a computationally predicted allosteric ligand binding site. Chemical Science, 2014, 5, 3583.	7.4	29
152	Multiâ€Objective Molecular De Novo Design by Adaptive Fragment Prioritization. Angewandte Chemie - International Edition, 2014, 53, 4244-4248.	13.8	76
153	Vanillin-derived antiproliferative compounds influence Plk1 activity. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5063-5069.	2.2	14
154	Extending the Structure–Activity Relationship of Anthranilic Acid Derivatives As Farnesoid X Receptor Modulators: Development of a Highly Potent Partial Farnesoid X Receptor Agonist. Journal of Medicinal Chemistry, 2014, 57, 8035-8055.	6.4	48
155	Peptide lineup against Gram-negative bacterial infection – first-in-class peptide inhibitor of H. pylori HtrA. Journal of Cheminformatics, 2014, 6, .	6.1	0
156	Target prediction by cascaded self-organizing maps for ligand de-orphaning and side-effect investigation. Journal of Cheminformatics, 2014, 6, .	6.1	1
157	Identification of pirinixic acid derivatives bearing a 2-aminothiazole moiety combines dual PPARα/γ activation and dual 5-LO/mPGES-1 inhibition. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3757-3763.	2.2	13
158	Targeting Dynamic Pockets of HIV-1 Protease by Structure-Based Computational Screening for Allosteric Inhibitors. Journal of Chemical Information and Modeling, 2014, 54, 987-991.	5.4	29
159	Anthranilic acid derivatives as novel ligands for farnesoid X receptor (FXR). Bioorganic and Medicinal Chemistry, 2014, 22, 2447-2460.	3.0	27
160	Deorphaning Pyrrolopyrazines as Potent Multiâ€Target Antimalarial Agents. Angewandte Chemie - International Edition, 2014, 53, 7079-7084.	13.8	30
161	Breaking the data barrier in computational medicinal chemistry. Future Medicinal Chemistry, 2014, 6, 245-246.	2.3	2
162	Combinatorial chemistry by ant colony optimization. Future Medicinal Chemistry, 2014, 6, 267-280.	2.3	16

#	Article	IF	CITATIONS
163	Steering Target Selectivity and Potency by Fragmentâ€Based De Novo Drug Design. Angewandte Chemie - International Edition, 2013, 52, 10006-10009.	13.8	23
164	Aminothiazole-Featured Pirinixic Acid Derivatives As Dual 5-Lipoxygenase and Microsomal Prostaglandin E ₂ Synthase-1 Inhibitors with Improved Potency and Efficiency in Vivo. Journal of Medicinal Chemistry, 2013, 56, 9031-9044.	6.4	58
165	Exhaustive Proteome Mining for Functional MHC-I Ligands. ACS Chemical Biology, 2013, 8, 1876-1881.	3.4	12
166	Common non-epigenetic drugs as epigenetic modulators. Trends in Molecular Medicine, 2013, 19, 742-753.	6.7	68
167	Drugs by Numbers: Reactionâ€Driven De Novo Design of Potent and Selective Anticancer Leads. Angewandte Chemie - International Edition, 2013, 52, 4676-4681.	13.8	22
168	Editorial: Sustained Success of Molecular Informatics. Molecular Informatics, 2013, 32, 3-3.	2.5	0
169	De novo design – hop(p)ing against hope. Drug Discovery Today: Technologies, 2013, 10, e453-e460.	4.0	31
170	Computational Resources for MHC Ligand Identification. Molecular Informatics, 2013, 32, 326-336.	2.5	8
171	De novo design and optimization of Aurora A kinase inhibitors. Chemical Science, 2013, 4, 1229.	7.4	23
172	Quinolin-4(1 <i>H</i>)-imines are Potent Antiplasmodial Drugs Targeting the Liver Stage of Malaria. Journal of Medicinal Chemistry, 2013, 56, 4811-4815.	6.4	21
173	Synthesis and pharmacological characterization of benzenesulfonamides as dual species inhibitors of human and murine mPGES-1. Bioorganic and Medicinal Chemistry, 2013, 21, 7874-7883.	3.0	18
174	Adaptive Peptide Design. Chimia, 2013, 67, 859-863.	0.6	4
175	Scrutinizing MHC-I Binding Peptides and Their Limits of Variation. PLoS Computational Biology, 2013, 9, e1003088.	3.2	33
176	Chemically Advanced Template Search (CATS) for Scaffoldâ€Hopping and Prospective Target Prediction for â€~Orphan' Molecules. Molecular Informatics, 2013, 32, 133-138.	2.5	132
177	Pharmacophore Alignment Search Tool (PhAST): Significance Assessment of Chemical Similarity. Molecular Informatics, 2013, 32, 625-646.	2.5	2
178	DOGS: Reaction-Driven de novo Design of Bioactive Compounds. PLoS Computational Biology, 2012, 8, e1002380.	3.2	193
179	Phenotype-based high-content chemical library screening identifies statins as inhibitors of in vivo lymphangiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2665-74.	7.1	64
180	Distinct Roles of Secreted HtrA Proteases from Gram-negative Pathogens in Cleaving the Junctional Protein and Tumor Suppressor E-cadherin. Journal of Biological Chemistry, 2012, 287, 10115-10120.	3.4	150

#	Article	IF	CITATIONS
181	From Theory to Bench Experiment by Computer-assisted Drug Design. Chimia, 2012, 66, 120.	0.6	5
182	Significance estimation for sequence-based chemical similarity searching (PhAST) and application to AuroraA kinase inhibitors. Future Medicinal Chemistry, 2012, 4, 1897-1906.	2.3	5
183	Discovery of Î ³ -Secretase Modulators with a Novel Activity Profile by Text-Based Virtual Screening. ACS Chemical Biology, 2012, 7, 1488-1495.	3.4	4
184	Molecular pharmacological profile of a novel thiazolinoneâ€based direct and selective 5â€lipoxygenase inhibitor. British Journal of Pharmacology, 2012, 165, 2304-2313.	5.4	14
185	Probing the Bioactivity-Relevant Chemical Space of Robust Reactions and Common Molecular Building Blocks. Journal of Chemical Information and Modeling, 2012, 52, 1167-1178.	5.4	37
186	Structure–Activity Relationship of Nonacidic Quinazolinone Inhibitors of Human Microsomal Prostaglandin Synthase 1 (mPGESÂ1). Journal of Medicinal Chemistry, 2012, 55, 3792-3803.	6.4	49
187	Identification of UV-protective Activators of Nuclear Factor Erythroid-derived 2-Related Factor 2 (Nrf2) by Combining a Chemical Library Screen with Computer-based Virtual Screening. Journal of Biological Chemistry, 2012, 287, 33001-33013.	3.4	25
188	Editorial:Molecular InformaticsGaining Impact. Molecular Informatics, 2012, 31, 615-615.	2.5	0
189	Designing antimicrobial peptides: form follows function. Nature Reviews Drug Discovery, 2012, 11, 37-51.	46.4	1,578
190	Sequential Anti-Cytomegalovirus Response Monitoring May Allow Prediction of Cytomegalovirus Reactivation after Allogeneic Stem Cell Transplantation. PLoS ONE, 2012, 7, e50248.	2.5	29
191	Discovery of Smallâ€Molecule Interleukinâ€2 Inhibitors from a DNAâ€Encoded Chemical Library. Chemistry - A European Journal, 2012, 18, 7729-7737.	3.3	94
192	Molecular characterization of EP6—A novel imidazo[1,2-a]pyridine based direct 5-lipoxygenase inhibitor. Biochemical Pharmacology, 2012, 83, 228-240.	4.4	25
193	Nonlinear dimensionality reduction and mapping of compound libraries for drug discovery. Journal of Molecular Graphics and Modelling, 2012, 34, 108-117.	2.4	72
194	Virtual screening for compounds that mimic protein–protein interface epitopes. Journal of Computational Chemistry, 2012, 33, 573-579.	3.3	14
195	From Virtual Screening to Bioactive Compounds by Visualizing and Clustering of Chemical Space. Molecular Informatics, 2012, 31, 21-26.	2.5	12
196	Editorial: Molecular Informatics A Leading Discipline in a Complex Emerging Field. Molecular Informatics, 2012, 31, 3-3.	2.5	0
197	Immunosuppressive Small Molecule Discovered by Structureâ€Based Virtual Screening for Inhibitors of Protein–Protein Interactions. Angewandte Chemie - International Edition, 2012, 51, 258-261.	13.8	37
198	Designing the molecular future. Journal of Computer-Aided Molecular Design, 2012, 26, 115-120.	2.9	13

#	Article	IF	CITATIONS
199	Scaffold-hopping from aminoglycosides to small synthetic inhibitors of bacterial protein biosynthesis using a pseudoreceptor model. MedChemComm, 2011, 2, 181.	3.4	2
200	Long signal peptides of RGMa and DCBLD2 are dissectible into subdomains according to the NtraC model. Molecular BioSystems, 2011, 7, 942-951.	2.9	4
201	Assay Related Target Similarity (ARTS) - Chemogenomics Approach for Quantitative Comparison of Biological Targets. Journal of Chemical Information and Modeling, 2011, 51, 1897-1905.	5.4	13
202	Reaction-driven <i>de novo</i> design, synthesis and testing of potential type II kinase inhibitors. Future Medicinal Chemistry, 2011, 3, 415-424.	2.3	37
203	A Class of 5-Benzylidene-2-phenylthiazolinones with High Potency as Direct 5-Lipoxygenase Inhibitors. Journal of Medicinal Chemistry, 2011, 54, 1943-1947.	6.4	29
204	Computational medicinal chemistry. Future Medicinal Chemistry, 2011, 3, 393-394.	2.3	8
205	Discovery and Biological Evaluation of a Novel Class of Dual Microsomal Prostaglandin E ₂ Synthase-1/5-lipoxygenase Inhibitors Based on 2-[(4,6-Diphenethoxypyrimidin-2-yl)thio]hexanoic Acid. Journal of Medicinal Chemistry, 2011, 54, 4490-4507	6.4	29
206	Target Profile Prediction and Practical Evaluation of a Biginelli-Type Dihydropyrimidine Compound Library. Pharmaceuticals, 2011, 4, 1236-1247.	3.8	11
207	Inhibitors of Helicobacter pylori Protease HtrA Found by â€~Virtual Ligand' Screening Combat Bacterial Invasion of Epithelia. PLoS ONE, 2011, 6, e17986.	2.5	52
208	Bioassays to Monitor Taspase1 Function for the Identification of Pharmacogenetic Inhibitors. PLoS ONE, 2011, 6, e18253.	2.5	25
209	Spherical Harmonics Coefficients for Ligand-Based Virtual Screening of Cyclooxygenase Inhibitors. PLoS ONE, 2011, 6, e21554.	2.5	8
210	Advanced flowcytometric analysis of regulatory T cells: CD127 downregulation early post stem cell transplantation and altered Treg/CD3+CD4+-ratio in severe GvHD or relapse. Journal of Immunological Methods, 2011, 373, 36-44.	1.4	22
211	Structural properties of so-called NSAID–phospholipid-complexes. European Journal of Pharmaceutical Sciences, 2011, 44, 103-116.	4.0	37
212	A Collection of Robust Organic Synthesis Reactions for <i>In Silico</i> Molecule Design. Journal of Chemical Information and Modeling, 2011, 51, 3093-3098.	5.4	92
213	Enabling future drug discovery by <i>de novo</i> design. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011, 1, 742-759.	14.6	60
214	Local neighborhood behavior in a combinatorial library context. Journal of Computer-Aided Molecular Design, 2011, 25, 237-252.	2.9	9
215	Visualization and virtual screening in molecular property spaces. Journal of Cheminformatics, 2011, 3,	6.1	0
216	Mapping Chemical Structures to Markush Structures Using SMIRKS. Molecular Informatics, 2011, 30, 665-671.	2.5	5

#	Article	IF	CITATIONS
217	From Hits to Leads: Challenges for the Next Phase of Machine Learning in Medicinal Chemistry. Molecular Informatics, 2011, 30, 759-763.	2.5	3
218	Editorial: Charting Chemical Space: Challenges and Opportunities for Artificial Intelligence and Machine Learning. Molecular Informatics, 2011, 30, 751-751.	2.5	7
219	Molecular Informatics – The First Year. Molecular Informatics, 2011, 30, 3-3.	2.5	0
220	Potent Inhibitors of 5‣ipoxygenase Identified using Pseudoreceptors. ChemMedChem, 2011, 6, 1001-1005.	3.2	11
221	Pharmacophore alignment search tool: Influence of scoring systems on textâ€based similarity searching. Journal of Computational Chemistry, 2011, 32, 1635-1647.	3.3	8
222	Pharmacophore alignment search tool: Influence of the third dimension on textâ€based similarity searching. Journal of Computational Chemistry, 2011, 32, 1618-1634.	3.3	2
223	Neighborhoodâ€Preserving Visualization of Adaptive Structure–Activity Landscapes: Application to Drug Discovery. Angewandte Chemie - International Edition, 2011, 50, 11633-11636.	13.8	38
224	Context-Based Identification of Protein-Protein Interfaces and "Hot-Spot―Residues. Chemistry and Biology, 2011, 18, 344-353.	6.0	63
225	Dimerization of human 5-lipoxygenase. Biological Chemistry, 2011, 392, 1097-1111.	2.5	49
226	Fate of primary cells at the G1/S boundary after polo-like kinase 1 inhibition by SBE13. Cell Cycle, 2011, 10, 708-720.	2.6	14
227	Brain-like Processing and Classification of Chemical Data. , 2011, , 289-303.		0
228	Coactosin-like protein functions as a stabilizing chaperone for 5-lipoxygenase: role of tryptophan 102. Biochemical Journal, 2010, 425, 265-274.	3.7	38
229	De Novo Drug Design. Methods in Molecular Biology, 2010, 672, 299-323.	0.9	125
230	Lead identification and optimization of diaminopyrimidines as histamine H4 receptor ligands. Inflammation Research, 2010, 59, 249-251.	4.0	7
231	From Machine Learning to Natural Product Derivatives that Selectively Activate Transcription Factor PPARÎ ³ . ChemMedChem, 2010, 5, 191-194.	3.2	58
232	Proteinâ€protein docking by shapeâ€complementarity and property matching. Journal of Computational Chemistry, 2010, 31, 1919-1928.	3.3	14
233	Pharmacophore alignment search tool: Influence of canonical atom labeling on similarity searching. Journal of Computational Chemistry, 2010, 31, 2810-2826.	3.3	8
234	Architectural Repertoire of Ligandâ€Binding Pockets on Protein Surfaces. ChemBioChem, 2010, 11, 556-563.	2.6	22

#	Article	IF	CITATIONS
235	In Silico Characterization of Ligand Binding Modes in the Human Histamine H ₄ Receptor and their Impact on Receptor Activation. ChemBioChem, 2010, 11, 1850-1855.	2.6	9
236	Multistep Virtual Screening for Rapid and Efficient Identification of Nonâ€Nucleoside Bacterial Thymidine Kinase Inhibitors. Chemistry - A European Journal, 2010, 16, 9630-9637.	3.3	8
237	Elucidation of the Structure and Intermolecular Interactions of a Reversible Cyclicâ€Peptide Inhibitor of the Proteasome by NMR Spectroscopy and Molecular Modeling. Angewandte Chemie - International Edition, 2010, 49, 3934-3938.	13.8	27
238	Attractors in Sequence Space: Agentâ€Based Exploration of MHC I Binding Peptides. Molecular Informatics, 2010, 29, 65-74.	2.5	4
239	Target Profile Prediction: Crossâ€Activation of Peroxisome Proliferatorâ€Activated Receptor (PPAR) and Farnesoid X Receptor (FXR). Molecular Informatics, 2010, 29, 287-292.	2.5	8
240	Automated Docking of Flexible Molecules Into Receptor Binding Sites by Ligand Selfâ€Organization In Situ. Molecular Informatics, 2010, 29, 189-193.	2.5	9
241	Graph Kernels for Molecular Similarity. Molecular Informatics, 2010, 29, 266-273.	2.5	35
242	Missing Value Estimation for Compoundâ€Target Activity Data. Molecular Informatics, 2010, 29, 678-684.	2.5	9
243	Molecular Informatics- From Models to Molecules and Systems. Molecular Informatics, 2010, 29, 9-9.	2.5	0
244	Rational design of a pirinixic acid derivative that acts as subtype-selective PPARÎ ³ modulator. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2469-2473.	2.2	11
245	Truxillic acid derivatives act as peroxisome proliferator-activated receptor Î ³ activators. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2920-2923.	2.2	11
246	Kernel learning for ligand-based virtual screening: discovery of a new PPARγ agonist. Journal of Cheminformatics, 2010, 2, .	6.1	2
247	<i>Helicobacter pylori</i> HtrA is a new secreted virulence factor that cleaves Eâ€cadherin to disrupt intercellular adhesion. EMBO Reports, 2010, 11, 798-804.	4.5	264
248	Multivariate analyses of immune reconstitution in children after allo-SCT: risk-estimation based on age-matched leukocyte sub-populations. Bone Marrow Transplantation, 2010, 45, 613-621.	2.4	28
249	Virtual screening: an endless staircase?. Nature Reviews Drug Discovery, 2010, 9, 273-276.	46.4	445
250	Antidiabetic sulfonylureas modulate farnesoid X receptor activation and target gene transcription. Future Medicinal Chemistry, 2010, 2, 575-586.	2.3	4
251	Adhesion, Invasion, and Agglutination Mediated by Two Trimeric Autotransporters in the Human Uropathogen <i>Proteus mirabilis</i> . Infection and Immunity, 2010, 78, 4882-4894.	2.2	49
252	Simple 2,4-Diacylphloroglucinols as Classic Transient Receptor Potential-6 Activators—Identification of a Novel Pharmacophore. Molecular Pharmacology, 2010, 77, 368-377.	2.3	84

#	Article	IF	CITATIONS
253	MHC I Stabilizing Potential of Computer-Designed Octapeptides. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-9.	3.0	3
254	Biological impact of freezing Plk1 in its inactive conformation in cancer cells. Cell Cycle, 2010, 9, 761-774.	2.6	36
255	Concepts and Applications of "Natural Computing" Techniques in De Novo Drug and Peptide Design. Current Pharmaceutical Design, 2010, 16, 1656-1665.	1.9	27
256	Nonacidic Inhibitors of Human Microsomal Prostaglandin Synthase 1 (mPGES 1) Identified by a Multistep Virtual Screening Protocol. Journal of Medicinal Chemistry, 2010, 53, 911-915.	6.4	34
257	â€~Fuzziness' in pharmacophore-based virtual screening and de novo design. Drug Discovery Today: Technologies, 2010, 7, e237-e244.	4.0	24
258	Exploring the chemical space of Î ³ -secretase modulators. Trends in Pharmacological Sciences, 2010, 31, 402-410.	8.7	25
259	Self-Organizing Fuzzy Graphs for Structure-Based Comparison of Protein Pockets. Journal of Proteome Research, 2010, 9, 6498-6510.	3.7	29
260	Adaptive Combinatorial Design of Focused Compound Libraries. Methods in Molecular Biology, 2010, 572, 135-147.	0.9	7
261	Domain Organization of Long Autotransporter Signal Sequences. Bioinformatics and Biology Insights, 2009, 3, BBI.S3411.	2.0	9
262	Prediction of Type III Secretion Signals in Genomes of Gram-Negative Bacteria. PLoS ONE, 2009, 4, e5917.	2.5	108
263	Model structure of APOBEC3C reveals a binding pocket modulating ribonucleic acid interaction required for encapsidation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12079-12084.	7.1	39
264	Identification of Human Cathepsin G As a Functional Target of Boswellic Acids from the Anti-Inflammatory Remedy Frankincense. Journal of Immunology, 2009, 183, 3433-3442.	0.8	72
265	Species-specific Inhibition of APOBEC3C by the Prototype Foamy Virus Protein Bet. Journal of Biological Chemistry, 2009, 284, 5819-5826.	3.4	63
266	Scaffold-Hopping Potential of Fragment-Based De Novo Design: The Chances and Limits of Variation. Combinatorial Chemistry and High Throughput Screening, 2009, 12, 383-396.	1.1	29
267	Self-Organizing Maps in Drug Discovery: Compound Library Design, Scaffold-Hopping, Repurposing. Current Medicinal Chemistry, 2009, 16, 258-266.	2.4	111
268	Architecture, function and prediction of long signal peptides. Briefings in Bioinformatics, 2009, 10, 569-578.	6.5	36
269	Voyages to the (un)known: adaptive design of bioactive compounds. Trends in Biotechnology, 2009, 27, 18-26.	9.3	80
270	MK-886, an inhibitor of the 5-lipoxygenase-activating protein, inhibits cyclooxygenase-1 activity and suppresses platelet aggregation. European Journal of Pharmacology, 2009, 608, 84-90.	3.5	25

#	Article	IF	CITATIONS
271	Structureâ€Based Pharmacophore Screening for Naturalâ€Productâ€Derived PPARγ Agonists. ChemBioChem, 2009, 10, 75-78.	2.6	32
272	The State of the Art of Chemical Biology. ChemBioChem, 2009, 10, 16-29.	2.6	41
273	From Molecular Shape to Potent Bioactive Agents I: Bioisosteric Replacement of Molecular Fragments. ChemMedChem, 2009, 4, 41-44.	3.2	20
274	From Molecular Shape to Potent Bioactive Agents II: Fragmentâ€Based deâ€novo Design. ChemMedChem, 2009, 4, 45-48.	3.2	26
275	Homology Model Adjustment and Ligand Screening with a Pseudoreceptor of the Human Histamine H ₄ Receptor. ChemMedChem, 2009, 4, 820-827.	3.2	36
276	Identification and Validation of a Potent Type II Inhibitor of Inactive Poloâ€ i ike Kinase 1. ChemMedChem, 2009, 4, 1806-1809.	3.2	44
277	PhAST: Pharmacophore alignment search tool. Journal of Computational Chemistry, 2009, 30, 761-771.	3.3	25
278	Distance phenomena in highâ€dimensional chemical descriptor spaces: Consequences for similarityâ€based approaches. Journal of Computational Chemistry, 2009, 30, 2285-2296.	3.3	21
279	2,4-Diaminopyrimidines as histamine H4 receptor ligands—Scaffold optimization and pharmacological characterization. Bioorganic and Medicinal Chemistry, 2009, 17, 7186-7196.	3.0	63
280	Comparative virtual screening and novelty detection for NMDA-GlycineB antagonists. Journal of Computer-Aided Molecular Design, 2009, 23, 869-881.	2.9	25
281	Hyperforin is a novel type of 5-lipoxygenase inhibitor with high efficacy in vivo. Cellular and Molecular Life Sciences, 2009, 66, 2759-2771.	5.4	60
282	Prediction of turn types in protein structure by machineâ€learning classifiers. Proteins: Structure, Function and Bioinformatics, 2009, 74, 344-352.	2.6	23
283	Form follows function: Shape analysis of protein cavities for receptorâ€based drug design. Proteomics, 2009, 9, 451-459.	2.2	43
284	Novel Pirinixic Acids as PPARα Preferential Dual PPARα/γ Agonists. QSAR and Combinatorial Science, 2009, 28, 576-586.	1.4	12
285	QSAR & Combinatorial Science: Back to the Future. QSAR and Combinatorial Science, 2009, 28, 7-7.	1.4	0
286	Editorial: From <i>QSAR & Combinatorial Science</i> to <i>Molecular Informatics</i> – Transition into the Future and Call for Papers. QSAR and Combinatorial Science, 2009, 28, 623-624.	1.4	1
287	SQUIRRELnovo: de novo design of a PPARα agonist by bioisosteric replacement. Chemistry Central Journal, 2009, 3, .	2.6	0
288	Virtual screening for PPAR-gamma ligands using the ISOAK molecular graph kernel and gaussian processes. Chemistry Central Journal, 2009, 3, .	2.6	1

#	Article	IF	CITATIONS
289	Distance phenomena in high-dimensional chemical descriptor spaces: consequences for similarity-based approaches. Chemistry Central Journal, 2009, 3, .	2.6	0
290	Fuzzy virtual ligands for virtual screening. Chemistry Central Journal, 2009, 3, .	2.6	0
291	Identification of Plk1 type II inhibitors by structure-based virtual screening. Chemistry Central Journal, 2009, 3, .	2.6	0
292	PocketGraph: graph representation of binding site volumes. Chemistry Central Journal, 2009, 3, .	2.6	2
293	PhAST: pharmacophore alignment search tool. Chemistry Central Journal, 2009, 3, .	2.6	1
294	Virtual chemical reactions for drug design. Chemistry Central Journal, 2009, 3, .	2.6	0
295	Pseudoreceptor-based pocket selection in a molecular dynamics simulation of the histamine H4 receptor. Chemistry Central Journal, 2009, 3, .	2.6	0
296	Standardization of WT1 mRNA quantitation for minimal residual disease monitoring in childhood AML and implications of WT1 gene mutations: a European multicenter study. Leukemia, 2009, 23, 1472-1479.	7.2	48
297	Synergism of virtual screening and medicinal chemistry: Identification and optimization of allosteric antagonists of metabotropic glutamate receptor 1. Bioorganic and Medicinal Chemistry, 2009, 17, 5708-5715.	3.0	25
298	An Unusual ERAD-Like Complex Is Targeted to the Apicoplast of <i>Plasmodium falciparum</i> . Eukaryotic Cell, 2009, 8, 1134-1145.	3.4	136
299	Self-organizing molecular fingerprints: a ligand-based view on drug-like chemical space and off-target prediction. Future Medicinal Chemistry, 2009, 1, 213-218.	2.3	28
300	Reaction-MQL: Line Notation for Functional Transformation. Journal of Chemical Information and Modeling, 2009, 49, 6-12.	5.4	18
301	The concept of template-based de novo design from drug-derived molecular fragments and its application to TAR RNA. Journal of Computer-Aided Molecular Design, 2008, 22, 59-68.	2.9	23
302	QSAR & Combinatorial Science: Transition to the Future. QSAR and Combinatorial Science, 2008, 27, 5-5.	1.4	1
303	Scaffoldâ€Hopping Cascade Yields Potent Inhibitors of 5â€Lipoxygenase. ChemMedChem, 2008, 3, 1535-1538.	3.2	33
304	Shapelets: Possibilities and limitations of shape-based virtual screening. Journal of Computational Chemistry, 2008, 29, 108-114.	3.3	32
305	Scaffold diversity of natural products: inspiration for combinatorial library design. Natural Product Reports, 2008, 25, 892.	10.3	200
306	Synergism of Shrewâ€1's Signal Peptide and Transmembrane Segment Required for Plasma Membrane Localization. Traffic, 2008, 9, 1344-1353.	2.7	9

#	Article	IF	CITATIONS
307	Concept of Combinatorial <i>De Novo</i> Design of Drugâ€like Molecules by Particle Swarm Optimization. Chemical Biology and Drug Design, 2008, 72, 16-26.	3.2	61
308	Pseudoreceptor models in drug design: bridging ligand- and receptor-based virtual screening. Nature Reviews Drug Discovery, 2008, 7, 667-677.	46.4	78
309	Identification and functional analysis of cyclooxygenase-1 as a molecular target of boswellic acids. Biochemical Pharmacology, 2008, 75, 503-513.	4.4	89
310	Identification of Hits and Lead Structure Candidates with Limited Resources by Adaptive Optimization. Journal of Chemical Information and Modeling, 2008, 48, 1473-1491.	5.4	19
311	Benzodioxoles: Novel Cannabinoid-1 Receptor Inverse Agonists for the Treatment of Obesity. Journal of Medicinal Chemistry, 2008, 51, 2115-2127.	6.4	43
312	Bioisosteric Replacement of Molecular Scaffolds: From Natural Products to Synthetic Compounds. Natural Product Communications, 2008, 3, 1934578X0800300.	0.5	2
313	The Plasmodium Export Element Revisited. PLoS ONE, 2008, 3, e1560.	2.5	24
314	Domain Organization of Long Signal Peptides of Single-Pass Integral Membrane Proteins Reveals Multiple Functional Capacity. PLoS ONE, 2008, 3, e2767.	2.5	22
315	Prediction of Extracellular Proteases of the Human Pathogen Helicobacter pylori Reveals Proteolytic Activity of the Hp1018/19 Protein HtrA. PLoS ONE, 2008, 3, e3510.	2.5	75
316	Chapter 7. Fragment-based De Novo Design of Drug-like Molecules. , 2008, , 217-239.		3
317	Processing and classification of chemical data inspired by insect olfaction. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20285-20289.	7.1	81
318	Design of MHC I stabilizing peptides by agent-based exploration of sequence space. Protein Engineering, Design and Selection, 2007, 20, 99-108.	2.1	15
319	Classification and Prediction of Tripeptides Inhibiting HIV-1 Tat/TAR-RNA Interaction Using a Self-Organizing Map. Letters in Drug Design and Discovery, 2007, 4, 410-416.	0.7	Ο
320	Structure-Based Virtual Screening of FGFR Inhibitors. BioDrugs, 2007, 21, 31-45.	4.6	10
321	Kernel Approach to Molecular Similarity Based on Iterative Graph Similarity. Journal of Chemical Information and Modeling, 2007, 47, 2280-2286.	5.4	64
322	Molecular Query Language (MQL)A Context-Free Grammar for Substructure Matching. Journal of Chemical Information and Modeling, 2007, 47, 295-301.	5.4	31
323	Identification of Natural-Product-Derived Inhibitors of 5-Lipoxygenase Activity by Ligand-Based Virtual Screening. Journal of Medicinal Chemistry, 2007, 50, 2640-2646.	6.4	70
324	Flux (2):  Comparison of Molecular Mutation and Crossover Operators for Ligand-Based de Novo Design. Journal of Chemical Information and Modeling, 2007, 47, 656-667.	5.4	68

#	Article	IF	CITATIONS
325	Scaffold Hopping by "Fuzzy―Pharmacophores and its Application to RNA Targets. ChemBioChem, 2007, 8, 1932-1936.	2.6	48
326	Searching for Drug Scaffolds with 3D Pharmacophores and Neural Network Ensembles. Angewandte Chemie - International Edition, 2007, 46, 5336-5339.	13.8	21
327	GPCR Targeted Library Design: Novel Dopamine D3 Receptor Ligands. ChemMedChem, 2007, 2, 1000-1005.	3.2	11
328	Virtual Screening for Selective Allosteric mGluR1 Antagonists and Structure–Activity Relationship Investigations for Coumarine Derivatives. ChemMedChem, 2007, 2, 1763-1773.	3.2	34
329	Predicting olfactory receptor neuron responses from odorant structure. Chemistry Central Journal, 2007, 1, 11.	2.6	44
330	PocketPicker: analysis of ligand binding-sites with shape descriptors. Chemistry Central Journal, 2007, 1, 7.	2.6	278
331	SmiLib v2.0: A Java-Based Tool for Rapid Combinatorial Library Enumeration. QSAR and Combinatorial Science, 2007, 26, 407-410.	1.4	54
332	A Virtual Screening Filter for Identification of Cytochrome P450 2C9 (CYP2C9) Inhibitors. QSAR and Combinatorial Science, 2007, 26, 618-628.	1.4	22
333	From 1982 to 2003 to 2007 – Milestones in a Journal's History. QSAR and Combinatorial Science, 2007, 26, 5-9.	1.4	1
334	The molecular mechanism of the inhibition by licofelone of the biosynthesis of 5â€ i ipoxygenase products. British Journal of Pharmacology, 2007, 152, 471-480.	5.4	67
335	Protein Folding Simulation by Particle Swarm Optimization. The Open Structural Biology Journal, 2007, 1, 1-6.	0.1	8
336	Properties and Architecture of Drugs and Natural Products Revisited. Current Chemical Biology, 2007, 1, 115-127.	0.5	87
337	Flux (1):Â A Virtual Synthesis Scheme for Fragment-Based de Novo Design. Journal of Chemical Information and Modeling, 2006, 46, 699-707.	5.4	101
338	Impact of Conformational Flexibility on Three-Dimensional Similarity Searching Using Correlation Vectors. Journal of Chemical Information and Modeling, 2006, 46, 2324-2332.	5.4	51
339	NIPALSTREE:  A New Hierarchical Clustering Approach for Large Compound Libraries and Its Application to Virtual Screening. Journal of Chemical Information and Modeling, 2006, 46, 2220-2229.	5.4	26
340	Scaffold-Hopping: How Far Can You Jump?. QSAR and Combinatorial Science, 2006, 25, 1162-1171.	1.4	135
341	QSAR & Combinatorial Science Going Monthly in 2006. QSAR and Combinatorial Science, 2006, 25, 5-6.	1.4	1
342	QSAR/QSPR Modelling – Finding Rules in Noisy Data?. QSAR and Combinatorial Science, 2006, 25, 811-812.	1.4	1

#	Article	IF	CITATIONS
343	Challenges in Virtual Screening. QSAR and Combinatorial Science, 2006, 25, 1131-1131.	1.4	0
344	Detection and assessment of near-zero delays in neuronal spiking activity. Journal of Neuroscience Methods, 2006, 152, 97-106.	2.5	32
345	SOMMER: self-organising maps for education and research. Journal of Molecular Modeling, 2006, 13, 225-228.	1.8	21
346	Optimized Particle Swarm Optimization (OPSO) and its application to artificial neural network training. BMC Bioinformatics, 2006, 7, 125.	2.6	226
347	Scaffold-Hopping Potential of Ligand-Based Similarity Concepts. ChemMedChem, 2006, 1, 181-185.	3.2	86
348	Predicting Compound Selectivity by Self-Organizing Maps: Cross-Activities of Metabotropic Glutamate Receptor Antagonists. ChemMedChem, 2006, 1, 1066-1068.	3.2	54
349	Virtual Screening for PPAR Modulators Using a Probabilistic Neural Network. ChemMedChem, 2006, 1, 1346-1350.	3.2	19
350	A Pseudo-Ligand Approach to Virtual Screening. Combinatorial Chemistry and High Throughput Screening, 2006, 9, 359-364.	1.1	18
351	A neuro-fuzzy approach to virtual screening in molecular bioinformatics. Fuzzy Sets and Systems, 2005, 152, 67-82.	2.7	8
352	Computer-based de novo design of drug-like molecules. Nature Reviews Drug Discovery, 2005, 4, 649-663.	46.4	756
353	New Allosteric Modulators of Metabotropic Glutamate Receptor 5 (mGluR5) Found by Ligand-Based Virtual Screening. ChemBioChem, 2005, 6, 620-625.	2.6	26
354	New Inhibitors of the Tat-TAR RNA Interaction Found with a "Fuzzy―Pharmacophore Model. ChemBioChem, 2005, 6, 1119-1125.	2.6	38
355	From Virtual to Real Screening for D3 Dopamine Receptor Ligands. ChemBioChem, 2005, 6, 997-999.	2.6	29
356	A Hierarchical Clustering Approach for Large Compound Libraries ChemInform, 2005, 36, no.	0.0	0
357	Multi-space classification for predicting GPCR-ligands. Molecular Diversity, 2005, 9, 371-383.	3.9	21
358	Comparison of Three Holographic Fingerprint Descriptors and their Binary Counterparts. QSAR and Combinatorial Science, 2005, 24, 961-967.	1.4	20
359	QSAR & Combinatorial Science. QSAR and Combinatorial Science, 2005, 24, 201-202.	1.4	0
360	Caspase-mediated degradation of human 5-lipoxygenase in B lymphocytic cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13164-13169.	7.1	24

#	Article	IF	CITATIONS
361	Extraction and Visualization of Potential Pharmacophore Points Using Support Vector Machines:Â Application to Ligand-Based Virtual Screening for COX-2 Inhibitors. Journal of Medicinal Chemistry, 2005, 48, 6997-7004.	6.4	67
362	A Hierarchical Clustering Approach for Large Compound Libraries. Journal of Chemical Information and Modeling, 2005, 45, 807-815.	5.4	53
363	Impact of different software implementations on the performance of the Maxmin method for diverse subset selection. Molecular Diversity, 2004, 8, 421-425.	3.9	11
364	Impact of descriptor vector scaling on the classification of drugs and nondrugs with artificial neural networks. Journal of Molecular Modeling, 2004, 10, 204-211.	1.8	25
365	Advances in the prediction of protein targeting signals. Proteomics, 2004, 4, 1571-1580.	2.2	99
366	Optimization of a Pharmacophore-based Correlation Vector Descriptor for Similarity Searching. QSAR and Combinatorial Science, 2004, 23, 19-22.	1.4	17
367	Status of HTS Data Mining Approaches. QSAR and Combinatorial Science, 2004, 23, 207-213.	1.4	34
368	Identification of novel cannabinoid receptor ligandsvia evolutionary de novo design and rapid parallel synthesis. QSAR and Combinatorial Science, 2004, 23, 426-430.	1.4	27
369	Evaluation of Distance Metrics for Ligand-Based Similarity Searching. ChemBioChem, 2004, 5, 538-540.	2.6	23
370	Comparison of Support Vector Machine and Artificial Neural Network Systems for Drug/Nondrug Classification ChemInform, 2004, 35, no.	0.0	3
371	SVM-Based Feature Selection for Characterization of Focused Compound Collections. Journal of Chemical Information and Computer Sciences, 2004, 44, 993-999.	2.8	60
372	Fuzzy Pharmacophore Models from Molecular Alignments for Correlation-Vector-Based Virtual Screening. Journal of Medicinal Chemistry, 2004, 47, 4653-4664.	6.4	51
373	Comparison of correlation vector methods for ligand-based similarity searching. Journal of Computer-Aided Molecular Design, 2003, 17, 687-698.	2.9	87
374	Properties and prediction of mitochondrial transit peptides from Plasmodium falciparum. Molecular and Biochemical Parasitology, 2003, 132, 59-66.	1.1	120
375	ChemSpaceShuttle: A tool for data mining in drug discovery by classification, projection, and 3D visualization. QSAR and Combinatorial Science, 2003, 22, 549-559.	1.4	13
376	SMILIB: Rapid Assembly of Combinatorial Libraries in SMILES Notation. QSAR and Combinatorial Science, 2003, 22, 719-721.	1.4	34
377	Collection of Bioactive Reference Compounds for Focused Library Design. QSAR and Combinatorial Science, 2003, 22, 713-718.	1.4	128
378	Comparison of Support Vector Machine and Artificial Neural Network Systems for Drug/Nondrug Classification. Journal of Chemical Information and Computer Sciences, 2003, 43, 1882-1889.	2.8	487

#	Article	IF	CITATIONS
379	Ligand-Based Combinatorial Design of Selective Purinergic Receptor (A2A) Antagonists Using Self-Organizing Maps. ACS Combinatorial Science, 2003, 5, 233-237.	3.3	73
380	Improved Anaerobic Use of Arginine by Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2003, 69, 1623-1628.	3.1	26
381	Support vector machine applications in bioinformatics. Applied Bioinformatics, 2003, 2, 67-77.	1.6	137
382	Trends in Virtual Combinatorial Library Design. Current Medicinal Chemistry, 2002, 9, 2095-2101.	2.4	75
383	Development of a Virtual Screening Method for Identification of "Frequent Hitters―in Compound Libraries. Journal of Medicinal Chemistry, 2002, 45, 137-142.	6.4	270
384	Prediction of Human Pharmacokinetics Based on Preclinical In Vitro and In Vivo Data. , 2002, , 81-104.		2
385	Virtual screening and fast automated docking methods. Drug Discovery Today, 2002, 7, 64-70.	6.4	275
386	Virtual screening and fast automated docking methods. Drug Discovery Today, 2002, 7, 64-70.	6.4	249
387	A fast virtual screening filter for cytochrome P450â€3A4 inhibition liability of compound libraries. QSAR and Combinatorial Science, 2002, 21, 249-256.	1.2	36
388	A Virtual Screening Method for Prediction of the hERG Potassium Channel Liability of Compound Libraries. ChemBioChem, 2002, 3, 455.	2.6	168
389	Prediction of Hepatic Metabolic Clearance. Clinical Pharmacokinetics, 2001, 40, 553-563.	3.5	79
390	Rapid Evaluation and Optimization of Recombinant Protein Production Using GFP Tagging. Protein Expression and Purification, 2001, 21, 220-223.	1.3	28
391	Scaffold Architecture and Pharmacophoric Properties of Natural Products and Trade Drugs:Â Application in the Design of Natural Product-Based Combinatorial Libraries. ACS Combinatorial Science, 2001, 3, 284-289.	3.3	270
392	Deciphering apicoplast targeting signals – feature extraction from nuclear-encoded precursors of Plasmodium falciparum apicoplast proteins. Gene, 2001, 280, 19-26.	2.2	199
393	Integrating Virtual Screening Methods to the Quest for Novel Membrane Protein Ligands. Current Medicinal Chemistry - Central Nervous System Agents, 2001, 1, 99-112.	0.5	3
394	H-BloX: visualizing alignment block entropies. Journal of Molecular Graphics and Modelling, 2001, 19, 304-306.	2.4	10
395	Qualitative Highly Divergent Nuclear Export Signals Can Regulate Export by the Competition for Transport Cofactors in Vivo. Traffic, 2001, 2, 544-555.	2.7	25
396	Chapter 10 Analysis and prediction of mitochondrial targeting peptides. Methods in Cell Biology, 2001, 65, 175-187.	1.1	40

#	Article	IF	CITATIONS
397	Virtual Screening for Bioactive Molecules by Evolutionary De Novo Design. Angewandte Chemie - International Edition, 2000, 39, 4130-4133.	13.8	86
398	Neural networks are useful tools for drug design. Neural Networks, 2000, 13, 15-16.	5.9	53
399	De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks. Journal of Computer-Aided Molecular Design, 2000, 14, 487-494.	2.9	218
400	Mapping of protein surface cavities and prediction of enzyme class by a self-organizing neural network. Protein Engineering, Design and Selection, 2000, 13, 83-88.	2.1	51
401	Crystal structures of mouse class II alcohol dehydrogenase reveal determinants of substrate specificity and catalytic efficiency 1 1Edited by J. Thornton. Journal of Molecular Biology, 2000, 302, 441-453.	4.2	50
402	Mapping of proteinase active sites by projection of surface-derived correlation vectors. Journal of Computational Chemistry, 1999, 20, 336-347.	3.3	16
403	"Scaffold-Hopping―by Topological Pharmacophore Search: A Contribution to Virtual Screening. Angewandte Chemie - International Edition, 1999, 38, 2894-2896.	13.8	629
404	How many potentially secreted proteins are contained in a bacterial genome?. Gene, 1999, 237, 113-121.	2.2	32
405	Combining in Vitro and in Vivo Pharmacokinetic Data for Prediction of Hepatic Drug Clearance in Humans by Artificial Neural Networks and Multivariate Statistical Techniques. Journal of Medicinal Chemistry, 1999, 42, 5072-5076.	6.4	76
406	Artificial neural networks for computer-based molecular design. Progress in Biophysics and Molecular Biology, 1998, 70, 175-222.	2.9	189
407	Feature-extraction from endopeptidase cleavage sites in mitochondrial targeting peptides. , 1998, 30, 49-60.		98
408	Peptide Design Aided by Neural Networks:  Biological Activity of Artificial Signal Peptidase I Cleavage Sites. Biochemistry, 1998, 37, 3588-3593.	2.5	28
409	Peptide design by artificial neural networks and computer-based evolutionary search. Proceedings of the United States of America, 1998, 95, 12179-12184.	7.1	74
410	Feature-extraction from endopeptidase cleavage sites in mitochondrial targeting peptides. Proteins: Structure, Function and Bioinformatics, 1998, 30, 49-60.	2.6	32
411	Analysis of Mitochondrial and Chloroplast Targeting Signals by Neural Network Systems. , 1997, , 214-229.		3
412	Evolutionary optimization in multimodal search space. Biological Cybernetics, 1996, 74, 203-207.	1.3	14
413	Structure optimization of an artificial neural filter detecting membrane-spanning amino acid sequences. Biopolymers, 1996, 38, 13-29.	2.4	12
414	Analyse von Aminosäresequenzen mit künstlichen neuronalen Netzen. Chemie in Unserer Zeit, 1996, 30, 172-181.	0.1	0

#	Article	IF	CITATIONS
415	Local structural motifs of protein backbones are classified by self-organizing neural networks. Protein Engineering, Design and Selection, 1996, 9, 833-842.	2.1	55
416	Evolutionary optimization in multimodal search space. Biological Cybernetics, 1996, 74, 203-207.	1.3	3
417	Lack of isodisomy for chromosome 22 in disomic meningiomas. Cytogenetic and Genome Research, 1995, 71, 139-141.	1.1	0
418	Development of simple fitness landscapes for peptides by artificial neural filter systems. Biological Cybernetics, 1995, 73, 245-254.	1.3	20
419	Peptide design in machina: development of artificial mitochondrial protein precursor cleavage sites by simulated molecular evolution. Biophysical Journal, 1995, 68, 434-447.	0.5	32
420	Development of simple fitness landscapes for peptides by artificial neural filter systems. Biological Cybernetics, 1995, 73, 245-254.	1.3	1
421	Artificial neural networks and simulated molecular evolution are potential tools for sequence-oriented protein design. Bioinformatics, 1994, 10, 635-645.	4.1	23
422	De novo design of peptides and proteins: machine-generated sequences by the PROSA program. Bioinformatics, 1994, 10, 75-77.	4.1	0
423	A neural network model for the prediction of membraneâ€spanning amino acid sequences. Protein Science, 1994, 3, 1597-1601.	7.6	47
424	The rational design of amino acid sequences by artificial neural networks and simulated molecular evolution: de novo design of an idealized leader peptidase cleavage site. Biophysical Journal, 1994, 66, 335-344.	0.5	140
425	Prediction of the Secondary Structure of Proteins from the Amino Acid Sequence with Artificial Neural Networks. Angewandte Chemie International Edition in English, 1993, 32, 1141-1143.	4.4	10
426	Vorhersage der Sekundästruktur von Proteinen aus der Aminosäresequenz mit künstlichen neuronalen Netzen. Angewandte Chemie, 1993, 105, 1192-1194.	2.0	2
427	Development of artificial neural filters for pattern recognition in protein sequences. Journal of Molecular Evolution, 1993, 36, 586-595.	1.8	49
428	Analysis of Cleavage-Site Patterns in Protein Precursor Sequences with a Perceptron-Type Neural Network. Biochemical and Biophysical Research Communications, 1993, 194, 951-959.	2.1	24
429	Contributions to the knowledge ofNeofulla(Plecoptera: Notonemouridae) from Chile and Argentina. Studies on Neotropical Fauna and Environment, 1990, 25, 249-251.	1.0	1