

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8162137/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Npac Is A Co-factor of Histone H3K36me3 and Regulates Transcriptional Elongation in Mouse Embryonic Stem Cells. Genomics, Proteomics and Bioinformatics, 2022, 20, 110-128.	3.0	4
2	IKKβ mediates homeostatic function in inflammation via competitively phosphorylating AMPK and IκBα. Acta Pharmaceutica Sinica B, 2022, 12, 651-664.	5.7	9
3	Histone modifications in neurodifferentiation of embryonic stem cells. Heliyon, 2022, 8, e08664.	1.4	1
4	Traditional Patchouli essential oil modulates the host's immune responses and gut microbiota and exhibits potent anti-cancer effects in Apc mice. Pharmacological Research, 2022, 176, 106082.	3.1	18
5	Inhibitors of Bacterial Extracellular Vesicles. Frontiers in Microbiology, 2022, 13, 835058.	1.5	16
6	Jmjd6 regulates ES cell homeostasis and enhances reprogramming efficiency. Heliyon, 2022, 8, e09105.	1.4	1
7	Targeting Clostridioides difficile: New uses for old drugs. Drug Discovery Today, 2022, 27, 1862-1873.	3.2	7
8	PATZ1 (MAZR) Co-occupies Genomic Sites With p53 and Inhibits Liver Cancer Cell Proliferation via Regulating p27. Frontiers in Cell and Developmental Biology, 2021, 9, 586150.	1.8	2
9	Hsp90β interacts with MDM2 to suppress p53â€dependent senescence during skeletal muscle regeneration. Aging Cell, 2019, 18, e13003.	3.0	28
10	STAT3-Inducible Mouse ESCs: A Model to Study the Role of STAT3 in ESC Maintenance and Lineage Differentiation. Stem Cells International, 2018, 2018, 1-13.	1.2	8
11	User-Friendly Genetic Conditional Knockout Strategies by CRISPR/Cas9. Stem Cells International, 2018, 2018, 1-10.	1.2	1
12	Zfp553 Is Essential for Maintenance and Acquisition of Pluripotency. Stem Cells and Development, 2016, 25, 55-67.	1.1	5
13	Zfp322a Regulates Mouse ES Cell Pluripotency and Enhances Reprogramming Efficiency. PLoS Genetics, 2014, 10, e1004038.	1.5	21
14	Patz1 Regulates Embryonic Stem Cell Identity. Stem Cells and Development, 2014, 23, 1062-1073.	1.1	38
15	The histone H2A deubiquitinase Usp16 regulates embryonic stem cell gene expression and lineage commitment. Nature Communications, 2014, 5, 3818.	5.8	61
16	The dosage of Patz1 modulates reprogramming process. Scientific Reports, 2014, 4, 7519.	1.6	20
17	A genetic and developmental pathway from STAT3 to the OCT4–NANOG circuit is essential for maintenance of ICM lineages in vivo. Genes and Development, 2013, 27, 1378-1390.	2.7	151
18	Protein Arginine Methyltransferase 6 Regulates Embryonic Stem Cell Identity. Stem Cells and Development, 2012, 21, 2613-2622.	1.1	47

QIANG WU

#	Article	IF	CITATIONS
19	With or Without them: Essential Roles of Cofactors in ES Cells. Journal of Stem Cell Research & Therapy, 2012, 01, .	0.3	0
20	Mark the transition: chromatin modifications and cell fate decision. Cell Research, 2011, 21, 1388-1390.	5.7	4
21	Chromatin regulation landscape of embryonic stem cell identity. Bioscience Reports, 2011, 31, 77-86.	1.1	3
22	CARM1 is Required in Embryonic Stem Cells to Maintain Pluripotency and Resist Differentiation. Stem Cells, 2009, 27, 2637-2645.	1.4	101
23	BLIMP1 regulates cell growth through repression of p53 transcription. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1841-1846.	3.3	67
24	p73 supports cellular growth through c-Jun-dependent AP-1 transactivation. Nature Cell Biology, 2007, 9, 698-706.	4.6	60
25	A Global Map of p53 Transcription-Factor Binding Sites in the Human Genome. Cell, 2006, 124, 207-219.	13.5	1,060
26	Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nature Cell Biology, 2006, 8, 1114-1123.	4.6	501
27	The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genetics, 2006, 38, 431-440.	9.4	2,162
28	Sall4 Interacts with Nanog and Co-occupies Nanog Genomic Sites in Embryonic Stem Cells. Journal of Biological Chemistry, 2006, 281, 24090-24094.	1.6	253
29	p53 functions as a negative regulator of osteoblastogenesis, osteoblast-dependent osteoclastogenesis, and bone remodeling. Journal of Cell Biology, 2006, 172, 115-125.	2.3	225
30	The male seahorse synthesizes and secretes a novel C-type lectin into the brood pouch during early pregnancy. FEBS Journal, 2005, 272, 1221-1235.	2.2	36
31	Cross Talk in Hormonally Regulated Gene Transcription through Induction of Estrogen Receptor Ubiquitylation. Molecular and Cellular Biology, 2005, 25, 7386-7398.	1.1	45
32	Characterization of the Interaction of Wheat HMGa with Linear and Four-Way Junction DNAsâ€. Biochemistry, 2003, 42, 6596-6607.	1.2	14
33	Interaction of wheat high-mobility-group proteins with four-way-junction DNA and characterization of the structure and expression of HMGA gene. Archives of Biochemistry and Biophysics, 2003, 409, 357-366.	1.4	30
34	Rice HMGB1 protein recognizes DNA structures and bends DNA efficiently. Archives of Biochemistry and Biophysics, 2003, 411, 105-111.	1.4	52
35	Cloning and characterization of rice HMGB1 gene. Gene, 2003, 312, 103-109.	1.0	33
36	Jumonji Domain Containing 6 (Jmjd6) Promotes ES Cell Proliferation and Enhances Somatic Cell Reprogramming. SSRN Electronic Journal, 0, , .	0.4	0