Brian A Collins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8161522/publications.pdf

Version: 2024-02-01

45 papers 5,485 citations

257450 24 h-index 214800 47 g-index

48 all docs 48 docs citations

times ranked

48

5946 citing authors

#	Article	IF	CITATIONS
1	Structural control of mixed ionic and electronic transport in conducting polymers. Nature Communications, 2016, 7, 11287.	12.8	627
2	Absolute Measurement of Domain Composition and Nanoscale Size Distribution Explains Performance in PTB7:PC ₇₁ BM Solar Cells. Advanced Energy Materials, 2013, 3, 65-74.	19.5	605
3	Quantitative relations between interaction parameter, miscibility and function in organic solar cells. Nature Materials, 2018, 17, 253-260.	27.5	556
4	The influence of molecular orientation on organic bulk heterojunction solar cells. Nature Photonics, 2014, 8, 385-391.	31.4	439
5	Soft x-ray scattering facility at the Advanced Light Source with real-time data processing and analysis. Review of Scientific Instruments, 2012, 83, 045110.	1.3	420
6	The Importance of Fullerene Percolation in the Mixed Regions of Polymer–Fullerene Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2013, 3, 364-374.	19.5	412
7	Molecular Miscibility of Polymerâ^'Fullerene Blends. Journal of Physical Chemistry Letters, 2010, 1, 3160-3166.	4.6	362
8	Miscibility, Crystallinity, and Phase Development in P3HT/PCBM Solar Cells: Toward an Enlightened Understanding of Device Morphology and Stability. Journal of Physical Chemistry Letters, 2011, 2, 3135-3145.	4.6	301
9	Polarized X-ray scattering reveals non-crystalline orientational ordering in organic films. Nature Materials, 2012, 11, 536-543.	27.5	281
10	The Role of Regioregularity, Crystallinity, and Chain Orientation on Electron Transport in a High-Mobility n-Type Copolymer. Journal of the American Chemical Society, 2014, 136, 4245-4256.	13.7	226
11	Miscibility–Function Relations in Organic Solar Cells: Significance of Optimal Miscibility in Relation to Percolation. Advanced Energy Materials, 2018, 8, 1703058.	19.5	223
12	Correlating the Efficiency and Nanomorphology of Polymer Blend Solar Cells Utilizing Resonant Soft X-ray Scattering. ACS Nano, 2012, 6, 677-688.	14.6	149
13	Correlated Donor/Acceptor Crystal Orientation Controls Photocurrent Generation in Allâ€Polymer Solar Cells. Advanced Functional Materials, 2014, 24, 4068-4081.	14.9	144
14	Probing the pathways of free charge generation in organic bulk heterojunction solar cells. Nature Communications, 2018, 9, 2038.	12.8	104
15	Quantitative compositional analysis of organic thin films using transmission NEXAFS spectroscopy in an X-ray microscope. Journal of Electron Spectroscopy and Related Phenomena, 2012, 185, 119-128.	1.7	64
16	Fullerene-Dependent Miscibility in the Silole-Containing Copolymer PSBTBT-08. Macromolecules, 2011, 44, 9747-9751.	4.8	59
17	Mixed Domains Enhance Charge Generation and Extraction in Bulkâ∈Heterojunction Solar Cells with Smallâ∈Molecule Donors. Advanced Energy Materials, 2018, 8, 1702941.	19.5	43
18	Fullerene-Free Polymer Solar Cells with Highly Reduced Bimolecular Recombination and Field-Independent Charge Carrier Generation. Journal of Physical Chemistry Letters, 2014, 5, 2815-2822.	4.6	42

#	Article	IF	CITATIONS
19	Studying Polymer/Fullerene Intermixing and Miscibility in Laterally Patterned Films with Xâ€Ray Spectromicroscopy. Small, 2012, 8, 1920-1927.	10.0	39
20	Molecular and Energetic Order Dominate the Photocurrent Generation Process in Organic Solar Cells with Small Energetic Offsets. ACS Energy Letters, 2020, 5, 589-596.	17.4	36
21	Resonant soft Xâ€ray scattering in polymer science. Journal of Polymer Science, 2022, 60, 1199-1243.	3.8	27
22	Origins of polarization-dependent anisotropic X-ray scattering from organic thin films. Journal of Synchrotron Radiation, 2016, 23, 219-227.	2.4	26
23	Increased charge transfer state separationviareduced mixed phase interface in polymer solar cells. Journal of Materials Chemistry A, 2019, 7, 4536-4548.	10.3	26
24	Spectral Analysis for Resonant Soft X-Ray Scattering Enables Measurement of Interfacial Width in 3D Organic Nanostructures. Physical Review Letters, 2017, 119, 167801.	7.8	25
25	In Situ X-ray Scattering Studies of the Influence of an Additive on the Formation of a Low-Bandgap Bulk Heterojunction. Chemistry of Materials, 2017, 29, 2283-2293.	6.7	23
26	Synthesis, solidâ€state, and chargeâ€transport properties of conjugated polythiopheneâ€ <i>S</i> , <i>S</i> ,â€dioxides. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 48-56.	2.1	22
27	<i>GIWAXS-SIIRkit</i> : scattering intensity, indexing and refraction calculation toolkit for grazing-incidence wide-angle X-ray scattering of organic materials. Journal of Applied Crystallography, 2020, 53, 1108-1129.	4.5	22
28	Dopant stability and strain states in Co and Mn-doped Ge (001) epitaxial films. Physical Review B, 2008, 77, .	3.2	19
29	Connecting Molecular Conformation to Aggregation in P3HT Using Near Edge X-ray Absorption Fine Structure Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 21720-21728.	3.1	19
30	Study of magnetic anisotropy and magnetization reversal using the quadratic magnetooptical effect in epitaxial Co $<$ sub $><$ i $><$ (i $><$ /sub $>$ Mn $<$ sub $><$ i $><$ i $><$ /sub $>$ Ge $<$ sub $><$ i $><$ (i $><$ /sub $>$ (111) films. Journal of Physics Condensed Matter, 2009, 21, 296005.	1.8	14
31	Combinatorial synthesis and characterization of a ternary epitaxial film of Co and Mn doped Ge (001). Applied Surface Science, 2007, 254, 709-713.	6.1	13
32	High Sensitivity of Nonâ€Fullerene Organic Solar Cells Morphology and Performance to a Processing Additive. Small, 2022, 18, e2202411.	10.0	13
33	Anomalous x-ray diffraction study of disorders in epitaxial films of the Heusler alloy Co[sub 2]MnGe. Journal of Vacuum Science & Technology B. 2007, 25, 999. Structural and chemical ordering of Heusler Amni:math	1.3	12
34	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi mathvariant="normal">C</mml:mi><mml:msub><mml:mi mathvariant="normal">o</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:mi mathvariant="normal">M</mml:mi><mml:msub><mml:mi< td=""><td>3.2</td><td>10</td></mml:mi<></mml:msub></mml:mrow>	3.2	10
35	mathvariant="normal">n <mml:mi>y</mml:mi> <mml:mi mathvariant="normal">C On the Interplay between CT and Singlet Exciton Emission in Organic Solar Cells with Small Driving Force and Its Impact on Voltage Loss. Advanced Energy Materials, 2022, 12, .</mml:mi>	19.5	10
36	Label-free characterization of organic nanocarriers reveals persistent single molecule cores for hydrocarbon sequestration. Nature Communications, 2021, 12, 3123.	12.8	9

#	Article	IF	CITATIONS
37	Modifications in Morphology Resulting from Nanoimprinting Bulk Heterojunction Blends for Light Trapping Organic Solar Cell Designs. ACS Applied Materials & Samp; Interfaces, 2013, 5, 8225-8230.	8.0	8
38	High-resolution X-ray diffraction studies of combinatorial epitaxial Ge (001) thin-films on Ge (001) substrates. Applied Surface Science, 2007, 254, 714-719.	6.1	6
39	A NIST facility for resonant soft x-ray scattering measuring nano-scale soft matter structure at NSLS-II. Journal of Physics Condensed Matter, 2021, 33, 164001.	1.8	6
40	Evidence for Field-Dependent Charge Separation Caused by Mixed Phases in Polymer–Fullerene Organic Solar Cells. Journal of Physical Chemistry Letters, 2021, 12, 1847-1853.	4.6	5
41	Electrical edge effect induced photocurrent overestimation in low-light organic photovoltaics. Joule, 2022, 6, 1904-1917.	24.0	5
42	Epitaxial growth of (FeCo)[sub x]Ge[sub 1â^x](001). Journal of Vacuum Science & Technology B, 2007, 25, 1217.	1.3	4
43	Epitaxial growth of CoxMnySiz (111) thin films in the compositional range around the Heusler alloy Co2MnSi. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, .	1.2	4
44	Pressure-assisted thermal sterilization of avocado puree in high barrier polymeric packaging. LWT - Food Science and Technology, 2022, 155, 112960.	5.2	4
45	Evidence That Sharp Interfaces Suppress Recombination in Thick Organic Solar Cells. ACS Applied Materials & Solar Cells. A	8.0	3