
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8160598/publications.pdf Version: 2024-02-01

Μινοχινο Μμ

#	Article	IF	CITATIONS
1	Economical Pt-Free Catalysts for Counter Electrodes of Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2012, 134, 3419-3428.	6.6	798
2	Lowâ€Cost Molybdenum Carbide and Tungsten Carbide Counter Electrodes for Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2011, 50, 3520-3524.	7.2	552
3	Low-cost dye-sensitized solar cell based on nine kinds of carbon counter electrodes. Energy and Environmental Science, 2011, 4, 2308.	15.6	434
4	A novel catalyst of WO2 nanorod for the counter electrode of dye-sensitized solar cells. Chemical Communications, 2011, 47, 4535.	2.2	346
5	Economical and effective sulfide catalysts for dye-sensitized solar cells as counter electrodes. Physical Chemistry Chemical Physics, 2011, 13, 19298.	1.3	306
6	Recent Progress of Counter Electrode Catalysts in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16727-16742.	1.5	232
7	Platinumâ€Free Catalysts as Counter Electrodes in Dyeâ€Sensitized Solar Cells. ChemSusChem, 2012, 5, 1343-1357.	3.6	194
8	Two flexible counter electrodes based on molybdenum and tungsten nitrides for dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 10761.	6.7	160
9	Novel counter electrode catalysts of niobium oxides supersede Pt for dye-sensitized solar cells. Chemical Communications, 2011, 47, 11489.	2.2	151
10	Ptâ€like Behavior of Highâ€Performance Counter Electrodes Prepared from Binary Tantalum Compounds Showing High Electrocatalytic Activity for Dyeâ€5ensitized Solar Cells. ChemSusChem, 2013, 6, 411-416.	3.6	132
11	High-performance phosphide/carbon counter electrode for both iodide and organic redox couples in dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 11121.	6.7	129
12	Review on transition metal compounds based counter electrode for dye-sensitized solar cells. Journal of Energy Chemistry, 2018, 27, 703-712.	7.1	100
13	Fe/Co Double Hydroxide/Oxide Nanoparticles on Nâ€Doped CNTs as Highly Efficient Electrocatalyst for Rechargeable Liquid and Quasiâ€5olidâ€5tate Zinc–Air Batteries. Advanced Energy Materials, 2018, 8, 1801836.	10.2	94
14	Synthesis of Highly Effective Vanadium Nitride (VN) Peas as a Counter Electrode Catalyst in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 12625-12631.	1.5	85
15	Design a novel kind of open-ended carbon sphere for a highly effective counter electrode catalyst in dye-sensitized solar cells. Nano Energy, 2015, 11, 540-549.	8.2	83
16	Carbon Counter Electrodes in Dyeâ€6ensitized and Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 1906451.	7.8	74
17	Several highly efficient catalysts for Pt-free and FTO-free counter electrodes of dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 4009.	6.7	73
18	Counter electrode materials combined with redox couples in dye- and quantum dot-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 19638-19656.	5.2	68

#	Article	IF	CITATIONS
19	In Situ Synthesized Economical Tungsten Dioxide Imbedded in Mesoporous Carbon for Dye-Sensitized Solar Cells As Counter Electrode Catalyst. Journal of Physical Chemistry C, 2011, 115, 22598-22602.	1.5	64
20	One-step synthesis of nano-scaled tungsten oxides and carbides for dye-sensitized solar cells as counter electrode catalysts. Journal of Materials Chemistry A, 2013, 1, 7519.	5.2	63
21	Highly catalytic counter electrodes for organic redox couple of thiolate/disulfide in dye-sensitized solar cells. Applied Physics Letters, 2011, 98, .	1.5	58
22	Choose a reasonable counter electrode catalyst toward a fixed redox couple in dye-sensitized solar cells. Nano Energy, 2016, 21, 1-18.	8.2	55
23	High-efficiency flexible dye-sensitized solar cells fabricated by a novel friction-transfer technique. Electrochemistry Communications, 2010, 12, 1000-1003.	2.3	45
24	Electrospinning synthesis of high performance carbon nanofiber coated flower-like MoS2 nanosheets for dye-sensitized solar cells counter electrode. Electrochimica Acta, 2018, 280, 94-100.	2.6	44
25	Improvement of adhesion of Pt-free counter electrodes for low-cost dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 245, 66-71.	2.0	41
26	TiC/Pt composite catalyst as counter electrode for dye-sensitized solar cells with long-term stability and high efficiency. Journal of Materials Chemistry A, 2013, 1, 9672.	5.2	40
27	Transparent flexible Pt counter electrodes for high performance dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 22155.	6.7	39
28	SnSâ€Quantum Dot Solar Cells Using Novel TiC Counter Electrode and Organic Redox Couples. Chemistry - A European Journal, 2012, 18, 7862-7868.	1.7	39
29	Great improvement of catalytic activity of oxide counter electrodes fabricated in N2 atmosphere for dye-sensitized solar cells. Chemical Communications, 2013, 49, 1058.	2.2	39
30	Highly efficient catalysts for Co(ii/iii) redox couples in dye-sensitized solar cells. Chemical Communications, 2012, 48, 2600.	2.2	38
31	Hollow carbon spheres with artificial surface openings as highly effective supercapacitor electrodes. Electrochimica Acta, 2019, 298, 552-560.	2.6	37
32	Highly efficient and low cost Pt-based binary and ternary composite catalysts as counter electrode for dye-sensitized solar cells. Electrochimica Acta, 2013, 105, 671-676.	2.6	36
33	Highly efficient Mo ₂ C nanotubes as a counter electrode catalyst for organic redox shuttles in dye-sensitized solar cells. Chemical Communications, 2014, 50, 7625-7627.	2.2	36
34	Highly effective Co3S4/electrospun-carbon-nanofibers composite counter electrode synthesized with electrospun technique for cobalt redox electrolyte based on dye-sensitized solar cells. Journal of Power Sources, 2016, 326, 6-13.	4.0	36
35	A general approach towards carbon supported metal carbide composites for cobalt redox couple based dye-sensitized solar cells as counter electrodes. Journal of Power Sources, 2016, 332, 399-405.	4.0	36
36	Synthesis of highly effective MnO2 coated carbon nanofibers composites as low cost counter electrode for efficient dye-sensitized solar cells. Journal of Power Sources, 2017, 363, 9-15.	4.0	35

#	Article	IF	CITATIONS
37	Large-scale high-efficiency dye-sensitized solar cells based on a Pt/carbon spheres composite catalyst as a flexible counter electrode. Journal of Catalysis, 2017, 346, 62-69.	3.1	34
38	Highly efficient inorganic–organic heterojunction solar cells based on SnS-sensitized spherical TiO2 electrodes. Chemical Communications, 2012, 48, 6133.	2.2	33
39	Synthesis of highly effective Pt/carbon fiber composite counter electrode catalyst for dye-sensitized solar cells. Electrochimica Acta, 2015, 176, 997-1000.	2.6	33
40	Preparation of carbon nanofibers supported MoO2 composites electrode materials for application in dye-sensitized solar cells. Electrochimica Acta, 2018, 259, 188-195.	2.6	31
41	The impact of Fe3+ doping on the flexible polythiophene electrodes for supercapacitors. Journal of Electroanalytical Chemistry, 2018, 823, 527-530.	1.9	30
42	Optimization of the Performance of Dyeâ€Sensitized Solar Cells Based on Ptâ€Like TiC Counter Electrodes. European Journal of Inorganic Chemistry, 2012, 2012, 3557-3561.	1.0	29
43	Highly effective Pt/MoSi2 composite counter electrode catalyst for dye-sensitized solar cell. Journal of Power Sources, 2014, 263, 154-157.	4.0	29
44	Effect of ion doping on catalytic activity of MWCNT-polyaniline counter electrodes in dye-sensitized solar cells. Materials and Design, 2016, 104, 298-302.	3.3	25
45	A low-cost bio-inspired integrated carbon counter electrode for high conversion efficiency dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 14182.	1.3	24
46	Mo ₂ C microspheres and nanorods as counter electrode catalysts for iodide-free redox couples in dye-sensitized solar cells. Journal of Materials Chemistry C, 2016, 4, 6533-6538.	2.7	24
47	Design bifunctional nitrogen doped flexible carbon sphere electrode for dye-sensitized solar cell and supercapacitor. Electrochimica Acta, 2020, 334, 135582.	2.6	23
48	Performance of V2O3@C composites via a sol–gel precursor assisted by soluble starch as Pt-free counter electrodes for dye sensitized solar cells. Solar Energy, 2021, 213, 126-135.	2.9	23
49	Highly Effective 2D Layer Structured Titanium Carbide Electrode for Dye‣ensitized and Perovskite Solar Cells. ChemElectroChem, 2020, 7, 1149-1154.	1.7	22
50	High performance metal sulfide counter electrodes for organic sulfide redox couple in dye-sensitized solar cells. Materials Today Energy, 2018, 8, 1-7.	2.5	21
51	Hierarchical mesoporous MoO2 sphere as highly effective supercapacitor electrode. Journal of the Taiwan Institute of Chemical Engineers, 2019, 102, 212-217.	2.7	20
52	Molybdenum-doped Pt 3 Ni on carbon nanofibers as counter electrode for high-performance dye-sensitized solar cell. Electrochimica Acta, 2016, 219, 350-355.	2.6	18
53	High-efficiency magnetic carbon spheres counter electrode for dye-sensitized solar cell. Electrochimica Acta, 2018, 264, 312-318.	2.6	18
54	N-doped W2C derived from polyoxotungstate precursors by pyrolysis along the temperature gradient as Pt-free counter electrode in dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2022, 236, 111503.	3.0	17

#	Article	IF	CITATIONS
55	Transitionâ€Metalâ€Modified Polyaniline Nanofiber Counter Electrode for Dyeâ€Sensitized Solar Cells. ChemElectroChem, 2016, 3, 1922-1926.	1.7	15
56	Economically viable V2O3@activated carbon composite materials as counter electrodes for dye sensitized solar cells by single step reduction. Journal of Electroanalytical Chemistry, 2019, 835, 150-155.	1.9	15
57	Design bifunctional vanadium carbide embedded in mesoporous carbon electrode for supercapacitor and dye-sensitized solar cell. Solar Energy, 2020, 206, 848-854.	2.9	15
58	Composites of Vanadium (III) Oxide (V ₂ O ₃) Incorporating with Amorphous C as Pt-Free Counter Electrodes for Low-Cost and High-Performance Dye-Sensitized Solar Cells. ACS Omega, 2021, 6, 11183-11191.	1.6	15
59	Performances of MnWO ₄ @AC mixed oxide composite materials as Pt-free counter electrodes for high efficiently dye sensitized solar cells. New Journal of Chemistry, 2021, 45, 1686-1694.	1.4	15
60	Designing Multifunctional Co and Fe Co-Doped MoS ₂ Nanocube Electrodes for Dye-Sensitized Solar Cells, Perovskite Solar Cells, and a Supercapacitor. ACS Omega, 2021, 6, 24931-24939.	1.6	14
61	Vanadium oxides (V2O5) prepared with different methods for application as counter electrodes in dye-sensitized solar cells (DSCs). Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	13
62	Mesoporous carbon-imbedded W ₂ C composites as flexible counter electrodes for dye-sensitized solar cells. Journal of Materials Chemistry C, 2016, 4, 6778-6783.	2.7	13
63	Highly efficient dye-sensitized solar cells achieved through using Pt-free Nb2O5/C composite counter electrode and iodide-free redox couples. Journal of Power Sources, 2016, 308, 37-43.	4.0	13
64	Electrospun and hydrothermal techniques to synthesize the carbon-coated nickel sulfide microspheres/carbon nanofibers nanocomposite for high performance liquid-state solar cells. Composites Part B: Engineering, 2019, 173, 107026.	5.9	13
65	Synthesis, crystal structure and photoresponse of tetragonal phase single crystal CH ₃ NH ₃ PbCl ₃ . Chemical Communications, 2020, 56, 6404-6407.	2.2	13
66	A comparative evaluation of catalytic activities of carbon molecular sieve counter electrode toward different redox couples in dye-sensitized solar cells. Electrochimica Acta, 2016, 200, 168-173.	2.6	12
67	Effect of the compact Ti layer on the efficiency of dye-sensitized solar cells assembled using stainless steel sheets. Applied Surface Science, 2013, 275, 222-226.	3.1	11
68	Synthesis and performance of La2O3@MWCNT composite materials as Pt-free counter electrodes for dye-sensitized solar cells. Ionics, 2018, 24, 4055-4061.	1.2	11
69	The effect of polyaniline electrode doped with transition metal ions for supercapacitors. Polymers for Advanced Technologies, 2021, 32, 2082-2092.	1.6	11
70	Highly effective 2D layered carbides counter electrode for iodide redox couple regeneration in dye-sensitized solar cells. Electrochimica Acta, 2021, 392, 138983.	2.6	11
71	Synthesis of La2MoO6@MWCNTs composite catalysts as Pt-free counter electrodes for dye-sensitized solar cell. Journal of Rare Earths, 2018, 36, 1278-1283.	2.5	10
72	Facile Synthesis of V _{<i>x</i>} A _{1–<i>x</i>} (<i>x</i> = 0–1, A= C, O) Multiphase Composites Derived from Polyoxovanadate Precursors by Pyrolysis along a Temperature Gradient as Pt-free Counter Electrodes for High-Efficient Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2021, 125, 15176-15184.	1.5	10

#	Article	IF	CITATIONS
73	An Autocatalytic Factor in the Loss of Efficiency in Dye ensitized Solar Cells. ChemCatChem, 2012, 4, 1255-1258.	1.8	9
74	The Impact of Metal Ion Doping on the Performance of Flexible Poly(3,4-ethylenedioxythiophene) (PEDOT) Cathode in Dye-Sensitized Solar Cells. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 340, 29-34.	2.0	9
75	A flexible 3-D structured carbon molecular sieve@PEDOT composite electrode for supercapacitor. Journal of Electroanalytical Chemistry, 2018, 826, 191-197.	1.9	9
76	Studies of high-efficient and low-cost dye-sensitized solar cells. Frontiers of Optoelectronics in China, 2011, 4, 103-107.	0.2	8
77	Fabricating TiO 2 film with a facile spray-coating technique for dye-sensitized solar cells. Materials and Design, 2016, 98, 108-112.	3.3	8
78	A novel carbon bead string cathode for dye-sensitized solar cells. Electrochimica Acta, 2017, 255, 9-14.	2.6	7
79	Designing Metal-Sulfide-Sphere Counter-Electrode Catalysts for ZnO-Nanorod-Array-Based Quantum-Dot-Sensitized Solar Cells. European Journal of Inorganic Chemistry, 2017, 2017, 3787-3793.	1.0	7
80	Synthesis of transition-metal (VIB)-compound catalysts as counter electrodes in dye-sensitized solar cells. Ionics, 2018, 24, 883-890.	1.2	7
81	Room temperature solution processed tungsten carbide as an efficient hole extraction layer for organic photovoltaics. Journal of Materials Chemistry A, 2014, 2, 3734-3740.	5.2	6
82	Highly effective carbon sphere counter electrodes based on different substrates for dye-sensitized solar cell. Journal of Colloid and Interface Science, 2017, 506, 518-523.	5.0	6
83	Designing highly effective mesoporous Carbon-based counter electrodes for liquid Electrolyte-based and Quasi-solid Dye-sensitized solar cells. Journal of Electroanalytical Chemistry, 2022, 908, 116104.	1.9	6
84	The effect of transition metal ions (M 2+ = Mn 2+ , Ni 2+ , Co 2+ , Cu 2+) on the chemical synthesis polyaniline as counter electrodes in dye-sensitized solar cells. Chinese Journal of Chemical Engineering, 2017, 25, 671-675.	1.7	5
85	Fast self-healing solid polymer electrolyte with high ionic conductivity for Lithium metal batteries. New Journal of Chemistry, 0, , .	1.4	5
86	Multifunctional boron-doped carbon fiber electrodes synthesized by electrospinning for supercapacitors, dye-sensitized solar cells, and photocapacitors. Surfaces and Interfaces, 2022, 31, 101983.	1.5	5
87	Effect of Transition-Metal Ion Doping on Electrocatalytic Activities of graphene/polyaniline-M ²⁺ (Mn ²⁺ , Co ²⁺ , Ni ^{2+,} and) Tj ETQq1 Polymer-Plastics Technology and Materials, 2019, 58, 40-46.	10.7843	314 rgBT /O
88	Recent Progresses in Carbon Counter Electrode Materials for Perovskite Solar Cells and Modules. ChemElectroChem, 2021, 8, 4396-4411.	1.7	4
89	Synthesis, structure, mobility and memristor properties of tetragonal CH ₃ NH ₃ PbBr ₃ perovskite single crystals. Dalton Transactions, 2021, 50, 10365-10368.	1.6	3
90	Construction of multilevel network structured carbon nanofiber counter electrode and back interface engineering in all inorganic HTL–free perovskite solar cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129420.	2.3	3

#	Article	IF	CITATIONS
91	Assembly of CdS nanoparticles on boron and fluoride co-doped TiO2 nanofilm for solar energy conversion applications. RSC Advances, 2017, 7, 29065-29070.	1.7	2
92	PEDOT@4Aâ€Molecular Sieve Composite Electrode for Supercapacitor. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900188.	0.8	2
93	Fabrication and Application of a Carbon Counter Electrode with Excellent Adhesion Properties for Dye-Sensitized Solar Cells. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2012, 28, 1739-1744.	2.2	2
94	Co nanoparticles embedded in wheat-like porous carbon nanofibers as bifunctional electrocatalysts for rechargeable zinc-air batteries. Electrochimica Acta, 2022, 411, 140090.	2.6	2
95	Design of a specific two–dimensional layered V2C counter electrode for highly effective and stable rigid and flexible quasi–solid–state dye–sensitized solar cells. Electrochimica Acta, 2022, 427, 140842.	2.6	2
96	Low-Cost Pt-Free Counter Electrode Catalysts in Dye-Sensitized Solar Cells. Green Energy and Technology, 2014, , 77-87.	0.4	1
97	Preparation of FTO-free and Coal Based Carbon Counter Electrodes for Dye Sensitized Solar Cells. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2013, 28, 273-277.	0.6	1
98	The modified W2C@C composites derived from the polyoxotungstate-based organic complexes assisted by pyrrole for efficient counter electrode in dye-sensitized solar cells. Surfaces and Interfaces, 2022, 28, 101628.	1.5	1
99	Optimization of the Photoelectric Performance of Large-Scale All-Flexible Dye-Sensitized Solar Cells. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2011, 27, 2577-2582.	2.2	0