Catherine C Hedrick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8160355/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding the tumor immune microenvironment (TIME) for effective therapy. Nature Medicine, 2018, 24, 541-550.	30.7	3,421
2	Atlas of the Immune Cell Repertoire in Mouse Atherosclerosis Defined by Single-Cell RNA-Sequencing and Mass Cytometry. Circulation Research, 2018, 122, 1675-1688.	4.5	377
3	Patrolling monocytes control tumor metastasis to the lung. Science, 2015, 350, 985-990.	12.6	370
4	Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature, 2018, 558, 301-306.	27.8	359
5	Neutrophils: New insights and open questions. Science Immunology, 2018, 3, .	11.9	348
6	Monocyte heterogeneity and functions in cancer. Journal of Leukocyte Biology, 2019, 106, 309-322.	3.3	330
7	Nonclassical Monocytes in Health and Disease. Annual Review of Immunology, 2019, 37, 439-456.	21.8	294
8	Nonclassical Patrolling Monocyte Function in the Vasculature. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1306-1316.	2.4	274
9	Neutrophils in cancer: heterogeneous and multifaceted. Nature Reviews Immunology, 2022, 22, 173-187.	22.7	241
10	Meta-Analysis of Leukocyte Diversity in Atherosclerotic Mouse Aortas. Circulation Research, 2020, 127, 402-426.	4.5	207
11	Identification of an Early Unipotent Neutrophil Progenitor with Pro-tumoral Activity in Mouse and Human Bone Marrow. Cell Reports, 2018, 24, 2329-2341.e8.	6.4	159
12	The cholesterol transporter ABCG1 links cholesterol homeostasis and tumour immunity. Nature Communications, 2015, 6, 6354.	12.8	146
13	Human Blood Monocyte Subsets. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1548-1558.	2.4	141
14	Human Monocyte Heterogeneity as Revealed by High-Dimensional Mass Cytometry. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 25-36.	2.4	130
15	Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nature Communications, 2018, 9, 1095.	12.8	129
16	Deleting an Nr4a1 Super-Enhancer Subdomain Ablates Ly6C low Monocytes while Preserving Macrophage Gene Function. Immunity, 2016, 45, 975-987.	14.3	127
17	A Critical Role for ABCG1 in Macrophage Inflammation and Lung Homeostasis. Journal of Immunology, 2008, 180, 4273-4282.	0.8	110
18	Transcription factor Nr4a1 couples sympathetic and inflammatory cues in CNS-recruited macrophages to limit neuroinflammation. Nature Immunology, 2015, 16, 1228-1234.	14.5	104

CATHERINE C HEDRICK

#	Article	IF	CITATIONS
19	Pathogenic Autoimmunity in Atherosclerosis Evolves From Initially Protective Apolipoprotein B ₁₀₀ –Reactive CD4 ⁺ T-Regulatory Cells. Circulation, 2020, 142, 1279-1293.	1.6	100
20	M1 ^{hot} tumor-associated macrophages boost tissue-resident memory T cells infiltration and survival in human lung cancer. , 2020, 8, e000778.		99
21	Perivascular localization of macrophages in the intestinal mucosa is regulated by Nr4a1 and the microbiome. Nature Communications, 2020, 11, 1329.	12.8	75
22	Lymphocytes in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 253-257.	2.4	73
23	Coexpression of CD71 and CD117 Identifies an Early Unipotent Neutrophil Progenitor Population in Human Bone Marrow. Immunity, 2020, 53, 319-334.e6.	14.3	70
24	Integrated single-cell transcriptome analysis reveals heterogeneity of esophageal squamous cell carcinoma microenvironment. Nature Communications, 2021, 12, 7335.	12.8	69
25	Scavenger Receptor CD36 Directs Nonclassical Monocyte Patrolling Along the Endothelium During Early Atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2043-2052.	2.4	65
26	Patrolling Mechanics of Non-Classical Monocytes in Vascular Inflammation. Frontiers in Cardiovascular Medicine, 2017, 4, 80.	2.4	64
27	Loss of ABCG1 influences regulatory T cell differentiation and atherosclerosis. Journal of Clinical Investigation, 2016, 126, 3236-3246.	8.2	60
28	2014 Jeffrey M. Hoeg Award Lecture. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1722-1733.	2.4	52
29	Cutting Edge: The Orphan Nuclear Receptor Nr4a1 Regulates CD8+ T Cell Expansion and Effector Function through Direct Repression of Irf4. Journal of Immunology, 2015, 195, 3515-3519.	0.8	40
30	The transcription factor NR4A1 is essential for the development of a novel macrophage subset in the thymus. Scientific Reports, 2015, 5, 10055.	3.3	39
31	The Nuclear Receptor Nr4a1 Controls CD8 T Cell Development Through Transcriptional Suppression of Runx3. Scientific Reports, 2015, 5, 9059.	3.3	33
32	CyTOF mass cytometry reveals phenotypically distinct human blood neutrophil populations differentially correlated with melanoma stage. , 2020, 8, e000473.		31
33	Patrolling Monocytes Control NK Cell Expression of Activating and Stimulatory Receptors to Curtail Lung Metastases. Journal of Immunology, 2020, 204, 192-198.	0.8	28
34	ATP Binding Cassette Transporter ABCA7 Regulates NKT Cell Development and Function by Controlling CD1d Expression and Lipid Raft Content. Scientific Reports, 2017, 7, 40273.	3.3	27
35	Gammadelta (γÎ) T lymphocytes do not impact the development of early atherosclerosis. Atherosclerosis, 2014, 234, 265-269.	0.8	25
36	Cellular sensing of extracellular purine nucleosides triggers an innate IFN-β response. Science Advances, 2020, 6, eaba3688.	10.3	24

CATHERINE C HEDRICK

#	Article	IF	CITATIONS
37	Functional crosstalk between T cells and monocytes in cancer and atherosclerosis. Journal of Leukocyte Biology, 2020, 108, 297-308.	3.3	17
38	Single cell transcriptomics and TCR reconstruction reveal CD4 T cell response to MHC-II-restricted APOB epitope in human cardiovascular disease. , 2022, 1, 462-475.		16
39	Frontline Science: Kindlin-3 is essential for patrolling and phagocytosis functions of nonclassical monocytes during metastatic cancer surveillance. Journal of Leukocyte Biology, 2020, 107, 883-892.	3.3	15
40	Neuropilin-1 Expression on CD4 T Cells Is Atherogenic and Facilitates T Cell Migration to the Aorta in Atherosclerosis. Journal of Immunology, 2019, 203, 3237-3246.	0.8	14
41	Cardif (MAVS) Regulates the Maturation of NK Cells. Journal of Immunology, 2015, 195, 2157-2167.	0.8	13
42	Stressing out stem cells: linking stress and hematopoiesis in cardiovascular disease. Nature Medicine, 2014, 20, 707-708.	30.7	12
43	Atherosclerosis Impairs Naive CD4 T-Cell Responses via Disruption of Glycolysis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2387-2398.	2.4	11
44	Naive CD8 + T Cells Expressing CD95 Increase Human Cardiovascular Disease Severity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2845-2859.	2.4	8
45	Preparation of Whole Bone Marrow for Mass Cytometry Analysis of Neutrophil-lineage Cells. Journal of Visualized Experiments, 2019, , .	0.3	7
46	Bone Marrow Transplantation Rescues Monocyte Recruitment Defect and Improves Cystic Fibrosis in Mice. Journal of Immunology, 2022, 208, 745-752.	0.8	7
47	CD33 Expression on Peripheral Blood Monocytes Predicts Efficacy of Anti-PD-1 Immunotherapy Against Non-Small Cell Lung Cancer. Frontiers in Immunology, 2022, 13, 842653.	4.8	7
48	Hematopoietic stem cells gone rogue. Science, 2017, 355, 798-799.	12.6	4
49	Update on Gender Equity in Immunology, 2001 to 2016. Journal of Immunology, 2016, 197, 3751-3753.	0.8	2
50	The atypical small GTPase GEM/Kir is a negative regulator of the NADPH oxidase and NETs production through macroautophagy. Journal of Leukocyte Biology, 2021, 110, 629-649.	3.3	2
51	Flow Cytometry and for Measuring the Immune Infiltrate in Atherosclerotic Arteries. Methods in Molecular Biology, 2022, 2419, 779-800.	0.9	1
52	Abstract 87: Sterol-Mediated Regulation of γδT Lymphocytes. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, .	2.4	0
53	Abstract 544: Nrp-1+Foxp3-CD4 T Cells Are a Novel Subset of T Lymphocytes that Are Induced in Aorta During Development of Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, .	2.4	0
54	Abstract 408: Identifying the Molecular Basis of Monocyte Development Using Enhancer Profiling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	2.4	0

CATHERINE C HEDRICK

#	Article	IF	CITATIONS
55	Abstract 20: Apolipoprotein A-I Influences Regulatory T Cell Development and Proliferation in Homeostasis and Atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	2.4	0
56	Abstract 361: Oxidized Phospholipids Are Proinflammatory and Proatherogenic. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	2.4	0
57	Abstract 1: Human Monocyte Diversity in Cardiovascular Disease Revealed by Mass Cytometry. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, .	2.4	0
58	Abstract 61: T CellSpecific Deficiency of ABCG1 Protects Against Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, .	2.4	0