Sarka Tumova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8159955/publications.pdf Version: 2024-02-01

SADKA ΤΗΜΟΎΛ

#	Article	IF	CITATIONS
1	Effects of quercetin and metabolites on uric acid biosynthesis and consequences for gene expression in the endothelium. Free Radical Biology and Medicine, 2021, 162, 191-201.	1.3	13
2	A decade with the juvenile hormone receptor. Advances in Insect Physiology, 2021, 60, 37-85.	1.1	19
3	Binding of de novo synthesized radiolabeled juvenile hormone (JH III) by JH receptors from the Cuban subterranean termite Prorhinotermes simplex and the German cockroach Blattella germanica. Insect Biochemistry and Molecular Biology, 2021, 139, 103671.	1.2	7
4	Bridgehead Modifications of Englerin A Reduce TRPC4 Activity and Intravenous Toxicity but not Cell Growth Inhibition. ACS Medicinal Chemistry Letters, 2020, 11, 1711-1716.	1.3	1
5	The effect of quercetin on endothelial cells is modified by heterocellular interactions. Food and Function, 2020, 11, 3916-3925.	2.1	2
6	Indirect Chronic Effects of an Oleuropein-Rich Olive Leaf Extract on Sucrase-Isomaltase In Vitro and In Vivo. Nutrients, 2019, 11, 1505.	1.7	7
7	Inhibition of intestinal glucose transport by polyphenols: a mechanism for indirect attenuation of cholesterol absorption?. Food and Function, 2019, 10, 3127-3134.	2.1	4
8	Long term treatment with quercetin in contrast to the sulfate and glucuronide conjugates affects HIF11± stability and Nrf2 signaling in endothelial cells and leads to changes in glucose metabolism. Free Radical Biology and Medicine, 2019, 137, 158-168.	1.3	17
9	Gut microbiome catabolites as novel modulators of muscle cell glucose metabolism. FASEB Journal, 2019, 33, 1887-1898.	0.2	51
10	Acute metabolic actions of the major polyphenols in chamomile: an in vitro mechanistic study on their potential to attenuate postprandial hyperglycaemia. Scientific Reports, 2018, 8, 5471.	1.6	61
11	Differential patterns of inhibition of the sugar transporters GLUT2, GLUT5 and GLUT7 by flavonoids. Biochemical Pharmacology, 2018, 152, 11-20.	2.0	33
12	Quercetin preserves redox status and stimulates mitochondrial function in metabolically-stressed HepG2 cells. Free Radical Biology and Medicine, 2018, 129, 296-309.	1.3	40
13	Chronic exposure to short-chain fatty acids modulates transport and metabolism of microbiome-derived phenolics in human intestinal cells. Journal of Nutritional Biochemistry, 2017, 39, 156-168.	1.9	47
14	Transendothelial glucose transport is not restricted by extracellular hyperglycaemia. Vascular Pharmacology, 2016, 87, 219-229.	1.0	22
15	Cellular Asymmetric Catalysis by UDP-glucuronosyltransferase 1A8 Shows Functional Localization to the Basolateral Plasma Membrane. Journal of Biological Chemistry, 2015, 290, 7622-7633.	1.6	8
16	Expression of a long variant of CRACR2A that belongs to the Rab GTPase protein family in endothelial cells. Biochemical and Biophysical Research Communications, 2015, 456, 398-402.	1.0	15
17	Orai3 Surface Accumulation and Calcium Entry Evoked by Vascular Endothelial Growth Factor. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1987-1994.	1.1	27
18	Piezo1 integration of vascular architecture with physiological force. Nature, 2014, 515, 279-282.	13.7	813

Sarka Tumova

#	Article	IF	CITATIONS
19	RAGE-Mediated Cell Signaling. Methods in Molecular Biology, 2013, 963, 239-263.	0.4	74
20	Inhibition of endothelial cell <scp><scp>Ca</scp>²⁺</scp> entry and transient receptor potential channels by <scp>S</scp> igmaâ€1 receptor ligands. British Journal of Pharmacology, 2013, 168, 1445-1455.	2.7	48
21	Pregnenolone sulphate-independent inhibition of TRPM3 channels by progesterone. Cell Calcium, 2012, 51, 1-11.	1.1	72
22	GVI phospholipase A2 role in the stimulatory effect of sphingosine-1-phosphate on TRPC5 cationic channels. Cell Calcium, 2011, 50, 343-350.	1.1	19
23	TRPC1 transcript variants, inefficient nonsense-mediated decay and low up-frameshift-1 in vascular smooth muscle cells. BMC Molecular Biology, 2011, 12, 30.	3.0	6
24	Orai1 and CRAC Channel Dependence of VEGF-Activated Ca ²⁺ Entry and Endothelial Tube Formation. Circulation Research, 2011, 108, 1190-1198.	2.0	172
25	Heparan sulfate proteoglycan syndecan-3 is a novel receptor for GDNF, neurturin, and artemin. Journal of Cell Biology, 2011, 192, 153-169.	2.3	164
26	Analysis of proinflammatory activity of highly purified eukaryotic recombinant HMGB1 (amphoterin). Journal of Leukocyte Biology, 2007, 81, 49-58.	1.5	190
27	The Two Thrombospondin Type I Repeat Domains of HB-GAM Display a Cooperative Function in N-syndecan Binding and Regulation of Synaptic Plasticity. Scientific World Journal, The, 2006, 6, 406-409.	0.8	4
28	N-syndecan deficiency impairs neural migration in brain. Journal of Cell Biology, 2006, 174, 569-580.	2.3	114
29	The Two Thrombospondin Type I Repeat Domains of the Heparin-binding Growth-associated Molecule Bind to Heparin/Heparan Sulfate and Regulate Neurite Extension and Plasticity in Hippocampal Neurons. Journal of Biological Chemistry, 2005, 280, 41576-41583.	1.6	38
30	Syndecan-4 Associates with α-Actinin. Journal of Biological Chemistry, 2003, 278, 7617-7623.	1.6	100
31	Epidermal transformation leads to increased perlecan synthesis with heparin-binding-growth-factor affinity. Biochemical Journal, 2001, 355, 517.	1.7	15
32	Heparan Sulfate Chains from Glypican and Syndecans Bind the Hep II Domain of Fibronectin Similarly Despite Minor Structural Differences. Journal of Biological Chemistry, 2000, 275, 9410-9417.	1.6	103
33	Syndecan-4 Binding to the High Affinity Heparin-Binding Domain of Fibronectin Drives Focal Adhesion Formation in Fibroblasts. Archives of Biochemistry and Biophysics, 2000, 374, 66-72.	1.4	203
34	Heparan sulfate proteoglycans on the cell surface: versatile coordinators of cellular functions. International Journal of Biochemistry and Cell Biology, 2000, 32, 269-288.	1.2	338
35	Basic fibroblast growth factor does not prevent heparan sulphate proteoglycan catabolism in intact cells, but it alters the distribution of the glycosaminoglycan degradation products. Biochemical Journal, 1999, 337, 471-481.	1.7	30
36	Basic fibroblast growth factor does not prevent heparan sulphate proteoglycan catabolism in intact cells, but it alters the distribution of the glycosaminoglycan degradation products. Biochemical Journal, 1999, 337, 471.	1.7	10

#	Article	IF	CITATIONS
37	The Interaction between Basic Fibroblast Growth Factor and Heparan Sulfate Can Prevent the in Vitro Degradation of the Glycosaminoglycan by Chinese Hamster Ovary Cell Heparanases. Journal of Biological Chemistry, 1997, 272, 9078-9085.	1.6	29
38	Aβ(1–40) Prevents Heparanase-catalyzed Degradation of Heparan Sulfate Glycosaminoglycans and Proteoglycans in Vitro. Journal of Biological Chemistry, 1997, 272, 17005-17011.	1.6	45