List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8159835/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxytocin, Vasopressin, and the Neurogenetics of Sociality. Science, 2008, 322, 900-904.	12.6	1,518
2	The neurobiology of pair bonding. Nature Neuroscience, 2004, 7, 1048-1054.	14.8	1,347
3	The neurobiology of attachment. Nature Reviews Neuroscience, 2001, 2, 129-136.	10.2	1,030
4	Social amnesia in mice lacking the oxytocin gene. Nature Genetics, 2000, 25, 284-288.	21.4	999
5	Oxytocin in the Medial Amygdala is Essential for Social Recognition in the Mouse. Journal of Neuroscience, 2001, 21, 8278-8285.	3.6	938
6	Oxytocin and the neural mechanisms regulating social cognition and affiliative behavior. Frontiers in Neuroendocrinology, 2009, 30, 534-547.	5.2	715
7	Pervasive social deficits, but normal parturition, in oxytocin receptor-deficient mice. Proceedings of the United States of America, 2005, 102, 16096-16101.	7.1	679
8	Enhanced partner preference in a promiscuous species by manipulating the expression of a single gene. Nature, 2004, 429, 754-757.	27.8	598
9	Neuropeptidergic regulation of affiliative behavior and social bonding in animals. Hormones and Behavior, 2006, 50, 506-517.	2.1	558
10	Microsatellite Instability Generates Diversity in Brain and Sociobehavioral Traits. Science, 2005, 308, 1630-1634.	12.6	511
11	Evidence That Oxytocin Exerts Anxiolytic Effects via Oxytocin Receptor Expressed in Serotonergic Neurons in Mice. Journal of Neuroscience, 2009, 29, 2259-2271.	3.6	497
12	Oxytocin-dependent consolation behavior in rodents. Science, 2016, 351, 375-378.	12.6	478
13	Profound Impairment in Social Recognition and Reduction in Anxiety-Like Behavior in Vasopressin V1a Receptor Knockout Mice. Neuropsychopharmacology, 2004, 29, 483-493.	5.4	471
14	Cellular Mechanisms of Social Attachment. Hormones and Behavior, 2001, 40, 133-138.	2.1	457
15	The Neuroendocrine Basis of Social Recognition. Frontiers in Neuroendocrinology, 2002, 23, 200-224.	5.2	451
16	Increased affiliative response to vasopressin in mice expressing the V1a receptor from a monogamous vole. Nature, 1999, 400, 766-768.	27.8	439
17	The biology of mammalian parenting and its effect on offspring social development. Science, 2014, 345, 771-776.	12.6	416
18	Oxytocin, vasopressin, and social recognition in mammals. Peptides, 2004, 25, 1565-1574.	2.4	412

#	Article	IF	CITATIONS
19	The Developmental Neurobiology of Autism Spectrum Disorder. Journal of Neuroscience, 2006, 26, 6897-6906.	3.6	384
20	The V1a Vasopressin Receptor Is Necessary and Sufficient for Normal Social Recognition: A Gene Replacement Study. Neuron, 2005, 47, 503-513.	8.1	326
21	Infant Vocalization, Adult Aggression, and Fear Behavior of an Oxytocin Null Mutant Mouse. Hormones and Behavior, 2000, 37, 145-155.	2.1	322
22	Neuroendocrine bases of monogamy. Trends in Neurosciences, 1998, 21, 71-75.	8.6	284
23	Autoradiographic and in situ hybridization localization of corticotropin-releasing factor 1 and 2 receptors in nonhuman primate brain. Journal of Comparative Neurology, 1999, 408, 365-377.	1.6	283
24	Statistical and Methodological Considerations for the Interpretation of Intranasal Oxytocin Studies. Biological Psychiatry, 2016, 79, 251-257.	1.3	274
25	Variation in Oxytocin Receptor Density in the Nucleus Accumbens Has Differential Effects on Affiliative Behaviors in Monogamous and Polygamous Voles. Journal of Neuroscience, 2009, 29, 1312-1318.	3.6	269
26	Facilitation of Affiliation and Pair-Bond Formation by Vasopressin Receptor Gene Transfer into the Ventral Forebrain of a Monogamous Vole. Journal of Neuroscience, 2001, 21, 7392-7396.	3.6	267
27	Characterization of the oxytocin system regulating affiliative behavior in female prairie voles. Neuroscience, 2009, 162, 892-903.	2.3	266
28	Neural mechanisms of mother–infant bonding and pair bonding: Similarities, differences, and broader implications. Hormones and Behavior, 2016, 77, 98-112.	2.1	253
29	Oxytocin, vasopressin and pair bonding: implications for autism. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 2187-2198.	4.0	251
30	Species Differences in Paternal Behavior and Aggression in Peromyscus and Their Associations with Vasopressin Immunoreactivity and Receptors. Hormones and Behavior, 1999, 36, 25-38.	2.1	244
31	The neural mechanisms and circuitry of the pair bond. Nature Reviews Neuroscience, 2018, 19, 643-654.	10.2	243
32	Oxytocin and Vasopressin Receptors and Species-Typical Social Behaviors. Hormones and Behavior, 1999, 36, 212-221.	2.1	236
33	The behavioral, anatomical and pharmacological parallels between social attachment, love and addiction. Psychopharmacology, 2012, 224, 1-26.	3.1	235
34	The prairie vole: an emerging model organism for understanding the social brain. Trends in Neurosciences, 2010, 33, 103-109.	8.6	215
35	Neuroanatomical evidence for reciprocal regulation of the corticotrophin-releasing factor and oxytocin systems in the hypothalamus and the bed nucleus of the stria terminalis of the rat: Implications for balancing stress and affect. Psychoneuroendocrinology, 2011, 36, 1312-1326.	2.7	210
36	Oxytocin and vasopressin neural networks: Implications for social behavioral diversity and translational neuroscience. Neuroscience and Biobehavioral Reviews, 2017, 76, 87-98.	6.1	209

#	Article	IF	CITATIONS
37	Species differences in Vâ,a receptor gene expression in monogamous and nonmonogamous voles: Behavioral consequences Behavioral Neuroscience, 1997, 111, 599-605.	1.2	204
38	Social approach behaviors in oxytocin knockout mice: Comparison of two independent lines tested in different laboratory environments. Neuropeptides, 2007, 41, 145-163.	2.2	204
39	The oxytocin system in drug discovery for autism: Animal models and novel therapeutic strategies. Hormones and Behavior, 2012, 61, 340-350.	2.1	190
40	The CRF System Mediates Increased Passive Stress-Coping Behavior Following the Loss of a Bonded Partner in a Monogamous Rodent. Neuropsychopharmacology, 2009, 34, 1406-1415.	5.4	186
41	Common polymorphism in the oxytocin receptor gene (<i>OXTR</i>) is associated with human social recognition skills. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1987-1992.	7.1	184
42	The neurobiology of social recognition, approach, and avoidance. Biological Psychiatry, 2002, 51, 18-26.	1.3	176
43	The impact of early life family structure on adult social attachment, alloparental behavior, and the neuropeptide systems regulating affiliative behaviors in the monogamous prairie vole (Microtus) Tj ETQq1 1 0.	784 314 rgBT	/Diverlock 1
44	Oxytocin-Induced Analgesia and Scratching Are Mediated by the Vasopressin-1A Receptor in the Mouse. Journal of Neuroscience, 2010, 30, 8274-8284.	3.6	175
45	Can oxytocin treat autism?. Science, 2015, 347, 825-826.	12.6	175
46	Estrogen receptor \hat{I}_{\pm} is essential for induction of oxytocin receptor by estrogen. NeuroReport, 1998, 9, 933-936.	1.2	173
47	The neuroanatomical distribution of oxytocin receptor binding and mRNA in the male rhesus macaque (Macaca mulatta). Psychoneuroendocrinology, 2014, 45, 128-141.	2.7	172
48	Neurobiological mechanisms of social attachment and pair bonding. Current Opinion in Behavioral Sciences, 2015, 3, 38-44.	3.9	170
49	Oxytocin, Neural Plasticity, and Social Behavior. Annual Review of Neuroscience, 2021, 44, 359-381.	10.7	168
50	Anterior hypothalamic vasopressin regulates pair-bonding and drug-induced aggression in a monogamous rodent. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19144-19149.	7.1	157
51	An evolutionary framework for studying mechanisms of social behavior. Trends in Ecology and Evolution, 2014, 29, 581-589.	8.7	157
52	Viral vector-mediated gene transfer of the vole V1a vasopressin receptor in the rat septum: improved social discrimination and active social behaviour. European Journal of Neuroscience, 2003, 18, 403-411.	2.6	150
53	Ventral striatopallidal oxytocin and vasopressin V1a receptors in the monogamous prairie vole (<i>Microtus ochrogaster</i>). Journal of Comparative Neurology, 2004, 468, 555-570.	1.6	148
54	Changes in Oxytocin Receptor mRNA in Rat Brain During Pregnancy and the Effects of Estrogen and Interleukinâ€6. Journal of Neuroendocrinology, 1997, 9, 859-865.	2.6	143

#	Article	IF	CITATIONS
55	Comparative Perspectives on Oxytocin and Vasopressin Receptor Research in Rodents and Primates: Translational Implications. Journal of Neuroendocrinology, 2016, 28, .	2.6	142
56	Variation in the Oxytocin Receptor Gene Predicts Brain Region–Specific Expression and Social Attachment. Biological Psychiatry, 2016, 80, 160-169.	1.3	140
57	Anatomy and neurochemistry of the pair bond. Journal of Comparative Neurology, 2005, 493, 51-57.	1.6	137
58	Gonadal Steroids have Paradoxical Effects on Brain Oxytocin Receptors. Journal of Neuroendocrinology, 1993, 5, 619-628.	2.6	123
59	Neuropeptides and the social brain: potential rodent models of autism. International Journal of Developmental Neuroscience, 2005, 23, 235-243.	1.6	122
60	Aerosolized oxytocin increases cerebrospinal fluid oxytocin in rhesus macaques. Psychoneuroendocrinology, 2014, 45, 49-57.	2.7	122
61	Oxytocin in the nucleus accumbens shell reverses CRFR2-evoked passive stress-coping after partner loss in monogamous male prairie voles. Psychoneuroendocrinology, 2016, 64, 66-78.	2.7	116
62	Central oxytocin receptors mediate mating-induced partner preferences and enhance correlated activation across forebrain nuclei in male prairie voles. Hormones and Behavior, 2016, 79, 8-17.	2.1	116
63	RNAi knockdown of oxytocin receptor in the nucleus accumbens inhibits social attachment and parental care in monogamous female prairie voles. Social Neuroscience, 2015, 10, 561-570.	1.3	115
64	Functional Microsatellite Polymorphism Associated with Divergent Social Structure in Vole Species. Molecular Biology and Evolution, 2004, 21, 1057-1063.	8.9	114
65	Species differences in vasopressin receptor binding are evident early in development: Comparative anatomic studies in prairie and montane voles. Journal of Comparative Neurology, 1997, 378, 535-546.	1.6	112
66	Increasing oxytocin receptor expression in the nucleus accumbens of pre-pubertal female prairie voles enhances alloparental responsiveness and partner preference formation as adults. Hormones and Behavior, 2011, 60, 498-504.	2.1	111
67	Toll-like Receptor 4 Mediates Morphine-Induced Neuroinflammation and Tolerance via Soluble Tumor Necrosis Factor Signaling. Neuropsychopharmacology, 2017, 42, 661-670.	5.4	111
68	Extraordinary diversity in vasopressin (V1a) receptor distributions among wild prairie voles (<i>Microtus ochrogaster</i>): Patterns of variation and covariation. Journal of Comparative Neurology, 2003, 466, 564-576.	1.6	110
69	Intranasal oxytocin selectively attenuates rhesus monkeys' attention to negative facial expressions. Psychoneuroendocrinology, 2013, 38, 1748-1756.	2.7	110
70	Activation of μ-Opioid Receptors in the Dorsal Striatum is Necessary for Adult Social Attachment in Monogamous Prairie Voles. Neuropsychopharmacology, 2011, 36, 2200-2210.	5.4	106
71	Oxytocin and Social Relationships: From Attachment to Bond Disruption. Current Topics in Behavioral Neurosciences, 2017, 35, 97-117.	1.7	100
72	Social Neuroscience: Progress and Implications for Mental Health. Perspectives on Psychological Science, 2007, 2, 99-123.	9.0	98

LARRY J YOUNG

#	Article	IF	CITATIONS
73	Species Differences in Central Oxytocin Receptor Gene Expression: Comparative Analysis of Promoter Sequences. Journal of Neuroendocrinology, 1996, 8, 777-783.	2.6	96
74	The Effects of Peptides on Partner Preference Formation Are Predicted by Habitat in Prairie Voles. Hormones and Behavior, 2001, 39, 48-58.	2.1	94
75	The AURORA Study: a longitudinal, multimodal library of brain biology and function after traumatic stress exposure. Molecular Psychiatry, 2020, 25, 283-296.	7.9	92
76	Gene Targeting Approaches to Neuroendocrinology: Oxytocin, Maternal Behavior, and Affiliation. Hormones and Behavior, 1997, 31, 221-231.	2.1	89
77	Variation in vasopressin receptor (Avpr1a) expression creates diversity in behaviors related to monogamy in prairie voles. Hormones and Behavior, 2013, 63, 518-526.	2.1	89
78	Variation in the vasopressin V1a receptor promoter and expression: implications for inter- and intraspecific variation in social behaviour*. European Journal of Neuroscience, 2002, 16, 399-402.	2.6	87
79	Dynamic corticostriatal activity biases social bonding in monogamous female prairie voles. Nature, 2017, 546, 297-301.	27.8	87
80	Species and sex differences in brain distribution of corticotropinâ€releasing factor receptor subtypes 1 and 2 in monogamous and promiscuous vole species. Journal of Comparative Neurology, 2005, 487, 75-92.	1.6	85
81	Sexual dimorphism in the vasopressin system: Lack of an altered behavioral phenotype in female V1a receptor knockout mice. Behavioural Brain Research, 2005, 164, 132-136.	2.2	84
82	Parental division of labor, coordination, and the effects of family structure on parenting in monogamous prairie voles (<i>Microtus ochrogaster</i>). Developmental Psychobiology, 2011, 53, 118-131.	1.6	84
83	Oxytocin receptors modulate a social salience neural network in male prairie voles. Hormones and Behavior, 2017, 87, 16-24.	2.1	84
84	CRF receptors in the nucleus accumbens modulate partner preference in prairie voles. Hormones and Behavior, 2007, 51, 508-515.	2.1	81
85	Cloning and in situ hybridization analysis of estrogen receptor, progesterone and androgen receptor expression in the brain of whiptail lizards (Cnemidophorus uniparens andC. inornatus). Journal of Comparative Neurology, 1994, 347, 288-300.	1.6	80
86	Vasopressin (V1a) Receptor Binding, mRNA Expression and Transcriptional Regulation by Androgen in the Syrian Hamster Brain. Journal of Neuroendocrinology, 2001, 12, 1179-1185.	2.6	77
87	Evaluation of two automated metrics for analyzing partner preference tests. Journal of Neuroscience Methods, 2009, 182, 180-188.	2.5	71
88	Coumestrol Antagonizes Neuroendocrine Actions of Estrogen via the Estrogen Receptor $\hat{I}\pm$. Experimental Biology and Medicine, 2001, 226, 301-306.	2.4	69
89	Editorial comment: Oxytocin, vasopressin and social behavior. Hormones and Behavior, 2012, 61, 227-229.	2.1	66
90	Oxytocin and vasopressin as candidate genes for psychiatric disorders: Lessons from animal models. American Journal of Medical Genetics Part A. 2001, 105, 53-54.	2.4	65

LARRY J YOUNG

#	Article	IF	CITATIONS
91	Genetic Influences on Receptive Joint Attention in Chimpanzees (Pan troglodytes). Scientific Reports, 2015, 4, 3774.	3.3	64
92	Central vasopressin V1a receptor activation is independently necessary for both partner preference formation and expression in socially monogamous male prairie voles Behavioral Neuroscience, 2010, 124, 159-163.	1.2	63
93	Oxytocin receptor knockout prairie voles generated by CRISPR/Cas9 editing show reduced preference for social novelty and exaggerated repetitive behaviors. Hormones and Behavior, 2019, 111, 60-69.	2.1	63
94	An Essential Role of the Arginine Vasotocin System in Mate-Guarding Behaviors in Triadic Relationships of Medaka Fish (Oryzias latipes). PLoS Genetics, 2015, 11, e1005009.	3.5	62
95	Epigenetic modification of the oxytocin receptor gene: implications for autism symptom severity and brain functional connectivity. Neuropsychopharmacology, 2020, 45, 1150-1158.	5.4	62
96	Expression and estrogen regulation of brainâ€derived neurotrophic factor gene and protein in the forebrain of female prairie voles. Journal of Comparative Neurology, 2001, 433, 499-514.	1.6	61
97	Melanocortin Receptor Agonists Facilitate Oxytocin-Dependent Partner Preference Formation in the Prairie Vole. Neuropsychopharmacology, 2015, 40, 1856-1865.	5.4	61
98	Lost connections: Oxytocin and the neural, physiological, and behavioral consequences of disrupted relationships. International Journal of Psychophysiology, 2019, 136, 54-63.	1.0	61
99	Vasopressin and Pair-Bond Formation: Genes to Brain to Behavior. Physiology, 2006, 21, 146-152.	3.1	59
100	Towards an integrative understanding of social behavior: new models and new opportunities. Frontiers in Behavioral Neuroscience, 2010, 4, 34.	2.0	58
101	Love: Neuroscience reveals all. Nature, 2009, 457, 148-148.	27.8	57
102	Neural distribution of nonapeptide binding sites in two species of songbird. Journal of Comparative Neurology, 2009, 513, 197-208.	1.6	55
103	Evolution of a behavior-linked microsatellite-containing element in the 5' flanking region of the primate AVPR1A gene. BMC Evolutionary Biology, 2008, 8, 180.	3.2	54
104	Vasopressin in the forebrain of common marmosets (Callithrix jacchus): studies with in situ hybridization, immunocytochemistry and receptor autoradiography. Brain Research, 1997, 768, 147-156.	2.2	53
105	OxytocinSynthesis, Secretion, and Reproductive Functions. , 2006, , 3055-3128.		53
106	Oxytocin and postpartum depression: A systematic review. Psychoneuroendocrinology, 2020, 120, 104793.	2.7	52
107	On switches and knobs, microsatellites and monogamy. Trends in Genetics, 2007, 23, 209-212.	6.7	50
108	Chapter 4 Oxytocin: who needs it?. Progress in Brain Research, 2001, 133, 59-66.	1.4	49

#	Article	IF	CITATIONS
109	Variability in "spontaneous―maternal behavior is associated with anxiety-like behavior and affiliation in NaÃ⁻ve juvenile and adult female prairie voles (Microtus ochrogaster). Developmental Psychobiology, 2005, 47, 166-178.	1.6	47
110	Oxytocin, Social Cognition and Psychiatry. Neuropsychopharmacology, 2015, 40, 243-244.	5.4	47
111	The Relative Contribution of Proximal 5′ Flanking Sequence and Microsatellite Variation on Brain Vasopressin 1a Receptor (Avpr1a) Gene Expression and Behavior. PLoS Genetics, 2013, 9, e1003729.	3.5	45
112	Sex differences in neurological and psychiatric disorders. Frontiers in Neuroendocrinology, 2014, 35, 253-254.	5.2	45
113	Oxytocin Influences Male Sexual Activity via Non-synaptic Axonal Release in the Spinal Cord. Current Biology, 2021, 31, 103-114.e5.	3.9	45
114	D-Cycloserine Facilitates Socially Reinforced Learning in an Animal Model Relevant to Autism Spectrum Disorders. Biological Psychiatry, 2011, 70, 298-304.	1.3	42
115	Soy Isoflavone Supplements Antagonize Reproductive Behavior and Estrogen Receptor Â- and Â-Dependent Gene Expression in the Brain. Endocrinology, 2001, 142, 2946-2952.	2.8	42
116	Distribution of Corticotropin-Releasing Factor and Urocortin 1 in the Vole Brain. Brain, Behavior and Evolution, 2006, 68, 229-240.	1.7	40
117	Circuits for social learning: A unified model and application to Autism Spectrum Disorder. Neuroscience and Biobehavioral Reviews, 2019, 107, 388-398.	6.1	40
118	Increased anxiety and decreased sociability induced by paternal deprivation involve the PVN-PrL OTergic pathway. ELife, 2019, 8, .	6.0	39
119	Perinatal exposure to endocrine disrupting compounds alters behavior and brain in the female pine vole. Neurotoxicology and Teratology, 2006, 28, 103-110.	2.4	38
120	Oxytocin―and arginine vasopressinâ€containing fibers in the cortex of humans, chimpanzees, and rhesus macaques. American Journal of Primatology, 2018, 80, e22875.	1.7	38
121	Sexually dimorphic role of oxytocin in medaka mate choice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4802-4808.	7.1	38
122	Synthesis and evaluation of C-11, F-18 and I-125 small molecule radioligands for detecting oxytocin receptors. Bioorganic and Medicinal Chemistry, 2012, 20, 2721-2738.	3.0	34
123	Thalamic integration of social stimuli regulating parental behavior and the oxytocin system. Frontiers in Neuroendocrinology, 2018, 51, 102-115.	5.2	34
124	Regulating the Social Brain: A New Role for CD38. Neuron, 2007, 54, 353-356.	8.1	33
125	Oxytocin increases eye-gaze towards novel social and non-social stimuli. Social Neuroscience, 2019, 14, 594-607.	1.3	33
126	Translational opportunities for circuit-based social neuroscience: advancing 21st century psychiatry. Current Opinion in Neurobiology, 2021, 68, 1-8.	4.2	33

#	Article	IF	CITATIONS
127	Refining oxytocin therapy for autism: context is key. Nature Reviews Neurology, 2022, 18, 67-68.	10.1	33
128	Personality in Chimpanzees (Pan troglodytes): Exploring the Hierarchical Structure and Associations with the Vasopressin V1A Receptor Gene. PLoS ONE, 2014, 9, e95741.	2.5	32
129	Central Oxytocin, Vasopressin, and Corticotropin-Releasing Factor Receptor Densities in the Basal Forebrain Predict Isolation Potentiated Startle in Rats. Journal of Neuroscience, 2005, 25, 11479-11488.	3.6	31
130	Neonatal melanocortin receptor agonist treatment reduces play fighting and promotes adult attachment in prairie voles in a sex-dependent manner. Neuropharmacology, 2014, 85, 357-366.	4.1	31
131	A Precision Medicine Approach to Oxytocin Trials. Current Topics in Behavioral Neurosciences, 2017, 35, 559-590.	1.7	31
132	Understanding the Oxytocin System and Its Relevance to Psychiatry. Biological Psychiatry, 2016, 79, 150-152.	1.3	30
133	Production of Germline Transgenic Prairie Voles (Microtus ochrogaster) Using Lentiviral Vectors1. Biology of Reproduction, 2009, 81, 1189-1195.	2.7	29
134	Mate-guarding behavior enhances male reproductive success via familiarization with mating partners in medaka fish. Frontiers in Zoology, 2016, 13, 21.	2.0	27
135	Bridging the gap between rodents and humans: The role of nonâ€human primates in oxytocin research. American Journal of Primatology, 2018, 80, e22756.	1.7	26
136	Pair bonds and parental behaviour. , 2010, , 271-301.		25
137	Investigation of an F-18 oxytocin receptor selective ligand via PET imaging. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 5415-5420.	2.2	25
138	Drinking alcohol has sex-dependent effects on pair bond formation in prairie voles. Proceedings of the United States of America, 2014, 111, 6052-6057.	7.1	25
139	Investigation of Oxtr-expressing Neurons Projecting to Nucleus Accumbens using Oxtr-ires-Cre Knock-in prairie Voles (Microtus ochrogaster). Neuroscience, 2020, 448, 312-324.	2.3	25
140	Partner Loss in Monogamous Rodents: Modulation of Pain and Emotional Behavior in Male Prairie Voles. Psychosomatic Medicine, 2018, 80, 62-68.	2.0	24
141	Regulation of Estrogen Receptor and Progesterone Receptor Messenger Ribonucleic Acid by Estrogen in the Brain of the Whiptail Lizard (Cnemidophorus uniparens). Journal of Neuroendocrinology, 1995, 7, 119-125.	2.6	23
142	When Too Much of a Good Thing is Bad: Chronic Oxytocin, Development, and Social Impairments. Biological Psychiatry, 2013, 74, 160-161.	1.3	23
143	Neuroanatomical distribution of oxytocin receptor binding in the female rabbit forebrain: Variations across the reproductive cycle. Brain Research, 2015, 1629, 329-339.	2.2	23
144	Initial investigation of three selective and potent small molecule oxytocin receptor PET ligands in New World monkeys. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3370-3375.	2.2	23

#	Article	IF	CITATIONS
145	Oxytocin, vasopressin and social behavior in the age of genome editing: A comparative perspective. Hormones and Behavior, 2020, 124, 104780.	2.1	23
146	Evolutionary diversity as a catalyst for biological discovery. Integrative Zoology, 2018, 13, 616-633.	2.6	22
147	Displacement behaviors in chimpanzees (<i>Pan troglodytes</i>): A neurogenomics investigation of the RDoC Negative Valence Systems domain. Psychophysiology, 2016, 53, 355-363.	2.4	20
148	Species differences in brain distribution of CART mRNA and CART peptide between prairie and meadow voles. Brain Research, 2005, 1048, 12-23.	2.2	19
149	The neuroendocrinology of the social brain. Frontiers in Neuroendocrinology, 2009, 30, 425-428.	5.2	19
150	Carbon-11 N-methyl alkylation of L-368,899 and in vivo PET imaging investigations for neural oxytocin receptors. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 902-906.	2.2	19
151	Abandoned prairie vole mothers show normal maternal care but altered emotionality: Potential influence of the brain corticotropin-releasing factor system. Behavioural Brain Research, 2018, 341, 114-121.	2.2	19
152	Species Differences in Estrogen Receptor and Progesterone Receptor-mRNA Expression in the Brain of Sexual and Unisexual Whiptail Lizards. Journal of Neuroendocrinology, 1995, 7, 567-576.	2.6	17
153	Introduction of the human <i>AVPR1A</i> gene significantly alters brain receptor expression patterns, and may enhance aspects of social behavior in transgenic mice. DMM Disease Models and Mechanisms, 2014, 7, 1013-22.	2.4	17
154	A single prolonged stress paradigm produces enduring impairments in social bonding in monogamous prairie voles. Behavioural Brain Research, 2016, 315, 83-93.	2.2	17
155	Brain functional networks associated with social bonding in monogamous voles. ELife, 2021, 10, .	6.0	17
156	Resting state brain networks in the prairie vole. Scientific Reports, 2018, 8, 1231.	3.3	16
157	Oxytocin receptors are widely distributed in the prairie vole (<i>Microtus ochrogaster)</i> brain: Relation to social behavior, genetic polymorphisms, and the dopamine system. Journal of Comparative Neurology, 2022, 530, 2881-2900.	1.6	16
158	Oxytocin receptor antagonist reverses the blunting effect of pair bonding on fear learning in monogamous prairie voles. Hormones and Behavior, 2020, 120, 104685.	2.1	15
159	AVPR1A variation is linked to gray matter covariation in the social brain network of chimpanzees. Genes, Brain and Behavior, 2020, 19, e12631.	2.2	14
160	Microglia react to partner loss in a sex- and brain site-specific manner in prairie voles. Brain, Behavior, and Immunity, 2021, 96, 168-186.	4.1	14
161	Social experience alters oxytocinergic modulation in the nucleus accumbens of female prairie voles. Current Biology, 2022, 32, 1026-1037.e4.	3.9	14
162	Brief Report: Relationship Between ADOS-2, Module 4 Calibrated Severity Scores (CSS) and Social and Non-Social Standardized Assessment Measures in Adult Males with Autism Spectrum Disorder (ASD). Journal of Autism and Developmental Disorders, 2017, 47, 4018-4024.	2.7	13

#	Article	IF	CITATIONS
163	Paraventricular Nucleus Oxytocin Subsystems Promote Active Paternal Behaviors in Mandarin Voles. Journal of Neuroscience, 2021, 41, 6699-6713.	3.6	13
164	Raised without a father: monoparental care effects over development, sexual behavior, sexual reward, and pair bonding in prairie voles. Behavioural Brain Research, 2021, 408, 113264.	2.2	12
165	Distribution of brain oxytocin and vasopressin V1a receptors in chimpanzees (Pan troglodytes): comparison with humans and other primate species. Brain Structure and Function, 2021, , 1.	2.3	12
166	Comparative distribution of central neuropeptide Y (NPY) in the prairie (Microtus ochrogaster) and meadow (M. pennsylvanicus) vole. Peptides, 2013, 40, 22-29.	2.4	10
167	BAC-Based Sequencing of Behaviorally-Relevant Genes in the Prairie Vole. PLoS ONE, 2012, 7, e29345.	2.5	10
168	On the Origins of Diversity in Social Behavior. Japanese Journal of Animal Psychology, 2021, 71, 45-61.	0.3	9
169	The Role of Early Life Experience and Species Differences in Alcohol Intake in Microtine Rodents. PLoS ONE, 2012, 7, e39753.	2.5	8
170	Identification of variables contributing to superovulation efficiency for production of transgenic prairie voles (Microtus ochrogaster). Reproductive Biology and Endocrinology, 2012, 10, 54.	3.3	7
171	The Neurobiology and Genetics of Affiliation and Social Bonding in Animal Models. , 2016, , 101-134.		7
172	An evaluation of central penetration from a peripherally administered oxytocin receptor selective antagonist in nonhuman primates. Bioorganic and Medicinal Chemistry, 2017, 25, 305-315.	3.0	7
173	Comparative neurotranscriptomics reveal widespread species differences associated with bonding. BMC Genomics, 2021, 22, 399.	2.8	7
174	Mate Selection, Sexual Orientation, and Pair Bonding. , 2015, , 2157-2210.		6
175	Application of adeno-associated viral vectors in behavioral research. Methods, 2002, 28, 195-202.	3.8	5
176	Can Understanding Social Preferences in Rodents Lead to Novel Pharmacotherapies for Social Anxiety and Avoidance in Psychiatric Disorders?. Neuropsychopharmacology, 2011, 36, 2151-2152.	5.4	5
177	Establishing the reliability of rhesus macaque social network assessment from video observations. Animal Behaviour, 2015, 107, 115-123.	1.9	5
178	Methylation of OXT and OXTR genes, central oxytocin, and social behavior in female macaques. Hormones and Behavior, 2020, 126, 104856.	2.1	5
179	Effects of Oxytocin on Emotion Recognition in Schizophrenia. Journal of Clinical Psychopharmacology, 2021, 41, 103-113.	1.4	5
180	Autoradiographic and in situ hybridization localization of corticotropinâ€releasing factor 1 and 2 receptors in nonhuman primate brain. Journal of Comparative Neurology, 1999, 408, 365-377.	1.6	5

0

#	Article	IF	CITATIONS
181	Sex-specific and social experience-dependent oxytocin–endocannabinoid interactions in the nucleus accumbens: implications for social behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	4.0	5
182	Culture of Neurospheres Derived from the Neurogenic Niches in Adult Prairie Voles. Journal of Visualized Experiments, 2020, , .	0.3	4
183	Harnessing the healing power of love. Trends in Molecular Medicine, 2021, 27, 833-834.	6.7	4
184	Development of a triazolobenzodiazepine-based PET probe for subtype-selective vasopressin 1A receptor imaging. Pharmacological Research, 2021, 173, 105886.	7.1	4
185	Maturation of Social-Vocal Communication in Prairie Vole (Microtus ochrogaster) Pups. Frontiers in Behavioral Neuroscience, 2021, 15, 814200.	2.0	4
186	Preclinical Animal Models of Autistic Spectrum Disorders (ASD). , 2008, , 353-394.		3
187	Separation from a bonded partner alters neural response to inflammatory pain in monogamous rodents. Behavioural Brain Research, 2022, 418, 113650.	2.2	3
188	Sex differences in immune gene expression in the brain of a small shorebird. Immunogenetics, 2022, 74, 487-496.	2.4	3
189	Oxytocin And Individual Variation in Parental Care in Prairie Voles. , 2008, , 333-345.		2
190	Love and addiction: an uneasy marriage? A response to "The devil is in the differences― Psychopharmacology, 2012, 224, 31-32.	3.1	1
191	Species differences in vasopressin receptor binding are evident early in development: Comparative anatomic studies in prairie and montane voles. Journal of Comparative Neurology, 1997, 378, 535-546.	1.6	1
192	Exclusivity and Pair-Bonding Among Non-humans. , 2021, , 2820-2824.		0
193	Genetic regulation of complex social behaviour in a monogamous rodent. , 2006, , 57-65.		0
			_

194 Exclusivity and Pair-Bonding Among Non-humans. , 2016, , 1-4.