Jacob H Hanna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8159246/publications.pdf

Version: 2024-02-01

23567 25787 29,430 106 58 108 citations h-index g-index papers 127 127 127 34767 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	SUMOylation of linker histone H1 drives chromatin condensation and restriction of embryonic cell fate identity. Molecular Cell, 2022, 82, 106-122.e9.	9.7	19
2	YTHDF2 suppresses the plasmablast genetic program and promotes germinal center formation. Cell Reports, 2022, 39, 110778.	6.4	11
3	Ex utero mouse embryogenesis from pre-gastrulation to late organogenesis. Nature, 2021, 593, 119-124.	27.8	124
4	Modeling genetic epileptic encephalopathies using brain organoids. EMBO Molecular Medicine, 2021, 13, e13610.	6.9	25
5	Mechanism of noncoding RNA-associated N6-methyladenosine recognition by an RNA processing complex during IgH DNA recombination. Molecular Cell, 2021, 81, 3949-3964.e7.	9.7	28
6	The germinal center reaction depends on RNA methylation and divergent functions of specific methyl readers. Journal of Experimental Medicine, 2021, 218, .	8.5	25
7	Principles of signaling pathway modulation for enhancing human naive pluripotency induction. Cell Stem Cell, 2021, 28, 1549-1565.e12.	11.1	78
8	Ex Utero Culture of Mouse Embryos from Pregastrulation to Advanced Organogenesis. Journal of Visualized Experiments, 2021, , .	0.3	3
9	Production and Analysis of Human Primordial Germ Cell–Like Cells. Methods in Molecular Biology, 2021, 2195, 125-145.	0.9	5
10	Control of Foxp3 induction and maintenance by sequential histone acetylation and DNA demethylation. Cell Reports, 2021, 37, 110124.	6.4	13
11	\hat{l}^2 -Catenin safeguards the ground state of mousepluripotency by strengthening the robustness of the transcriptional apparatus. Science Advances, 2020, 6, eaba1593.	10.3	10
12	Spatiotemporal Proteomic Analysis of Stress Granule Disassembly Using APEX Reveals Regulation by SUMOylation and Links to ALS Pathogenesis. Molecular Cell, 2020, 80, 876-891.e6.	9.7	154
13	Characterization of Endoplasmic Reticulum (ER) in Human Pluripotent Stem Cells Revealed Increased Susceptibility to Cell Death upon ER Stress. Cells, 2020, 9, 1078.	4.1	10
14	Role of m6A in Embryonic Stem Cell Differentiation and in Gametogenesis. Epigenomes, 2020, 4, 5.	1.8	22
15	Generation of human endothelium in pig embryos deficient in ETV2. Nature Biotechnology, 2020, 38, 297-302.	17.5	74
16	Context-dependent functional compensation between Ythdf m ⁶ A reader proteins. Genes and Development, 2020, 34, 1373-1391.	5.9	158
17	Generation of Human Primordial Germ Cell-like Cells at the Surface of Embryoid Bodies from Primed-pluripotency Induced Pluripotent Stem Cells. Journal of Visualized Experiments, 2019, , .	0.3	5
18	Deciphering the "m6A Code―via Antibody-Independent Quantitative Profiling. Cell, 2019, 178, 731-747.e16.	28.9	341

#	Article	IF	Citations
19	Stage-specific requirement for Mettl3-dependent m6A mRNA methylation during haematopoietic stem cell differentiation. Nature Cell Biology, 2019, 21, 700-709.	10.3	172
20	Universally non-immunogenic iPSCs. Nature Biomedical Engineering, 2019, 3, 337-338.	22.5	7
21	Stem Cell-Derived Human Gametes: The Public Engagement Imperative. Trends in Molecular Medicine, 2019, 25, 165-167.	6.7	7
22	m6A modification controls the innate immune response to infection by targeting type I interferons. Nature Immunology, 2019, 20, 173-182.	14.5	317
23	Deterministic Somatic Cell Reprogramming Involves Continuous Transcriptional Changes Governed by Myc and Epigenetic-Driven Modules. Cell Stem Cell, 2019, 24, 328-341.e9.	11.1	44
24	The N ⁶ -Methyladenosine mRNA Methylase METTL3 Controls Cardiac Homeostasis and Hypertrophy. Circulation, 2019, 139, 533-545.	1.6	279
25	RAS Regulates the Transition from Naive to Primed Pluripotent Stem Cells. Stem Cell Reports, 2018, 10, 1088-1101.	4.8	27
26	Human brain organoids on a chip reveal the physics of folding. Nature Physics, 2018, 14, 515-522.	16.7	311
27	NKp46 Receptor-Mediated Interferon- \hat{l}^3 Production by Natural Killer Cells Increases Fibronectin 1 to Alter Tumor Architecture and Control Metastasis. Immunity, 2018, 48, 107-119.e4.	14.3	143
28	MTCH2-mediated mitochondrial fusion drives exit from na \tilde{A} ve pluripotency in embryonic stem cells. Nature Communications, 2018, 9, 5132.	12.8	53
29	Trained Memory of Human Uterine NK Cells Enhances Their Function in Subsequent Pregnancies. Immunity, 2018, 48, 951-962.e5.	14.3	230
30	The Role of m6A/m-RNA Methylation in Stress Response Regulation. Neuron, 2018, 99, 389-403.e9.	8.1	293
31	Neutralizing Gatad2a-Chd4-Mbd3/NuRD Complex Facilitates Deterministic Induction of Naive Pluripotency. Cell Stem Cell, 2018, 23, 412-425.e10.	11.1	59
32	Modulating cell state to enhance suspension expansion of human pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6369-6374.	7.1	29
33	m ⁶ A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes and Development, 2017, 31, 990-1006.	5.9	448
34	Transcriptional programs that control expression of the autoimmune regulator gene Aire. Nature Immunology, 2017, 18, 161-172.	14.5	81
35	Relevance of iPSC-derived human PGC-like cells at the surface of embryoid bodies to prechemotaxis migrating PGCs. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9913-E9922.	7.1	41
36	Increased NK cell immunity in a transgenic mouse model of NKp46 overexpression. Scientific Reports, 2017, 7, 13090.	3.3	15

#	Article	IF	Citations
37	OCT4 impedes cell fate redirection by the melanocyte lineage master regulator MITF in mouse ESCs. Nature Communications, 2017, 8, 1022.	12.8	6
38	A multiplexed screening method for pluripotency. Stem Cell Research, 2017, 23, 158-162.	0.7	6
39	Co-ChIP enables genome-wide mapping of histone mark co-occurrence at single-molecule resolution. Nature Biotechnology, 2016, 34, 953-961.	17.5	81
40	Evolutionary analysis across mammals reveals distinct classes of long non-coding RNAs. Genome Biology, 2016, 17, 19.	8.8	141
41	An essential role for UTX in resolution and activation of bivalent promoters. Nucleic Acids Research, 2016, 44, 3659-3674.	14.5	63
42	Dynamic stem cell states: naive to primed pluripotency in rodents and humans. Nature Reviews Molecular Cell Biology, 2016, 17, 155-169.	37.0	490
43	Lymphatic vessels arise from specialized angioblasts within a venous niche. Nature, 2015, 522, 56-61.	27.8	197
44	m ⁶ A mRNA methylation facilitates resolution of naÃ-ve pluripotency toward differentiation. Science, 2015, 347, 1002-1006.	12.6	1,288
45	Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors. Nature Biotechnology, 2015, 33, 769-774.	17.5	124
46	CD24 tracks divergent pluripotent states in mouse and human cells. Nature Communications, 2015, 6, 7329.	12.8	76
47	Failure to replicate the STAP cell phenomenon. Nature, 2015, 525, E6-E9.	27.8	41
48	Establishing the human na \tilde{A} -ve pluripotent state. Current Opinion in Genetics and Development, 2015, 34, 35-45.	3.3	23
49	SOX17 Is a Critical Specifier of Human Primordial Germ Cell Fate. Cell, 2015, 160, 253-268.	28.9	687
50	Novel APC-like properties of human NK cells directly regulate T cell activation. Journal of Clinical Investigation, 2015, 125, 1763-1763.	8.2	1
51	The quest for the perfect reprogrammed cell. Nature, 2014, 511, 160-162.	27.8	11
52	Lucky iPSCs. Genome Biology, 2014, 15, 109.	9.6	6
53	Passage Number is a Major Contributor to Genomic Structural Variations in Mouse iPSCs. Stem Cells, 2014, 32, 2657-2667.	3.2	40
54	Hijacked by an Oocyte: Hierarchical Molecular Changes in Somatic Cell Nuclear Transfer. Molecular Cell, 2014, 55, 507-509.	9.7	3

#	Article	IF	CITATIONS
55	Derivation of novel human ground state naive pluripotent stem cells. Nature, 2013, 504, 282-286.	27.8	924
56	Deterministic direct reprogramming of somatic cells to pluripotency. Nature, 2013, 502, 65-70.	27.8	471
57	Oct4 shuffles Sox partners to direct cell fate. EMBO Journal, 2013, 32, 917-919.	7.8	4
58	The Expression of the Beta Cell-Derived Autoimmune Ligand for the Killer Receptor Nkp46 Is Attenuated in Type 2 Diabetes. PLoS ONE, 2013, 8, e74033.	2.5	14
59	Clonal allelic predetermination of immunoglobulin-l̂º rearrangement. Nature, 2012, 490, 561-565.	27.8	42
60	The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming. Nature, 2012, 488, 409-413.	27.8	322
61	RNF20 and USP44 Regulate Stem Cell Differentiation by Modulating H2B Monoubiquitylation. Molecular Cell, 2012, 46, 662-673.	9.7	187
62	Tracing the genesis of human embryonic stem cells. Nature Biotechnology, 2012, 30, 247-249.	17.5	0
63	Reprogramming Factor Stoichiometry Influences the Epigenetic State and Biological Properties of Induced Pluripotent Stem Cells. Cell Stem Cell, 2011, 9, 588-598.	11.1	297
64	Reprogramming of Postnatal Neurons into Induced Pluripotent Stem Cells by Defined Factors. Stem Cells, 2011, 29, 992-1000.	3.2	59
65	esBAF safeguards Stat3 binding to maintain pluripotency. Nature Cell Biology, 2011, 13, 886-888.	10.3	7
66	Epigenetic memory in induced pluripotent stem cells. Nature, 2010, 467, 285-290.	27.8	2,011
67	Single-gene transgenic mouse strains for reprogramming adult somatic cells. Nature Methods, 2010, 7, 56-59.	19.0	373
68	Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21931-21936.	7.1	3,446
69	Pluripotency and Cellular Reprogramming: Facts, Hypotheses, Unresolved Issues. Cell, 2010, 143, 508-525.	28.9	635
70	Reprogramming of Human Peripheral Blood Cells to Induced Pluripotent Stem Cells. Cell Stem Cell, 2010, 7, 20-24.	11.1	377
71	The STATs on Naive iPSC Reprogramming. Cell Stem Cell, 2010, 7, 274-276.	11.1	6
72	Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9222-9227.	7.1	755

#	Article	IF	CITATIONS
73	Direct cell reprogramming is a stochastic process amenable to acceleration. Nature, 2009, 462, 595-601.	27.8	936
74	Transgenic mice with defined combinations of drug-inducible reprogramming factors. Nature Biotechnology, 2009, 27, 169-171.	17.5	91
75	Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8912-8917.	7.1	363
76	Metastable Pluripotent States in NOD-Mouse-Derived ESCs. Cell Stem Cell, 2009, 4, 513-524.	11.1	318
77	Reprogramming of murine and human somatic cells using a single polycistronic vector. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 157-162.	7.1	453
78	Dissecting direct reprogramming through integrative genomic analysis. Nature, 2008, 454, 49-55.	27.8	1,344
79	Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature, 2008, 454, 766-770.	27.8	2,267
80	A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nature Biotechnology, 2008, 26, 916-924.	17.5	395
81	Direct Reprogramming of Terminally Differentiated Mature B Lymphocytes to Pluripotency. Cell, 2008, 133, 250-264.	28.9	765
82	H2AZ Is Enriched at Polycomb Complex Target Genes in ES Cells and Is Necessary for Lineage Commitment. Cell, 2008, 135, 649-661.	28.9	307
83	Reprogramming of Somatic Cell Identity. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 147-155.	1.1	34
84	Harnessing Soluble NK Cell Killer Receptors for the Generation of Novel Cancer Immune Therapy. PLoS ONE, 2008, 3, e2150.	2.5	30
85	When killers become helpers. Trends in Immunology, 2007, 28, 201-206.	6.8	113
86	Treatment of Sickle Cell Anemia Mouse Model with iPS Cells Generated from Autologous Skin. Science, 2007, 318, 1920-1923.	12.6	1,399
87	Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nature Immunology, 2006, 7, 517-523.	14.5	503
88	Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nature Medicine, 2006, 12, 1065-1074.	30.7	1,456
89	Functional aberrant expression of CCR2 receptor on chronically activated NK cells in patients with TAP-2 deficiency. Blood, 2005, 106, 3465-3473.	1.4	24
90	Inhibition of the NKp30 activating receptor by pp65 of human cytomegalovirus. Nature Immunology, 2005, 6, 515-523.	14.5	327

#	Article	IF	CITATIONS
91	The involvement of NK cells in ankylosing spondylitis. International Immunology, 2005, 17, 837-845.	4.0	41
92	Proteomic analysis of human natural killer cells: insights on new potential NK immune functions. Molecular Immunology, 2005, 42, 425-431.	2.2	23
93	Novel Insights on Human NK Cells' Immunological Modalities Revealed by Gene Expression Profiling. Journal of Immunology, 2004, 173, 6547-6563.	0.8	148
94	Involvement of the CXCL12/CXCR4 pathway in the advanced liver disease that is associated with hepatitis C virus or hepatitis B virus. European Journal of Immunology, 2004, 34, 1164-1174.	2.9	104
95	Biological function of the soluble CEACAM1 protein and implications in TAP2-deficient patients. European Journal of Immunology, 2004, 34, 2138-2148.	2.9	32
96	The mechanisms controlling NK cell autoreactivity in TAP2-deficient patients. Blood, 2004, 103, 1770-1778.	1.4	62
97	Expression of KIR2DL1 on the entire NK cell population: a possible novel immunodeficiency syndrome. Blood, 2004, 103, 1965-1966.	1.4	62
98	Novel APC-like properties of human NK cells directly regulate T cell activation. Journal of Clinical Investigation, 2004, 114, 1612-1623.	8.2	136
99	Special organization of the HLA-G protein on the cell surface. Human Immunology, 2003, 64, 1011-1016.	2.4	29
100	Complexes of HLA-G Protein on the Cell Surface Are Important for Leukocyte Ig-Like Receptor-1 Function. Journal of Immunology, 2003, 171, 1343-1351.	0.8	136
101	Involvement of CXCR4 and IL-2 in the homing and retention of human NK and NK T cells to the bone marrow and spleen of NOD/SCID mice. Blood, 2003, 102, 1951-1958.	1.4	103
102	CXCL12 expression by invasive trophoblasts induces the specific migration of CD16– human natural killer cells. Blood, 2003, 102, 1569-1577.	1.4	326
103	Pivotal role of CEACAM1 protein in the inhibition of activated decidual lymphocyte functions. Journal of Clinical Investigation, 2002, 110, 943-953.	8.2	93
104	Pivotal role of CEACAM1 protein in the inhibition of activated decidual lymphocyte functions. Journal of Clinical Investigation, 2002, 110, 943-953.	8.2	60
105	The Molecular and Functional Foundations of Conducive Somatic Cell Reprogramming to Ground State Pluripotency. SSRN Electronic Journal, 0, , .	0.4	0
106	Neutralizing Gatad2a-Chd4-Mbd3 Axis within the NuRD Complex Facilitates Deterministic Induction of Naive Pluripotency. SSRN Electronic Journal, 0, , .	0.4	0