Sotiris E Pratsinis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8158910/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Handheld Device for Selective Benzene Sensing over Toluene and Xylene. Advanced Science, 2022, 9, e2103853.	11.2	27
2	Selective monitoring of breath isoprene by a portable detector during exercise and at rest. Sensors and Actuators B: Chemical, 2022, 357, 131444.	7.8	10
3	Flame-made chemoresistive gas sensors and devices. Progress in Energy and Combustion Science, 2022, 90, 100992.	31.2	23
4	The Influence of ZnOâ^'ZrO ₂ Interface in Hydrogenation of CO ₂ to CH ₃ OH. Helvetica Chimica Acta, 2022, 105, .	1.6	9
5	Light Extinction by Agglomerates of Gold Nanoparticles: A Plasmon Ruler for Sub-10 nm Interparticle Distances. Analytical Chemistry, 2022, 94, 5310-5316.	6.5	15
6	Santoro flame: The volume fraction of soot accounting for its morphology & composition. Combustion and Flame, 2022, 240, 112025.	5.2	4
7	High-throughput generation of aircraft-like soot. Aerosol Science and Technology, 2022, 56, 732-743.	3.1	6
8	Enhanced Light Absorption and Radiative Forcing by Black Carbon Agglomerates. Environmental Science & Technology, 2022, 56, 8610-8618.	10.0	21
9	Porosity and crystallinity dynamics of carbon black during internal and surface oxidation. Carbon, 2022, 197, 334-340.	10.3	8
10	Monitoring rapid metabolic changes in health and type-1 diabetes with breath acetone sensors. Sensors and Actuators B: Chemical, 2022, 367, 132182.	7.8	12
11	Y-doped ZnO films for acetic acid sensing down to ppb at high humidity. Sensors and Actuators B: Chemical, 2021, 327, 128843.	7.8	28
12	Determination of the volume fraction of soot accounting for its composition and morphology. Proceedings of the Combustion Institute, 2021, 38, 1189-1196.	3.9	25
13	Highly selective gas sensing enabled by filters. Materials Horizons, 2021, 8, 661-684.	12.2	45
14	Screening Methanol Poisoning with a Portable Breath Detector. Analytical Chemistry, 2021, 93, 1170-1178.	6.5	20
15	The impact of organic carbon on soot light absorption. Carbon, 2021, 172, 742-749.	10.3	35
16	Precision in Thermal Therapy: Clinical Requirements and Solutions from Nanotechnology. Advanced Therapeutics, 2021, 4, 2000193.	3.2	5
17	Bi ₂ O ₃ boosts brightness, biocompatibility and stability of Mn-doped Ba ₃ (VO ₄) ₂ as NIR-II contrast agent. Journal of Materials Chemistry B, 2021, 9, 3038-3046.	5.8	2
18	Detecting methanol in hand sanitizers. IScience, 2021, 24, 102050.	4.1	21

#	Article	IF	CITATIONS
19	Monitoring Lipolysis by Sensing Breath Acetone down to Partsâ€perâ€Billion. Small Science, 2021, 1, 2100004.	9.9	20
20	Scalable Synthesis of Ultrasmall Metal Oxide Radio-Enhancers Outperforming Gold. Chemistry of Materials, 2021, 33, 3098-3112.	6.7	9
21	The Electrophilicity of Surface Carbon Species in the Redox Reactions of CuO eO 2 Catalysts. Angewandte Chemie, 2021, 133, 14541-14549.	2.0	2
22	The Electrophilicity of Surface Carbon Species in the Redox Reactions of CuO eO ₂ Catalysts. Angewandte Chemie - International Edition, 2021, 60, 14420-14428.	13.8	24
23	Spirit Distillation: Monitoring Methanol Formation with a Hand-Held Device. ACS Food Science & Technology, 2021, 1, 839-844.	2.7	14
24	Frontispiz: The Electrophilicity of Surface Carbon Species in the Redox Reactions of CuO eO ₂ Catalysts. Angewandte Chemie, 2021, 133, .	2.0	0
25	Frontispiece: The Electrophilicity of Surface Carbon Species in the Redox Reactions of CuO eO ₂ Catalysts. Angewandte Chemie - International Edition, 2021, 60, .	13.8	1
26	A perspective on gas-phase synthesis of nanomaterials: Process design, impact and outlook. Chemical Engineering Journal, 2021, 421, 129884.	12.7	26
27	Acetone Sensing and Catalytic Conversion by Pd-Loaded SnO2. Materials, 2021, 14, 5921.	2.9	11
28	Light scattering from nanoparticle agglomerates. Powder Technology, 2020, 365, 52-59.	4.2	31
29	Palladium embedded in SnO2 enhances the sensitivity of flame-made chemoresistive gas sensors. Mikrochimica Acta, 2020, 187, 96.	5.0	22
30	Adsorption and activation of molecular oxygen over atomic copper(I/II) site on ceria. Nature Communications, 2020, 11, 4008.	12.8	95
31	Superior Acetone Selectivity in Gas Mixtures by Catalystâ€Filtered Chemoresistive Sensors. Advanced Science, 2020, 7, 2001503.	11.2	54
32	Single-Nanoparticle Thermometry with a Nanopipette. ACS Nano, 2020, 14, 7358-7369.	14.6	29
33	Selective formaldehyde detection at ppb in indoor air with a portable sensor. Journal of Hazardous Materials, 2020, 399, 123052.	12.4	52
34	A pocket-sized device enables detection of methanol adulteration in alcoholic beverages. Nature Food, 2020, 1, 351-354.	14.0	53
35	Thickness Optimization of Highly Porous Flame-Aerosol Deposited WO3 Films for NO2 Sensing at ppb. Nanomaterials, 2020, 10, 1170.	4.1	14
36	Catalytic Filter for Continuous and Selective Ethanol Removal Prior to Gas Sensing. ACS Sensors, 2020, 5, 1058-1067.	7.8	30

#	Article	IF	CITATIONS
37	Rapid and Selective NH ₃ Sensing by Porous CuBr. Advanced Science, 2020, 7, 1903390.	11.2	40
38	Simultaneous Nanothermometry and Deepâ€Tissue Imaging. Advanced Science, 2020, 7, 2000370.	11.2	27
39	Estimating the internal and surface oxidation of soot agglomerates. Combustion and Flame, 2019, 209, 493-499.	5.2	31
40	<i>110th Anniversary:</i> Synthesis of Plasmonic Silica-Coated TiN Particles. Industrial & Engineering Chemistry Research, 2019, 58, 16610-16619.	3.7	10
41	Highly selective detection of methanol over ethanol by a handheld gas sensor. Nature Communications, 2019, 10, 4220.	12.8	215
42	Nd ³⁺ -Doped BiVO ₄ luminescent nanothermometers of high sensitivity. Chemical Communications, 2019, 55, 7147-7150.	4.1	42
43	The impact of molecular simulations in gas-phase manufacture of nanomaterials. Current Opinion in Chemical Engineering, 2019, 23, 174-183.	7.8	10
44	Silica-Coated TiN Particles for Killing Cancer Cells. ACS Applied Materials & Interfaces, 2019, 11, 22550-22560.	8.0	33
45	Nanoparticles for Biomedicine: Coagulation During Synthesis and Applications. Annual Review of Chemical and Biomolecular Engineering, 2019, 10, 155-174.	6.8	27
46	Nanoparticle Filler Content and Shape in Polymer Nanocomposites. KONA Powder and Particle Journal, 2019, 36, 3-32.	1.7	20
47	Soot light absorption and refractive index during agglomeration and surface growth. Proceedings of the Combustion Institute, 2019, 37, 1177-1184.	3.9	43
48	Engineering the Bioactivity of Flame-Made Ceria and Ceria/Bioglass Hybrid Nanoparticles. ACS Applied Materials & Interfaces, 2019, 11, 2830-2839.	8.0	37
49	Breath Sensors for Health Monitoring. ACS Sensors, 2019, 4, 268-280.	7.8	244
50	Highly Selective and Rapid Breath Isoprene Sensing Enabled by Activated Alumina Filter. ACS Sensors, 2018, 3, 677-683.	7.8	81
51	Mobility and settling rate of agglomerates of polydisperse nanoparticles. Journal of Chemical Physics, 2018, 148, 064703.	3.0	11
52	Facile meltPEGylation of flame-made luminescent Tb ³⁺ -doped yttrium oxide particles: hemocompatibility, cellular uptake and comparison to silica. Chemical Communications, 2018, 54, 2914-2917.	4.1	9
53	Pressure- and Temperature-Induced Monoclinic-to-Orthorhombic Phase Transition in Silicalite-1. Journal of Physical Chemistry C, 2018, 122, 6217-6229.	3.1	5
54	Sniffing Entrapped Humans with Sensor Arrays. Analytical Chemistry, 2018, 90, 4940-4945.	6.5	91

#	Article	IF	CITATIONS
55	Reactive polycyclic aromatic hydrocarbon dimerization drives soot nucleation. Physical Chemistry Chemical Physics, 2018, 20, 10926-10938.	2.8	93
56	Variability of particle configurations achievable by 2-nozzle flame syntheses of the Au-Pd-TiO2 system and their catalytic behaviors in the selective hydrogenation of acetylene. Applied Catalysis A: General, 2018, 549, 1-7.	4.3	31
57	Single Pd atoms on TiO2 dominate photocatalytic NOx removal. Applied Catalysis B: Environmental, 2018, 226, 127-134.	20.2	99
58	Zeolite membranes for highly selective formaldehyde sensors. Sensors and Actuators B: Chemical, 2018, 257, 916-923.	7.8	89
59	Orthogonal gas sensor arrays by chemoresistive material design. Mikrochimica Acta, 2018, 185, 563.	5.0	35
60	Guiding Ketogenic Diet with Breath Acetone Sensors. Sensors, 2018, 18, 3655.	3.8	61
61	Impact of Humidity on Silica Nanoparticle Agglomerate Morphology and Size Distribution. Langmuir, 2018, 34, 8532-8541.	3.5	22
62	Reduced Magnetic Coupling in Ultrasmall Iron Oxide T ₁ MRI Contrast Agents. ACS Applied Bio Materials, 2018, 1, 783-791.	4.6	13
63	Single-Step Fabrication of Polymer Nanocomposite Films. Materials, 2018, 11, 1177.	2.9	11
64	Coercivity Determines Magnetic Particle Heating. Advanced Healthcare Materials, 2018, 7, 1800287.	7.6	17
65	The effect of settling on cytotoxicity evaluation of SiO2 nanoparticles. Journal of Aerosol Science, 2017, 108, 56-66.	3.8	18
66	Process Design for Size-Controlled Flame Spray Synthesis of Li4Ti5O12 and Electrochemical Performance. Chemical and Process Engineering - Inzynieria Chemiczna I Procesowa, 2017, 38, 51-66.	0.7	17
67	Nanogenerator power output: influence of particle size and crystallinity of BaTiO ₃ . Nanotechnology, 2017, 28, 275705.	2.6	19
68	In Situ Monitoring of the Deposition of Flame-Made Chemoresistive Gas-Sensing Films. ACS Applied Materials & Interfaces, 2017, 9, 23926-23933.	8.0	28
69	Developing a tissue glue by engineering the adhesive and hemostatic properties of metal oxide nanoparticles. Nanoscale, 2017, 9, 8418-8426.	5.6	49
70	Deep Tissue Imaging with Highly Fluorescent Near-Infrared Nanocrystals after Systematic Host Screening. Chemistry of Materials, 2017, 29, 8158-8166.	6.7	20
71	Noninvasive Body Fat Burn Monitoring from Exhaled Acetone with Si-doped WO ₃ -sensing Nanoparticles. Analytical Chemistry, 2017, 89, 10578-10584.	6.5	92
72	Metal–support interactions in catalysts for environmental remediation. Environmental Science: Nano, 2017, 4, 2076-2092.	4.3	79

#	Article	IF	CITATIONS
73	The silanol content and in vitro cytolytic activity of flame-made silica. Journal of Colloid and Interface Science, 2017, 507, 95-106.	9.4	28
74	Surface Composition and Crystallinity of Coalescing Silver–Gold Nanoparticles. ACS Nano, 2017, 11, 11653-11660.	14.6	40
75	Flame synthesis of functional nanostructured materials and devices: Surface growth and aggregation. Proceedings of the Combustion Institute, 2017, 36, 29-50.	3.9	125
76	Atomically dispersed Pd on nanostructured TiO ₂ for NO removal by solar light. AICHE Journal, 2017, 63, 139-146.	3.6	35
77	Morphology and mobility diameter of carbonaceous aerosols during agglomeration and surface growth. Carbon, 2017, 121, 527-535.	10.3	58
78	Sampling and dilution of nanoparticles at high temperature. Aerosol Science and Technology, 2016, 50, 591-604.	3.1	29
79	In situ measurement of conductivity during nanocomposite film deposition. Applied Surface Science, 2016, 371, 329-336.	6.1	8
80	In Situ EPR Study of the Redox Properties of CuO–CeO ₂ Catalysts for Preferential CO Oxidation (PROX). ACS Catalysis, 2016, 6, 3520-3530.	11.2	97
81	Synthesis of catalytic materials in flames: opportunities and challenges. Chemical Society Reviews, 2016, 45, 3053-3068.	38.1	161
82	Silicaâ€Coated Nonstoichiometric Nano Znâ€Ferrites for Magnetic Resonance Imaging and Hyperthermia Treatment. Advanced Healthcare Materials, 2016, 5, 2698-2706.	7.6	31
83	Coagulation of Agglomerates Consisting of Polydisperse Primary Particles. Langmuir, 2016, 32, 9276-9285.	3.5	39
84	Thermal annealing dynamics of carbon-coated LiFePO4 nanoparticles studied by in-situ analysis. Journal of Solid State Chemistry, 2016, 242, 96-102.	2.9	19
85	Selective sensing of isoprene by Ti-doped ZnO for breath diagnostics. Journal of Materials Chemistry B, 2016, 4, 5358-5366.	5.8	99
86	Dissolution and storage stability of nanostructured calcium carbonates and phosphates for nutrition. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	5
87	Crystallinity dynamics of gold nanoparticles during sintering or coalescence. AICHE Journal, 2016, 62, 589-598.	3.6	54
88	Gas-phase manufacturing of nanoparticles: Molecular dynamics and mesoscale simulations. Particulate Science and Technology, 2016, 34, 483-493.	2.1	12
89	Highly scalable production of uniformly-coated superparamagnetic nanoparticles for triggered drug release from alginate hydrogels. RSC Advances, 2016, 6, 21503-21510.	3.6	22
90	Pd Subnano-Clusters on TiO ₂ for Solar-Light Removal of NO. ACS Catalysis, 2016, 6, 1887-1893.	11.2	99

#	Article	IF	CITATIONS
91	E-Nose Sensing of Low-ppb Formaldehyde in Gas Mixtures at High Relative Humidity for Breath Screening of Lung Cancer?. ACS Sensors, 2016, 1, 528-535.	7.8	176
92	Selective sensing of NH 3 by Si-doped α-MoO 3 for breath analysis. Sensors and Actuators B: Chemical, 2016, 223, 266-273.	7.8	175
93	Battery Performance: Design and Fabrication of Microspheres with Hierarchical Internal Structure for Tuning Battery Performance (Adv. Sci. 6/2015). Advanced Science, 2015, 2, .	11.2	0
94	Monitoring breath markers under controlled conditions. Journal of Breath Research, 2015, 9, 047101.	3.0	45
95	Coagulation–Agglomeration of Fractal-like Particles: Structure and Self-Preserving Size Distribution. Langmuir, 2015, 31, 1320-1327.	3.5	73
96	Aggregate characteristics accounting for the evolving fractal-like structure during coagulation and sintering. Journal of Aerosol Science, 2015, 89, 58-68.	3.8	21
97	Morphology and Crystallinity of Coalescing Nanosilver by Molecular Dynamics. Journal of Physical Chemistry C, 2015, 119, 10116-10122.	3.1	42
98	Enhanced Ag ⁺ Ion Release from Aqueous Nanosilver Suspensions by Absorption of Ambient CO ₂ . Langmuir, 2015, 31, 5284-5290.	3.5	22
99	Rapid synthesis of flexible conductive polymer nanocomposite films. Nanotechnology, 2015, 26, 125601.	2.6	20
100	Oxidative Dehydrogenation of Ethane with CO ₂ over Flame-Made Ga-Loaded TiO ₂ . ACS Catalysis, 2015, 5, 690-702.	11.2	80
101	Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors. Materials Today, 2015, 18, 163-171.	14.2	393
102	Air Entrainment During Flame Aerosol Synthesis of Nanoparticles. Aerosol Science and Technology, 2014, 48, 1195-1206.	3.1	11
103	Photothermal Killing of Cancer Cells by the Controlled Plasmonic Coupling of Silicaâ€Coated Au/Fe ₂ O ₃ Nanoaggregates. Advanced Functional Materials, 2014, 24, 2818-2827.	14.9	99
104	Visible-light active black TiO2-Ag/TiOx particles. Applied Catalysis B: Environmental, 2014, 154-155, 9-15.	20.2	52
105	An Integrated Microrobotic Platform for Onâ€Đemand, Targeted Therapeutic Interventions. Advanced Materials, 2014, 26, 952-957.	21.0	259
106	Cancer Treatment: Photothermal Killing of Cancer Cells by the Controlled Plasmonic Coupling of Silica-Coated Au/Fe2O3Nanoaggregates (Adv. Funct. Mater. 19/2014). Advanced Functional Materials, 2014, 24, 2817-2817.	14.9	0
107	Plasmonic biocompatible silver–gold alloyed nanoparticles. Chemical Communications, 2014, 50, 13559-13562.	4.1	50
108	Annealing dynamics of WO 3 by in situ XRD. Materials Research Bulletin, 2014, 59, 199-204.	5.2	15

#	Article	IF	CITATIONS
109	Oxidative coupling of methane on flame-made Mn-Na2WO4/SiO2: Influence of catalyst composition and reaction conditions. Applied Catalysis A: General, 2014, 484, 97-107.	4.3	40
110	Effect of Ba and K addition and controlled spatial deposition of Rh in Rh/Al2O3 catalysts for CO2 hydrogenation. Applied Catalysis A: General, 2014, 477, 93-101.	4.3	71
111	Scale-up of Nanoparticle Synthesis by Flame Spray Pyrolysis: The High-Temperature Particle Residence Time. Industrial & Engineering Chemistry Research, 2014, 53, 10734-10742.	3.7	125
112	Agglomerates and aggregates of nanoparticles made in the gas phase. Advanced Powder Technology, 2014, 25, 71-90.	4.1	124
113	Towards carbon-free flame spray synthesis of homogeneous oxide nanoparticles from aqueous solutions. Advanced Powder Technology, 2013, 24, 632-642.	4.1	16
114	Restructuring of aggregates and their primary particle size distribution during sintering. AICHE Journal, 2013, 59, 1118-1126.	3.6	28
115	Correlations between blood glucose and breath components from portable gas sensors and PTR-TOF-MS. Journal of Breath Research, 2013, 7, 037110.	3.0	95
116	Toxicity of Silver Nanoparticles in Macrophages. Small, 2013, 9, 2576-2584.	10.0	184
117	Size controlled CuO nanoparticles for Li-ion batteries. Journal of Power Sources, 2013, 241, 415-422.	7.8	79
118	Nanoparticulate Tungsten Oxide for Catalytic Epoxidations. ACS Catalysis, 2013, 3, 321-327.	11.2	45
119	Safer Formulation Concept for Flame-Generated Engineered Nanomaterials. ACS Sustainable Chemistry and Engineering, 2013, 1, 843-857.	6.7	54
120	Thermal Energy Dissipation by SiO ₂ -Coated Plasmonic-Superparamagnetic Nanoparticles in Alternating Magnetic Fields. Chemistry of Materials, 2013, 25, 4603-4612.	6.7	18
121	Flexible, Multifunctional, Magnetically Actuated Nanocomposite Films. Advanced Functional Materials, 2013, 23, 34-41.	14.9	39
122	Silica Coated Multifunctional Plasmonic Nanoparticles for Theranostics. Materials Research Society Symposia Proceedings, 2013, 1506, 1.	0.1	0
123	Gas-phase Synthesis of Silver Nanoparticles for Plasmonic Biosensors. Materials Research Society Symposia Proceedings, 2013, 1509, 1.	0.1	2
124	Multimineral nutritional supplements in a nano-CaO matrix. Journal of Materials Research, 2013, 28, 1129-1138.	2.6	6
125	Composite nanosilver structures suitable for plasmonic biosensors. Materials Research Society Symposia Proceedings, 2012, 1416, 25.	0.1	2
126	Homogeneous Iron Phosphate Nanoparticles by Combustion of Sprays. Industrial & Engineering Chemistry Research, 2012, 51, 7891-7900.	3.7	20

#	Article	IF	CITATIONS
127	Quantifying the Origin of Released Ag ⁺ Ions from Nanosilver. Langmuir, 2012, 28, 15929-15936.	3.5	174
128	Green, Silica-Coated Monoclinic Y ₂ O ₃ :Tb ³⁺ Nanophosphors: Flame Synthesis and Characterization. Journal of Physical Chemistry C, 2012, 116, 4493-4499.	3.1	67
129	Breath acetone monitoring by portable Si:WO3 gas sensors. Analytica Chimica Acta, 2012, 738, 69-75.	5.4	256
130	Aggregate morphology evolution by sintering: Number and diameter of primary particles. Journal of Aerosol Science, 2012, 46, 7-19.	3.8	122
131	Mass-mobility characterization of flame-made ZrO2 aerosols: Primary particle diameter and extent of aggregation. Journal of Colloid and Interface Science, 2012, 387, 12-23.	9.4	69
132	Antioxidant and Antiradical SiO ₂ Nanoparticles Covalently Functionalized with Gallic Acid. ACS Applied Materials & Interfaces, 2012, 4, 6609-6617.	8.0	129
133	The Structure of Agglomerates Consisting of Polydisperse Particles. Aerosol Science and Technology, 2012, 46, 347-353.	3.1	100
134	Design of Nanomaterial Synthesis by Aerosol Processes. Annual Review of Chemical and Biomolecular Engineering, 2012, 3, 103-127.	6.8	143
135	Fluid-particle dynamics during combustion spray aerosol synthesis of ZrO2. Chemical Engineering Journal, 2012, 191, 491-502.	12.7	89
136	Mono- and bimetallic Rh and Pt NSR-catalysts prepared by controlled deposition of noble metals on support or storage component. Applied Catalysis B: Environmental, 2012, 113-114, 160-171.	20.2	19
137	Effect of solvent composition on oxide morphology during flame spray pyrolysis of metal nitrates. Physical Chemistry Chemical Physics, 2011, 13, 9246.	2.8	82
138	Design of Turbulent Flame Aerosol Reactors by Mixing-Limited Fluid Dynamics. Industrial & Engineering Chemistry Research, 2011, 50, 3159-3168.	3.7	31
139	Multiparticle Sintering Dynamics: From Fractal-Like Aggregates to Compact Structures. Langmuir, 2011, 27, 6358-6367.	3.5	98
140	Effect of Zirconia Doping on the Structure and Stability of CaO-Based Sorbents for CO ₂ Capture during Extended Operating Cycles. Journal of Physical Chemistry C, 2011, 115, 24804-24812.	3.1	156
141	Sintering Rate and Mechanism of TiO ₂ Nanoparticles by Molecular Dynamics. Journal of Physical Chemistry C, 2011, 115, 11030-11035.	3.1	120
142	Color-Tunable Nanophosphors by Codoping Flame-Made Y ₂ O ₃ with Tb and Eu. Journal of Physical Chemistry C, 2011, 115, 1084-1089.	3.1	81
143	Hybrid, Silica-Coated, Janus-Like Plasmonic-Magnetic Nanoparticles. Chemistry of Materials, 2011, 23, 1985-1992.	6.7	158
144	Engineering nanosilver as an antibacterial, biosensor and bioimaging material. Current Opinion in Chemical Engineering, 2011, 1, 3-10.	7.8	154

#	Article	IF	CITATIONS
145	Continuous flame aerosol synthesis of carbon-coated nano-LiFePO4 for Li-ion batteries. Journal of Aerosol Science, 2011, 42, 657-667.	3.8	48
146	Flame Aerosol Synthesis of Metal Oxide Catalysts with Unprecedented Structural and Catalytic Properties. ChemCatChem, 2011, 3, 1234-1256.	3.7	73
147	Uniform nanoparticles by flame-assisted spray pyrolysis (FASP) of low cost precursors. Journal of Nanoparticle Research, 2011, 13, 2715-2725.	1.9	44
148	Nanosilver on nanostructured silica: Antibacterial activity and Ag surface area. Chemical Engineering Journal, 2011, 170, 547-554.	12.7	118
149	Design of gasâ€phase synthesis of coreâ€shell particles by computational fluid–aerosol dynamics. AICHE Journal, 2011, 57, 3132-3142.	3.6	26
150	Influence of controlled spatial deposition of Pt and Pd in NOx storage-reduction catalysts on their efficiency. Applied Catalysis B: Environmental, 2011, 101, 682-689.	20.2	12
151	Structural dependence of the efficiency of functionalization of silica-coated FeOx magnetic nanoparticles studied by ATR-IR. Applied Surface Science, 2011, 257, 2861-2869.	6.1	16
152	Dispersed Nanoelectrodes for High Performance Gas Sensors. Materials Research Society Symposia Proceedings, 2011, 1292, 93.	0.1	0
153	Structure and Strength of Silica-PDMS Nanocomposites. Materials Research Society Symposia Proceedings, 2011, 1312, 1.	0.1	2
154	18. History of Manufacture of Fine Particles in High-Temperature Aerosol Reactors. , 2011, , 475-508.		16
155	Flame-made nanoparticles for nanocomposites. Nano Today, 2010, 5, 48-65.	11.9	89
156	Influence of support acid–base properties on the platinum-catalyzed enantioselective hydrogenation of activated ketones. Journal of Catalysis, 2010, 271, 115-124.	6.2	73
157	Nonâ€Toxic Dry oated Nanosilver for Plasmonic Biosensors. Advanced Functional Materials, 2010, 20, 4250-4257.	14.9	119
158	Non-Toxic Dry-Coated Nanosilver for Plasmonic Biosensors. Advanced Functional Materials, 2010, 20, 4249-4249.	14.9	3
159	Aerosolâ€based technologies in nanoscale manufacturing: from functional materials to devices through core chemical engineering. AICHE Journal, 2010, 56, 3028-3035.	3.6	106
160	Fragmentation and restructuring of soft-agglomerates under shear. Journal of Colloid and Interface Science, 2010, 342, 261-268.	9.4	109
161	Selective side-chain oxidation of alkyl aromatic compounds catalyzed by cerium modified silver catalysts. Journal of Molecular Catalysis A, 2010, 331, 40-49.	4.8	34
162	Structure & amp; strength of silica-PDMS nanocomposites. Polymer, 2010, 51, 1796-1804.	3.8	92

#	Article	IF	CITATIONS
163	Fine tuning the surface acid/base properties of single step flame-made Pt/alumina. Applied Catalysis A: General, 2010, 374, 48-57.	4.3	44
164	Dispersed nanoelectrode devices. Nature Nanotechnology, 2010, 5, 54-60.	31.5	107
165	Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation. Nature Nanotechnology, 2010, 5, 374-380.	31.5	156
166	Flame aerosol deposition of Y ₂ 0 ₃ :Eu nanophosphor screens and their photoluminescent performance. Nanotechnology, 2010, 21, 225603.	2.6	26
167	Antibacterial Activity of Nanosilver Ions and Particles. Environmental Science & Technology, 2010, 44, 5649-5654.	10.0	735
168	Si:WO. , 2010, , .		3
169	Aerosol synthesis of chemoresistive gas sensors: Materials, structures and performances. , 2010, , .		Ο
170	Si:WO ₃ Sensors for Highly Selective Detection of Acetone for Easy Diagnosis of Diabetes by Breath Analysis. Analytical Chemistry, 2010, 82, 3581-3587.	6.5	556
171	Continuous Surface Functionalization of Flame-Made TiO ₂ Nanoparticles. Langmuir, 2010, 26, 5815-5822.	3.5	31
172	Development and characterization of a Versatile Engineered Nanomaterial Generation System (VENGES) suitable for toxicological studies. Inhalation Toxicology, 2010, 22, 107-116.	1.6	55
173	Influence of Pt location on BaCO3 or Al2O3 during NOx storage reduction. Journal of Catalysis, 2009, 261, 201-207.	6.2	45
174	Fracture toughness of zirconia nanoparticle-filled dental composites. Journal of Materials Science, 2009, 44, 6117-6124.	3.7	6
175	Effect of the Proximity of Pt to Ce or Ba in Pt/Ba/CeO2 Catalysts on NO x Storage–Reduction Performance. Topics in Catalysis, 2009, 52, 1709-1712.	2.8	19
176	Flame-Made Pt/K/Al2O3 for NO x Storage–Reduction (NSR) Catalysts. Topics in Catalysis, 2009, 52, 1799-1802.	2.8	23
177	Direct synthesis of maghemite, magnetite and wustite nanoparticles by flame spray pyrolysis. Advanced Powder Technology, 2009, 20, 190-194.	4.1	191
178	Flame-Made Durable Doped-CaO Nanosorbents for CO ₂ Capture. Energy & Fuels, 2009, 23, 1093-1100.	5.1	209
179	Role of Gasâ^'Aerosol Mixing during in Situ Coating of Flame-Made Titania Particles. Industrial & Engineering Chemistry Research, 2009, 48, 85-92.	3.7	44
180	Development and optimization of iron- and zinc-containing nanostructured powders for nutritional applications. Nanotechnology, 2009, 20, 475101.	2.6	44

#	Article	IF	CITATIONS
181	Minimal cross-sensitivity to humidity during ethanol detection by SnO ₂ –TiO ₂ solid solutions. Nanotechnology, 2009, 20, 315502.	2.6	106
182	Anti-Fogging Nanofibrous SiO ₂ and Nanostructured SiO ₂ â^'TiO ₂ Films Made by Rapid Flame Deposition and In Situ Annealing. Langmuir, 2009, 25, 12578-12584.	3.5	146
183	Hermetically Coated Superparamagnetic Fe ₂ O ₃ Particles with SiO ₂ Nanofilms. Chemistry of Materials, 2009, 21, 2094-2100.	6.7	120
184	Size-selected agglomerates of SnO2 nanoparticles as gas sensors. Journal of Applied Physics, 2009, 106, 084316.	2.5	39
185	Nanostructure Evolution: From Aggregated to Spherical SiO ₂ Particles Made in Diffusion Flames. European Journal of Inorganic Chemistry, 2008, 2008, 911-918.	2.0	47
186	Optimal Doping for Enhanced SnO ₂ Sensitivity and Thermal Stability. Advanced Functional Materials, 2008, 18, 1969-1976.	14.9	193
187	Micropatterning Layers by Flame Aerosol Depositionâ€Annealing. Advanced Materials, 2008, 20, 3005-3010.	21.0	130
188	Flame-made Nb- and Cu-doped TiO2 sensors for CO and ethanol. Sensors and Actuators B: Chemical, 2008, 130, 449-457.	7.8	105
189	Brilliant Yellow, Transparent Pure, and SiO ₂ -Coated BiVO ₄ Nanoparticles Made in Flames. Chemistry of Materials, 2008, 20, 6346-6351.	6.7	77
190	One-Step Flame-Synthesis of Carbon-Embedded and -Supported Platinum Clusters. Chemistry of Materials, 2008, 20, 2117-2123.	6.7	44
191	Radiopaque dental adhesives: Dispersion of flame-made Ta2O5/SiO2 nanoparticles in methacrylic matrices. Journal of Dentistry, 2008, 36, 579-587.	4.1	68
192	The quality of SiO2-coatings on flame-made TiO2-based nanoparticles. Journal of Materials Chemistry, 2008, 18, 3547.	6.7	60
193	<i>In Situ</i> Coating of Flame-Made TiO ₂ Particles with Nanothin SiO ₂ Films. Langmuir, 2008, 24, 12553-12558.	3.5	106
194	Ferroelectric WO ₃ Nanoparticles for Acetone Selective Detection. Chemistry of Materials, 2008, 20, 4794-4796.	6.7	328
195	Wafer-level flame-spray-pyrolysis deposition of gas-sensitive layers on microsensors. Journal of Micromechanics and Microengineering, 2008, 18, 035040.	2.6	41
196	Synthesis, Characterization, and Bioavailability in Rats of Ferric Phosphate Nanoparticles. Journal of Nutrition, 2007, 137, 614-619.	2.9	102
197	Brownian Coagulation at High Concentration. Langmuir, 2007, 23, 9882-9890.	3.5	69
198	Flame aerosol synthesis of smart nanostructured materials. Journal of Materials Chemistry, 2007, 17, 4743.	6.7	505

#	Article	IF	CITATIONS
199	Flame sprayed visible light-active Fe-TiO2 for photomineralisation of oxalic acid. Catalysis Today, 2007, 120, 203-213.	4.4	183
200	Agglomerate TiO2 Aerosol Dynamics at High Concentrations. Particle and Particle Systems Characterization, 2007, 24, 56-65.	2.3	22
201	Luminescence and crystallinity of flame-made Y2O3:Eu3+ nanoparticles. Advanced Powder Technology, 2007, 18, 5-22.	4.1	45
202	Characteristics and Catalytic Properties of Pd/SiO2 Synthesized by One-step Flame Spray Pyrolysis in Liquid-phase Hydrogenation of 1-Heptyne. Catalysis Letters, 2007, 119, 346-352.	2.6	43
203	High Concentration Agglomerate Dynamics at High Temperatures. Langmuir, 2006, 22, 10238-10245.	3.5	33
204	Nanorods of ZnO Made by Flame Spray Pyrolysis. Chemistry of Materials, 2006, 18, 572-578.	6.7	141
205	Aerosol flame synthesis of catalysts. Advanced Powder Technology, 2006, 17, 457-480.	4.1	244
206	Two-Nozzle Flame Synthesis of Pt/Ba/Al2O3 for NOx Storage. Chemistry of Materials, 2006, 18, 2532-2537.	6.7	87
207	Direct measurement of entrainment during nanoparticle synthesis in spray flames. Combustion and Flame, 2006, 144, 809-820.	5.2	70
208	Unprecedented formation of metastable monoclinic BaCO3 nanoparticles. Thermochimica Acta, 2006, 445, 23-26.	2.7	72
209	Flame-derived Pt/Ba/CexZr1â^'xO2CexZr1â^'xO2: Influence of support on thermal deterioration and behavior as NOxNOx storage-reduction catalysts. Journal of Catalysis, 2006, 243, 229-238.	6.2	62
210	Design of high-temperature, gas-phase synthesis of hard or soft TiO2 agglomerates. AICHE Journal, 2006, 52, 1318-1325.	3.6	59
211	Gas-phase synthesis of nanoparticles: scale-up and design of flame reactors. Powder Technology, 2005, 150, 177-122 Direct (one-step) synthesis of <mml:math <="" altimg="si30.gif" display="inline" overflow="scroll" td=""><td>4.2</td><td>49</td></mml:math>	4.2	49
212	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	3.8	175
213	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://. Chemical Engineerin Cubic or monoclinic Y2O3:Eu3+ nanoparticles by one step flame spray pyrolysis. Chemical Physics Letters, 2005, 415, 193-197.	2.6	112
214	Criteria for Flame-Spray Synthesis of Hollow, Shell-Like, or Inhomogeneous Oxides. Journal of the American Ceramic Society, 2005, 88, 1388-1393.	3.8	96
215	Flame-made Alumina Supported Pd–Pt Nanoparticles: Structural Properties and Catalytic Behavior in Methane Combustion. Catalysis Letters, 2005, 104, 9-16.	2.6	108
216	Flame-coating of titania particles with silica. Journal of Materials Research, 2005, 20, 1336-1347.	2.6	46

#	Article	IF	CITATIONS
217	Independent Control of Metal Cluster and Ceramic Particle Characteristics During One-step Synthesis of Pt/TiO2. Journal of Materials Research, 2005, 20, 2568-2577.	2.6	66
218	Flame-made Pd/La2O3/Al2O3 nanoparticles: thermal stability and catalytic behavior in methane combustion. Journal of Materials Chemistry, 2005, 15, 605.	6.7	51
219	Droplet and Particle Dynamics during Flame Spray Synthesis of Nanoparticlesâ€. Industrial & Engineering Chemistry Research, 2005, 44, 6222-6232.	3.7	84
220	Morphology and composition of spray-flame-made yttria-stabilized zirconia nanoparticles. Nanotechnology, 2005, 16, S609-S617.	2.6	66
221	Fluoro-apatite and Calcium Phosphate Nanoparticles by Flame Synthesis. Chemistry of Materials, 2005, 17, 36-42.	6.7	174
222	Flame-Made Pt/Ceria/Zirconia for Low-Temperature Oxygen Exchange. Chemistry of Materials, 2005, 17, 3352-3358.	6.7	72
223	D-108 In Situ Studies of Nano-Particle Growth in Flames— <i>Invited</i> . Powder Diffraction, 2004, 19, 195-195.	0.2	0
224	Zirconia Nanoparticles Made in Spray Flames at High Production Rates. Journal of the American Ceramic Society, 2004, 87, 197-202.	3.8	133
225	Evolution of the Morphology of Zinc Oxide/Silica Particles Made by Spray Combustion. Journal of the American Ceramic Society, 2004, 87, 365-370.	3.8	27
226	Dynamics of Hollow and Solid Alumina Particle Formation in Spray Flames. Journal of the American Ceramic Society, 2004, 87, 523-525.	3.8	25
227	Probing the dynamics of nanoparticle growth in a flame using synchrotron radiation. Nature Materials, 2004, 3, 370-373.	27.5	103
228	Non-agglomerated dry silica nanoparticles. Powder Technology, 2004, 140, 40-48.	4.2	80
229	Growth of zirconia particles made by flame spray pyrolysis. AICHE Journal, 2004, 50, 3085-3094.	3.6	75
230	Soft- and Hard-Agglomerate Aerosols Made at High Temperatures. Langmuir, 2004, 20, 5933-5939.	3.5	174
231	Structure of Flame-Made Silica Nanoparticles by Ultra-Small-Angle X-ray Scattering. Langmuir, 2004, 20, 1915-1921.	3.5	105
232	Narrowing the size distribution of aerosol-made titania by surface growth and coagulation. Journal of Aerosol Science, 2004, 35, 405-420.	3.8	46
233	Flame synthesis of nanocrystalline ceria–zirconia: effect of carrier liquid. Chemical Communications, 2003, , 588-589.	4.1	122
234	Title is missing!. Journal of Nanoparticle Research, 2003, 5, 191-198.	1.9	34

#	Article	IF	CITATIONS
235	The effect of external electric fields during flame synthesis of titania. Powder Technology, 2003, 135-136, 310-320.	4.2	33
236	Flame-made platinum/alumina: structural properties and catalytic behaviour in enantioselective hydrogenation. Journal of Catalysis, 2003, 213, 296-304.	6.2	153
237	Nozzle-quenching process for controlled flame synthesis of titania nanoparticles. AICHE Journal, 2003, 49, 1667-1675.	3.6	87
238	Nanoparticle synthesis at high production rates by flame spray pyrolysis. Chemical Engineering Science, 2003, 58, 1969-1976.	3.8	353
239	Effect of reaction temperature on CVD-made TiO2 primary particle diameter. Chemical Engineering Science, 2003, 58, 3327-3335.	3.8	105
240	Scale-up of nanoparticle synthesis in diffusion flame reactors. Chemical Engineering Science, 2003, 58, 4581-4589.	3.8	129
241	Morphology of Oxide Particles Made by the Emulsion Combustion Method. Journal of the American Ceramic Society, 2003, 86, 898-904.	3.8	50
242	OH Surface Density of SiO2and TiO2by Thermogravimetric Analysis. Langmuir, 2003, 19, 160-165.	3.5	449
243	Simultaneous deposition of Au nanoparticles during flame synthesis of TiO ₂ and SiO ₂ . Journal of Materials Research, 2003, 18, 115-120.	2.6	89
244	Carbon-coated titania nanostructured particles: Continuous, one-step flame-synthesis. Journal of Materials Research, 2003, 18, 2670-2676.	2.6	33
245	Agglomerate-free BaTiO ₃ particles by salt-assisted spray pyrolysis. Journal of Materials Research, 2002, 17, 3222-3229.	2.6	16
246	Titania–silica doped with transition metals via flame synthesis: structural properties and catalytic behavior in epoxidation. Journal of Materials Chemistry, 2002, 12, 3620-3625.	6.7	26
247	Rapid synthesis of stable ZnO quantum dots. Journal of Applied Physics, 2002, 92, 6537-6540.	2.5	146
248	Titania formation by TiCl4 gas phase oxidation, surface growth and coagulation. Journal of Aerosol Science, 2002, 33, 17-34.	3.8	104
249	Flame-nozzle synthesis of nanoparticles with closely controlled size, morphology and crystallinity. Materials Letters, 2002, 55, 318-321.	2.6	47
250	Flame-made Ceria Nanoparticles. Journal of Materials Research, 2002, 17, 1356-1362.	2.6	341
251	Synthèse du bioxyde de titane dans un réacteur à flamme: effet de l'orientation et de la configuration de la flamme. Annales De Chimie: Science Des Materiaux, 2002, 27, 37-46.	0.4	16
252	In situ infrared measurements on TiO2 flames: Gas and particle concentrations. AICHE Journal, 2002, 48, 59-68.	3.6	4

#	Article	IF	CITATIONS
253	Design of metal nanoparticle synthesis by vapor flow condensation. Chemical Engineering Science, 2002, 57, 1753-1762.	3.8	98
254	Flame temperature measurements during electrically assisted aerosol synthesis of nanoparticles. Combustion and Flame, 2002, 128, 369-381.	5.2	48
255	Synthesis of zinc oxide/silica composite nanoparticles by flame spray pyrolysis. Journal of Materials Science, 2002, 37, 4627-4632.	3.7	50
256	Homogeneous ZnO Nanoparticles by Flame Spray Pyrolysis. Journal of Nanoparticle Research, 2002, 4, 337-343.	1.9	208
257	Bismuth Oxide Nanoparticles by Flame Spray Pyrolysis. Journal of the American Ceramic Society, 2002, 85, 1713-1718.	3.8	153
258	AEROSOL-BASED FLAME SYNTHESIS: A MICROREACTOR FOR SILICA NANOPARTICLES. , 2002, , 193-217.		3
259	Sintering Time for Silica Particle Growth. Aerosol Science and Technology, 2001, 34, 237-246.	3.1	76
260	Synthesis of silica-carbon particles in a turbulent H2-air flame aerosol reactor. AICHE Journal, 2001, 47, 1533-1543.	3.6	45
261	Flame Synthesis of Nanoparticles. Chemie-Ingenieur-Technik, 2001, 73, 708-708.	0.8	0
262	Flame Synthesis of Nanoparticles. Chemical Engineering and Technology, 2001, 24, 583-596.	1.5	380
263	Monitoring the flame synthesis of TiO2 particles by in-situ FTIR spectroscopy and thermophoretic sampling. Combustion and Flame, 2001, 124, 560-572.	5.2	99
264	Flame Aerosol Synthesis of Vanadia–Titania Nanoparticles: Structural and Catalytic Properties in the Selective Catalytic Reduction of NO by NH3. Journal of Catalysis, 2001, 197, 182-191.	6.2	155
265	Packaging of Sol–Gelâ€Made Porous Nanostructured Titania Particles by Spray Drying. Journal of the American Ceramic Society, 2001, 84, 2802-2808.	3.8	27
266	Computational analysis of coagulation and coalescence in the flame synthesis of titania particles. Powder Technology, 2001, 118, 242-250.	4.2	91
267	Sintering Time for Silica Particle Growth. Aerosol Science and Technology, 2001, 34, 237-246.	3.1	2
268	Evolution of primary and aggregate particle-size distributions by coagulation and sintering. AICHE Journal, 2000, 46, 407-415.	3.6	79
269	Computational fluid-particle dynamics for the flame synthesis of alumina particles. Chemical Engineering Science, 2000, 55, 177-191.	3.8	130
270	Aerosol Flame Reactors for the Synthesis of Nanoparticles. KONA Powder and Particle Journal, 2000, 18, 170-182.	1.7	10

#	Article	IF	CITATIONS
271	The Intrinsic Catalytic Activity in Photoreactors. Environmental Science & Technology, 2000, 34, 3435-3442.	10.0	11
272	Laminar and turbulent shear-induced flocculation of fractal aggregates. AICHE Journal, 1999, 45, 1114-1124.	3.6	157
273	Monitoring the Dynamics of Concentrated Suspensions by Enhanced Backward Light Scattering. Particle and Particle Systems Characterization, 1999, 16, 201-206.	2.3	5
274	Novel Differential Reactor for the Measurement of Overall Quantum Yields. Industrial & Engineering Chemistry Research, 1999, 38, 1376-1383.	3.7	25
275	Competition between gas phase and surface oxidation of TiCl4 during synthesis of TiO2 particles. Chemical Engineering Science, 1998, 53, 1861-1868.	3.8	88
276	Flame aerosol synthesis of ceramic powders. Progress in Energy and Combustion Science, 1998, 24, 197-219.	31.2	766
277	Flame synthesis of composite carbon black-fumed silica nanostructured particles. Journal of Aerosol Science, 1998, 29, 647-659.	3.8	36
278	Fractal Analysis of Flame-Synthesized Nanostructured Silica and Titania Powders Using Small-Angle X-ray Scattering. Langmuir, 1998, 14, 5751-5756.	3.5	149
279	Synthesis of nanostructured silica powders by a room temperature aerosol process. Materials Research Society Symposia Proceedings, 1998, 520, 115.	0.1	0
280	Electrically Assisted Aerosol Reactors using Ring Electrodes. Materials Research Society Symposia Proceedings, 1998, 520, 3.	0.1	8
281	Formation and Growth of Sio2Particlesin Low Pressure H2/O2/Ar Flames Doped with Sih4. Combustion Science and Technology, 1997, 123, 287-315.	2.3	57
282	In Situ Fourier Transform Infrared Characterization of the Effect of Electrical Fields on the Flame Synthesis of TiO2Particles. Chemistry of Materials, 1997, 9, 2702-2708.	6.7	73
283	Electrically Controlled Flame Synthesis of Nanophase TiO ₂ , SiO _{2,} and SnO ₂ Powders. Journal of Materials Research, 1997, 12, 1031-1042.	2.6	71
284	In-Situ Particle Size and Shape Analysis During Flame Synthesis of Nanosize Powders. ACS Symposium Series, 1997, , 170-186.	0.5	5
285	Synthesis of SiO2 and SnO2 particles in diffusion flame reactors. AICHE Journal, 1997, 43, 2657-2664.	3.6	56
286	Coagulation and Fragmentation:Â The Variation of Shear Rate and the Time Lag for Attainment of Steady State. Industrial & Engineering Chemistry Research, 1996, 35, 3074-3080.	3.7	39
287	PHOTOCATALYTIC DESTRUCTION OF PHENOL AND SALICYLIC ACID WITH AEROSOL-MADE AND COMMERCIAL TITANIA POWDERS. Chemical Engineering Communications, 1996, 151, 251-269.	2.6	74
288	The role of gas mixing in flame synthesis of titania powders. Powder Technology, 1996, 86, 87-93.	4.2	189

#	Article	IF	CITATIONS
289	Coagulation and fragmentation: Universal steady-state particle-size distribution. AICHE Journal, 1996, 42, 1612-1620.	3.6	287
290	GRAIN GROWTH AND DENSIFICATION IN PALLADIUM OXIDE PARTICLES DURING SPRAY PYROLYSIS. Chemical Engineering Communications, 1996, 151, 211-226.	2.6	3
291	Flame Synthesis of Nanosize Powders. ACS Symposium Series, 1996, , 64-78.	0.5	23
292	Hydrothermal stability of pure and modified microporous silica membranes. Journal of Materials Science, 1995, 30, 2803-2808.	3.7	95
293	Volatile Metal Oxide Evaporation during Aerosol Decomposition. Journal of the American Ceramic Society, 1995, 78, 2490-2496.	3.8	15
294	Dopants in Flame Synthesis of Titania. Journal of the American Ceramic Society, 1995, 78, 2984-2992.	3.8	132
295	Strategies for control of ceramic powder synthesis by gas-to-particle conversion. Powder Technology, 1995, 82, 79-91.	4.2	35
296	Coronaâ€assisted flame synthesis of ultrafine titania particles. Applied Physics Letters, 1995, 66, 3275-3277.	3.3	69
297	Aerosol synthesis of AlN by nitridation of aluminum vapor and clusters. Journal of Materials Research, 1995, 10, 512-520.	2.6	36
298	Self-preserving size distributions of agglomerates. Journal of Aerosol Science, 1995, 26, 175-185.	3.8	184
299	Vapor phase synthesis of Al-doped titania powders. Journal of Materials Research, 1994, 9, 1241-1249.	2.6	84
300	Motor Vehicle Contributions to Fine Carbonaceous Aerosol in Los Angeles. Aerosol Science and Technology, 1994, 21, 360-366.	3.1	6
301	Quasi-Self-Preserving Log-Normal Size Distributions in the Transition Regime. Particle and Particle Systems Characterization, 1994, 11, 359-366.	2.3	44
302	Competition between TiCl4 hydrolysis and oxidation and its effect on product TiO2 powder. AICHE Journal, 1994, 40, 1183-1192.	3.6	60
303	Monte Carlo Simulation of Particle Coagulation and Sintering. Aerosol Science and Technology, 1994, 21, 83-93.	3.1	68
304	Fundamentals of Particle Flocculation and Removal From Water. Materials Research Society Symposia Proceedings, 1994, 344, 217.	0.1	0
305	Aerosol Coating of Silica Fibers with Nanoparticles. Materials Research Society Symposia Proceedings, 1994, 344, 27.	0.1	0
306	Formation of agglomerate particles by coagulation and sintering—Part I. A two-dimensional solution of the population balance equation. Journal of Aerosol Science, 1993, 24, 283-300.	3.8	238

#	Article	IF	CITATIONS
307	Formation of agglomerate particles by coagulation and sintering—Part II. The evolution of the morphology of aerosol-made titania, silica and silica-doped titania powders. Journal of Aerosol Science, 1993, 24, 301-313.	3.8	117
308	A Simple Model for the Evolution of the Characteristics of Aggregate Particles Undergoing Coagulation and Sintering. Aerosol Science and Technology, 1993, 19, 514-526.	3.1	325
309	A Correlation for Particle Wall Losses by Diffusion in Dilution Chambers. Aerosol Science and Technology, 1993, 18, 213-218.	3.1	7
310	Impaction and Rebound of Particles at Acute Incident Angles. Aerosol Science and Technology, 1993, 18, 143-155.	3.1	24
311	INTRODUCTION: The Role of Aerosols in Materials Processing. Aerosol Science and Technology, 1993, 19, 409-410.	3.1	1
312	Effect of Dopants in Vapor Phase Synthesis of Titania Powders. Materials Research Society Symposia Proceedings, 1992, 271, 951.	0.1	2
313	Monte Carlo Simulation of Gas Phase Particle Formation and Sintering. Materials Research Society Symposia Proceedings, 1992, 278, 261.	0.1	Ο
314	Modeling of the Formation of Boron Carbide Particles in an Aerosol Flow Reactor. Materials Research Society Symposia Proceedings, 1992, 242, 643.	0.1	0
315	Role of particle evaporation during synthesis of lead oxide by aerosol decomposition. Journal of Materials Research, 1992, 7, 3333-3341.	2.6	26
316	Thermodynamics of Vapor Synthesis of AlN by Nitridation of Aluminum and Its Halides. Journal of the American Ceramic Society, 1992, 75, 920-928.	3.8	39
317	Dopants in Vapor-Phase Synthesis of Titania Powders. Journal of the American Ceramic Society, 1992, 75, 3408-3416.	3.8	169
318	Kinetics of Carbothermal Reduction Synthesis of Boron Carbide. Journal of the American Ceramic Society, 1992, 75, 2509-2514.	3.8	82
319	The effect of ionic additives on aerosol coagulation. Journal of Colloid and Interface Science, 1992, 153, 106-117.	9.4	58
320	Modeling the formation of boron carbide particles in an aerosol flow reactor. AICHE Journal, 1992, 38, 1685-1692.	3.6	39
321	Gas phase production of particles in reactive turbulent flows. Journal of Aerosol Science, 1991, 22, 637-655.	3.8	161
322	Synthesis of Titania Powder by Titanium Tetrachloride Oxidation in an Aerosol Flow Reactor. Materials Research Society Symposia Proceedings, 1991, 249, 139.	0.1	1
323	Vapor synthesis of titania powder by titanium tetrachloride oxidation. AICHE Journal, 1991, 37, 1561-1570.	3.6	148
324	Kinetics of Titanium(IV) Chloride Oxidation. Journal of the American Ceramic Society, 1990, 73, 2158-2162.	3.8	124

#	Article	IF	CITATIONS
325	A discrete-sectional model for particulate production by gas-phase chemical reaction and aerosol coagulation in the free-molecular regime. Journal of Colloid and Interface Science, 1990, 139, 63-86.	9.4	260
326	Codeposition of SiO2/GeO2 during production of optical fiber preforms by modified chemical vapor deposition. International Journal of Heat and Mass Transfer, 1990, 33, 1977-1986.	4.8	15
327	Receptor Modeling for Contaminant Particle Source Apportionment in Clean Rooms. Aerosol Science and Technology, 1990, 12, 805-812.	3.1	3
328	Receptor Models for Ambient Carbonaceous Aerosols. Aerosol Science and Technology, 1989, 10, 258-266.	3.1	3
329	Theory for Aerosol Generation in Laminar Flow Condensers. Aerosol Science and Technology, 1989, 11, 100-119.	3.1	48
330	Gas-phase manufacture of particulates: interplay of chemical reaction and aerosol coagulation in the free-molecular regime. Industrial & Engineering Chemistry Research, 1989, 28, 1474-1481.	3.7	96
331	Optical waveguide preform fabrication: Silica formation and growth in a highâ€ŧemperature aerosol reactor. Journal of Applied Physics, 1989, 65, 2445-2450.	2.5	40
332	Manufacture of optical waveguide preforms by modified chemical vapor deposition. AICHE Journal, 1988, 34, 912-921.	3.6	52
333	Simultaneous nucleation, condensation, and coagulation in aerosol reactors. Journal of Colloid and Interface Science, 1988, 124, 416-427.	9.4	487