Da-Jian Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8155348/publications.pdf Version: 2024-02-01

ΠΑ-ΙΙΑΝΙ λΑ/Η

#	Article	IF	CITATIONS
1	Topological Creation of Acoustic Pseudospin Multipoles in a Flow-Free Symmetry-Broken Metamaterial Lattice. Physical Review Letters, 2017, 118, 084303.	7.8	303
2	Acoustic subwavelength imaging of subsurface objects with acoustic resonant metalens. Applied Physics Letters, 2013, 103, .	3.3	58
3	Tunable Fano Resonances in Three-Layered Bimetallic Au and Ag Nanoshell. Journal of Physical Chemistry C, 2011, 115, 23797-23801.	3.1	57
4	Broadband Airy-like beams by coded acoustic metasurfaces. Applied Physics Letters, 2019, 114, .	3.3	55
5	Tunable near-infrared optical properties of three-layered metal nanoshells. Journal of Chemical Physics, 2008, 129, 074711.	3.0	46
6	Optimization of the bimetallic gold and silver alloy nanoshell for biomedical applications in vivo. Applied Physics Letters, 2010, 97, 061904.	3.3	42
7	Broadband acoustic focusing by Airy-like beams based on acoustic metasurfaces. Journal of Applied Physics, 2018, 123, .	2.5	42
8	Broadband tunable focusing lenses by acoustic coding metasurfaces. Journal Physics D: Applied Physics, 2020, 53, 255501.	2.8	33
9	Generation of fractional acoustic vortex with a discrete Archimedean spiral structure plate. Applied Physics Letters, 2018, 112, .	3.3	32
10	Optical Fiber Bragg Grating Pressure Sensor Based on Dual-Frequency Optoelectronic Oscillator. IEEE Photonics Technology Letters, 2017, 29, 1864-1867.	2.5	29
11	Strong Plasmon–Exciton–Plasmon Multimode Couplings in Three-Layered Ag–J-Aggregates–Ag Nanostructures. Journal of Physical Chemistry C, 2017, 121, 25455-25462.	3.1	28
12	Metasurface-enabled airborne fractional acoustic vortex emitter. Applied Physics Letters, 2018, 113, .	3.3	28
13	A higher-order topological insulator with wide bandgaps in Lamb-wave systems. Journal of Applied Physics, 2020, 127, .	2.5	26
14	Focused acoustic vortex by an artificial structure with two sets of discrete Archimedean spiral slits. Applied Physics Letters, 2019, 115, .	3.3	25
15	Fano-like resonance in symmetry-broken gold nanotube dimer. Optics Express, 2012, 20, 26559.	3.4	24
16	Three-layered metallodielectric nanoshells: plausible meta-atoms for metamaterials with isotropic negative refractive index at visible wavelengths. Optics Express, 2013, 21, 1076.	3.4	23
17	Dynamic generation and modulation of acoustic bottle-beams by metasurfaces. Scientific Reports, 2018, 8, 12682.	3.3	21
18	Localized surface plasmon resonance properties of two-layered gold nanowire: Effects of geometry, incidence angle, and polarization. Journal of Applied Physics, 2011, 109, 083540.	2.5	16

Da-Jian Wu

#	Article	IF	CITATIONS
19	A tunable Fano resonance in silver nanoshell with a spherically anisotropic core. Journal of Chemical Physics, 2012, 136, 034502.	3.0	15
20	Extraordinary acoustic scattering in a periodic PT-symmetric zero-index metamaterials waveguide. Europhysics Letters, 2019, 125, 58002.	2.0	14
21	Tunable photoacoustic properties of gold nanoshells with near-infrared optical responses. Journal of Applied Physics, 2017, 122, .	2.5	13
22	Influences of the geometry and acoustic parameter on acoustic radiation forces on three-layered nucleate cells. Journal of Applied Physics, 2017, 122, .	2.5	12
23	Acoustic tweezing for both Rayleigh and Mie particles based on acoustic focused petal beams. Applied Physics Letters, 2020, 116, .	3.3	12
24	Asymmetric phase modulation of acoustic waves through unidirectional metasurfaces. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	11
25	Efficient Magnetic Resonance Amplification and Near-Field Enhancement from Gain-Assisted Silicon Nanospheres and Nanoshells. Journal of Physical Chemistry C, 2016, 120, 13227-13233.	3.1	10
26	Manipulation of acoustic transmission by zero-index metamaterial with rectangular defect. Journal of Applied Physics, 2017, 122, 215103.	2.5	10
27	Enhanced Fractional Acoustic Vortices by an Annulus Acoustic Metasurface with Multi‣ayered Rings. Advanced Materials Technologies, 2020, 5, 2000356.	5.8	10
28	Enhanced Lowâ€Frequency Monopole and Dipole Acoustic Antennas Based on a Subwavelength Bianisotropic Structure. Advanced Materials Technologies, 2020, 5, 1900970.	5.8	9
29	Mixed focused-acoustic-vortices generated by an artificial structure plate engraved with discrete rectangular holes. Applied Physics Letters, 2021, 118, .	3.3	9
30	Negative acoustic radiation force induced on an elastic sphere by laser irradiation. Physical Review E, 2018, 98, .	2.1	8
31	Acoustic radiation forces on three-layered drug particles in focused Gaussian beams. Journal of the Acoustical Society of America, 2019, 145, 1331-1340.	1.1	7
32	Modulation of acoustic radiation forces on three-layered nucleate cells in a focused Gaussian beam. Europhysics Letters, 2018, 124, 24004.	2.0	6
33	Sound insulation via a reconfigurable ventilation barrier with ultra-thin zigzag structures. Journal of Applied Physics, 2021, 129, 064502.	2.5	6
34	Acoustic anti-parity-time symmetric structure enabling equivalent lasing and coherent perfect absorption. Physical Review B, 2021, 104, .	3.2	6
35	Modulation of anisotropic middle layer on the plasmon couplings in sandwiched gold nanoshells. Gold Bulletin, 2012, 45, 197-201.	2.4	5
36	Laser irradiation modulating the acoustic radiation force acting on a liquid ball in a plane progressive wave. AIP Advances, 2019, 9, .	1.3	5

Da-Jian Wu

 Coupled Focused Acoustic Vortices Generated by Degenerated Artificial Plates for Acoustic Coded Communication. Advanced Materials Technologies, 2022, 7, . Plasmon–exciton induced transparency in plexcitonic Ag–CuCl-coated nanowires and associat arrays. Applied Physics B: Lasers and Optics, 2015, 119, 355-361. Perfect monochromatic acoustic anti-reflection: A first-principles study. Journal of Applied Physics, 2017, 121, 094504. Alternating Coupling Regimes in a Plasmon–Molecule Hybrid Structure through a Phase-Change Material. Journal of Physical Chemistry C, 2020, 124, 22671-22676. Generation of diverse acoustic vortices by superimposed multipole emissions. Physical Review B, 2 103, . Strong and weak couplings in molecular vibration–plasmon hybrid structures. Optics Express, 20 	IF	CITATIONS
 Plasmon–exciton induced transparency in plexcitonic Ag–CuCl-coated nanowires and associar arrays. Applied Physics B: Lasers and Optics, 2015, 119, 355-361. Perfect monochromatic acoustic anti-reflection: A first-principles study. Journal of Applied Physics, 2017, 121, 094504. Alternating Coupling Regimes in a Plasmon–Molecule Hybrid Structure through a Phase-Change Material. Journal of Physical Chemistry C, 2020, 124, 22671-22676. Generation of diverse acoustic vortices by superimposed multipole emissions. Physical Review B, 2 103, . Strong and weak couplings in molecular vibration–plasmon hybrid structures. Optics Express, 20 	5.8	5
 Perfect monochromatic acoustic anti-reflection: A first-principles study. Journal of Applied Physics, 2017, 121, 094504. Alternating Coupling Regimes in a Plasmon–Molecule Hybrid Structure through a Phase-Change Material. Journal of Physical Chemistry C, 2020, 124, 22671-22676. Generation of diverse acoustic vortices by superimposed multipole emissions. Physical Review B, 2 103, . Strong and weak couplings in molecular vibration–plasmon hybrid structures. Optics Express, 20 	ed 2.2	4
 Alternating Coupling Regimes in a Plasmon–Molecule Hybrid Structure through a Phase-Change Material. Journal of Physical Chemistry C, 2020, 124, 22671-22676. Generation of diverse acoustic vortices by superimposed multipole emissions. Physical Review B, 2 103, . Strong and weak couplings in molecular vibration–plasmon hybrid structures. Optics Express, 20 	2.5	4
 Generation of diverse acoustic vortices by superimposed multipole emissions. Physical Review B, 2 103, . Strong and weak couplings in molecular vibration–plasmon hybrid structures. Optics Express, 20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3.1	4
Strong and weak couplings in molecular vibration–plasmon hybrid structures. Optics Express, 20	021, 3.2	4
27, 1479.)19, 3.4	4
⁴³ Three-Dimensional Trapping and Manipulation of a Mie Particle by Hybrid Acoustic Focused Petal Beams. Physical Review Applied, 2022, 17, .	3.8	3
Acoustic Equivalent Lasing and Coherent Perfect Absorption Based on a Conjugate Metamaterial Sphere. Applied Sciences (Switzerland), 2022, 12, 1777.	2.5	2
45 Comment on "Influence of dielectric core and embedding medium on the local field enhancem gold nanoshells―[J. Appl. Phys. 100, 026104 (2006)]. Journal of Applied Physics, 2007, 102, 086	ent for 2.5	1
46 Optimization of ultrathin carbon film coated silver nanoshell for biomedical applications in vivo. Applied Physics A: Materials Science and Processing, 2011, 105, 439-443.	2.3	1
47 Modulation of Fano resonances in symmetry-broken gold-SiO2-gold nanotube dimers. Science Chi Physics, Mechanics and Astronomy, 2014, 57, 1063-1067.	ha: 5.1	1
Non-diffraction propagation of acoustic waves in a rapidly modulated stratified medium. Scientific Reports, 2017, 7, 8184.	3.3	1
Broadband acoustic subwavelength imaging by rapidly modulated stratified media. Scientific Repo 2018, 8, 4934.	rts, 3.3	1
50 Slowing down plexcimons in exciton–plasmon multimode coupling nanostructrures. Journal of Applied Physics, 2019, 126, 153101.	2.5	1
⁵¹ Optical radiation forces of focused Gaussian beams on the three-layered microgel particles with near-infrared responses. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	1
⁵² Characterizing core–shell nanostructures through photoacoustic response based on theoretical model in the frequency domain. Journal of the Acoustical Society of America, 2022, 151, 2649-265	5. 1.1	0