
Thierry Vernet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8155294/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of a two-component regulatory system involved in antimicrobial peptide resistance in Streptococcus pneumoniae. PLoS Pathogens, 2022, 18, e1010458.	4.7	9
2	Determination of the two-component systems regulatory network reveals core and accessory regulations across <i>Pseudomonas aeruginosa</i> lineages. Nucleic Acids Research, 2021, 49, 11476-11490.	14.5	28
3	Deletion of the Zinc Transporter Lipoprotein AdcAll Causes Hyperencapsulation of Streptococcus pneumoniae Associated with Distinct Alleles of the Type I Restriction-Modification System. MBio, 2020, 11, .	4.1	8
4	One-Pot Two-Step Metabolic Labeling of Teichoic Acids and Direct Labeling of Peptidoglycan Reveals Tight Coordination of Both Polymers Inserted into Pneumococcus Cell Wall. ACS Chemical Biology, 2018, 13, 2010-2015.	3.4	6
5	Nascent teichoic acids insertion into the cell wall directs the localization and activity of the major pneumococcal autolysin LytA. Cell Surface, 2018, 2, 24-37.	3.0	11
6	Deciphering Key Residues Involved in the Virulence-promoting Interactions between Streptococcus pneumoniae and Human Plasminogen. Journal of Biological Chemistry, 2017, 292, 2217-2225.	3.4	17
7	Peptidoglycan Oâ€acetylation is functionally related to cell wall biosynthesis and cell division in <i>Streptococcus pneumoniae</i> . Molecular Microbiology, 2017, 106, 832-846.	2.5	18
8	Specific and spatial labeling of choline-containing teichoic acids in Streptococcus pneumoniae by click chemistry. Chemical Communications, 2017, 53, 10572-10575.	4.1	13
9	Recombinant expression of the precursor of the hemorrhagic metalloproteinase HF3 and its non-catalytic domains using a cell-free synthesis system. Amino Acids, 2016, 48, 2205-2214.	2.7	3
10	Spot peptide arrays and SPR measurements: throughput and quantification in antibody selectivity studies. Journal of Molecular Recognition, 2015, 28, 635-644.	2.1	9
11	Antibody Binding Selectivity: Alternative Sets of Antigen Residues Entail High-Affinity Recognition. PLoS ONE, 2015, 10, e0143374.	2.5	5
12	Full-length structure of the major autolysin LytA. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1373-1381.	2.5	22
13	Remodeling of the Z-Ring Nanostructure during the Streptococcus pneumoniae Cell Cycle Revealed by Photoactivated Localization Microscopy. MBio, 2015, 6, .	4.1	63
14	Rapid automated detergent screening for the solubilization and purification of membrane proteins and complexes. Engineering in Life Sciences, 2015, 15, 39-50.	3.6	13
15	Mechanism of β-Lactam Action in Streptococcus pneumoniae: the Piperacillin Paradox. Antimicrobial Agents and Chemotherapy, 2015, 59, 609-621.	3.2	19
16	Streptococcus pneumoniae GAPDH Is Released by Cell Lysis and Interacts with Peptidoglycan. PLoS ONE, 2015, 10, e0125377.	2.5	23
17	The Elongation of Ovococci. Microbial Drug Resistance, 2014, 20, 215-221.	2.0	29
18	Interaction of <scp>P</scp> enicillinâ€ <scp>B</scp> inding <scp>P</scp> rotein 2x and <scp>Ser</scp> / <scp>Thr</scp> protein kinase <scp>StkP</scp> , two key players in <i><scp>S</scp>treptococcus pneumoniae</i> â€ <scp>R</scp> 6 morphogenesis. Molecular Microbiology, 2013, 90, 88-102.	2.5	60

#	Article	IF	CITATIONS
19	On-chip microbial culture for the specific detection of very low levels of bacteria. Lab on A Chip, 2013, 13, 4024.	6.0	91
20	<i>In vitro</i> Reconstitution of Peptidoglycan Assembly from the Gram-Positive Pathogen <i>Streptococcus pneumoniae</i> . ACS Chemical Biology, 2013, 8, 2688-2696.	3.4	74
21	Structure–function analysis of the <scp>LytM</scp> domain of <scp>EnvC</scp> , an activator of cell wall remodelling at the <i><scp>E</scp>scherichia coli</i> division site. Molecular Microbiology, 2013, 89, 690-701.	2.5	58
22	Reconstitution of Membrane Protein Complexes Involved in Pneumococcal Septal Cell Wall Assembly. PLoS ONE, 2013, 8, e75522.	2.5	14
23	New Insights into Histidine Triad Proteins: Solution Structure of a Streptococcus pneumoniae PhtD Domain and Zinc Transfer to AdcAll. PLoS ONE, 2013, 8, e81168.	2.5	48
24	Peptidoglycan Assembly Machines: The Biochemical Evidence. Microbial Drug Resistance, 2012, 18, 256-260.	2.0	11
25	Human and Pneumococcal Cell Surface Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) Proteins Are Both Ligands of Human C1q Protein. Journal of Biological Chemistry, 2012, 287, 42620-42633.	3.4	51
26	The membrane anchor of penicillinâ€binding protein PBP2a from <i>Streptococcus pneumoniae</i> influences peptidoglycan chain length. FEBS Journal, 2012, 279, 2071-2081.	4.7	25
27	Effects of Deletion of the Streptococcus pneumoniae Lipoprotein Diacylglyceryl Transferase Gene lgt on ABC Transporter Function and on Growth In Vivo. PLoS ONE, 2012, 7, e41393.	2.5	40
28	Structural Basis for the Substrate Specificity of a Novel β-N-Acetylhexosaminidase StrH Protein from Streptococcus pneumoniae R6. Journal of Biological Chemistry, 2011, 286, 43004-43012.	3.4	29
29	Biochemical Characterization of the Histidine Triad Protein PhtD as a Cell Surface Zinc-Binding Protein of Pneumococcus. Biochemistry, 2011, 50, 3551-3558.	2.5	43
30	Zinc uptake by Streptococcus pneumoniae depends on both AdcA and AdcAll and is essential for normal bacterial morphology and virulence. Molecular Microbiology, 2011, 82, 904-916.	2.5	122
31	Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. EMBO Journal, 2011, 30, 1425-1432.	7.8	255
32	Small molecule inhibitors of peptidoglycan synthesis targeting the lipid II precursor. Biochemical Pharmacology, 2011, 81, 1098-1105.	4.4	19
33	A systematic mutagenesis-driven strategy for site-resolved NMR studies of supramolecular assemblies. Journal of Biomolecular NMR, 2011, 50, 229-236.	2.8	70
34	Structural and Enzymatic Characterization of the Streptococcal ATP/Diadenosine Polyphosphate and Phosphodiester Hydrolase Spr1479/SapH*. Journal of Biological Chemistry, 2011, 286, 35906-35914.	3.4	4
35	Heterologous Expression of Membrane Proteins: Choosing the Appropriate Host. PLoS ONE, 2011, 6, e29191.	2.5	109
36	Large scale purification of linear plasmid DNA for efficient high throughput cloning. Biotechnology Journal, 2010, 5, 978-985.	3.5	8

#	Article	IF	CITATIONS
37	Structural Basis of Host Cell Recognition by the Pilus Adhesin from Streptococcus pneumoniae. Structure, 2010, 18, 106-115.	3.3	120
38	Optimization of conditions for the glycosyltransferase activity of penicillinâ€binding protein 1a from <i>Thermotoga maritima</i> . FEBS Journal, 2010, 277, 4290-4298.	4.7	20
39	Stability and Assembly of Pilus Subunits of Streptococcus pneumoniae. Journal of Biological Chemistry, 2010, 285, 12405-12415.	3.4	30
40	Central Domain of DivIB Caps the C-terminal Regions of the FtsL/DivIC Coiled-coil Rod. Journal of Biological Chemistry, 2009, 284, 27687-27700.	3.4	37
41	Parallel screening and optimization of protein constructs for structural studies. Protein Science, 2009, 18, 434-439.	7.6	7
42	Penicillin-binding proteins and β-lactam resistance. FEMS Microbiology Reviews, 2008, 32, 361-385.	8.6	475
43	The different shapes of cocci. FEMS Microbiology Reviews, 2008, 32, 345-360.	8.6	164
44	Sortase-Mediated Pilus Fiber Biogenesis in Streptococcus pneumoniae. Structure, 2008, 16, 1838-1848.	3.3	77
45	AdcAll, A New Pneumococcal Zn-Binding Protein Homologous with ABC Transporters: Biochemical and Structural Analysis. Journal of Molecular Biology, 2008, 381, 594-606.	4.2	112
46	The Interaction of Streptococcus pneumoniae with Plasmin Mediates Transmigration across Endothelial and Epithelial Monolayers by Intercellular Junction Cleavage. Infection and Immunity, 2008, 76, 5350-5356.	2.2	84
47	Common Alterations in PBP1a from Resistant Streptococcus pneumoniae Decrease Its Reactivity toward β-Lactams. Journal of Biological Chemistry, 2008, 283, 4886-4894.	3.4	44
48	<i>Streptococcus pneumoniae</i> Choline-Binding Protein E Interaction with Plasminogen/Plasmin Stimulates Migration across the Extracellular Matrix. Infection and Immunity, 2008, 76, 466-476.	2.2	58
49	Roles of Pneumococcal DivIB in Cell Division. Journal of Bacteriology, 2008, 190, 4501-4511.	2.2	24
50	Establishment of cell-cell junctions depends on the oligomeric states of VE-cadherin. Journal of Biochemistry, 2007, 143, 821-832.	1.7	9
51	Crystal Structure of Penicillin-binding Protein 1a (PBP1a) Reveals a Mutational Hotspot Implicated in β-Lactam Resistance in Streptococcus pneumoniae. Journal of Molecular Biology, 2006, 355, 684-696.	4.2	74
52	Automated high-throughput process for site-directed mutagenesis, production, purification, and kinetic characterization of enzymes. Analytical Biochemistry, 2006, 355, 110-116.	2.4	11
53	Pneumococcal β-Lactam Resistance Due to a Conformational Change in Penicillin-binding Protein 2x. Journal of Biological Chemistry, 2006, 281, 1771-1777.	3.4	55
54	Identical Penicillin-Binding Domains in Penicillin-Binding Proteins of Streptococcus pneumoniae Clinical Isolates with Different Levels of β-Lactam Resistance. Antimicrobial Agents and Chemotherapy, 2005, 49, 2895-2902.	3.2	44

#	Article	IF	CITATIONS
55	Crystal Structure of Phosphorylcholine Esterase Domain of the Virulence Factor Choline-binding Protein E from Streptococcus pneumoniae. Journal of Biological Chemistry, 2005, 280, 28591-28600.	3.4	55
56	Active site restructuring regulates ligand recognition in class A penicillin-binding proteins. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 577-582.	7.1	88
57	Crystal Structure of a Peptidoglycan Synthesis Regulatory Factor (PBP3) from Streptococcus pneumoniae. Journal of Biological Chemistry, 2005, 280, 15984-15991.	3.4	63
58	Biochemical Characterization of Streptococcus pneumoniae Penicillin-Binding Protein 2b and Its Implication in β-Lactam Resistance. Antimicrobial Agents and Chemotherapy, 2004, 48, 1848-1855.	3.2	45
59	A PBP2x from a Clinical Isolate of Streptococcus pneumoniae Exhibits an Alternative Mechanism for Reduction of Susceptibility to β-Lactam Antibiotics. Journal of Biological Chemistry, 2004, 279, 16463-16470.	3.4	76
60	Triatoma infestans Apyrases Belong to the 5′-Nucleotidase Family. Journal of Biological Chemistry, 2004, 279, 19607-19613.	3.4	71
61	In vitro reconstitution of a trimeric complex of DivIB, DivIC and FtsL, and their transient co-localization at the division site in Streptococcus pneumoniae. Molecular Microbiology, 2004, 55, 413-424.	2.5	67
62	The d,d-carboxypeptidase PBP3 organizes the division process of Streptococcus pneumoniae. Molecular Microbiology, 2004, 51, 1641-1648.	2.5	96
63	Kinetics of expression of the salivary apyrases in Triatoma infestans. Insect Biochemistry and Molecular Biology, 2004, 34, 1051-1058.	2.7	18
64	Growth and division of Streptococcus pneumoniae : localization of the high molecular weight penicillinâ€binding proteins during the cell cycle. Molecular Microbiology, 2003, 50, 845-855.	2.5	118
65	Structural studies of the transpeptidase domain of PBP1a fromStreptococcus pneumoniae. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1067-1069.	2.5	10
66	Identification of Proteases Involved in the Proteolysis of Vascular Endothelium Cadherin during Neutrophil Transmigration. Journal of Biological Chemistry, 2003, 278, 14002-14012.	3.4	150
67	Ebola Virus Matrix Protein VP40 Interaction with Human Cellular Factors Tsg101 and Nedd4. Journal of Molecular Biology, 2003, 326, 493-502.	4.2	183
68	Expression and purification of FtsW and RodA from Streptococcus pneumoniae, two membrane proteins involved in cell division and cell growth, respectively. Protein Expression and Purification, 2003, 30, 18-25.	1.3	9
69	The Structural Modifications Induced by the M339F Substitution in PBP2x from Streptococcus pneumoniae Further Decreases the Susceptibility to β-Lactams of Resistant Strains. Journal of Biological Chemistry, 2003, 278, 44448-44456.	3.4	51
70	The Glycosyltransferase Domain of Penicillin-Binding Protein 2a from Streptococcus pneumoniae Catalyzes the Polymerization of Murein Glycan Chains. Journal of Bacteriology, 2003, 185, 4418-4423.	2.2	35
71	Functional Characterization of Penicillin-Binding Protein 1b from Streptococcus pneumoniae. Journal of Bacteriology, 2003, 185, 1650-1658.	2.2	44
72	Bifunctional Penicillin-Binding Proteins: Focus on the Glycosyltransferase Domain and its Specific Inhibitor Moenomycin. Current Pharmaceutical Biotechnology, 2002, 3, 63-75.	1.6	18

#	Article	IF	CITATIONS
73	Synergy between Extracellular Modules of Vascular Endothelial Cadherin Promotes Homotypic Hexameric Interactions. Journal of Biological Chemistry, 2002, 277, 12790-12801.	3.4	34
74	Membrane Topology of the Streptococcus pneumoniae FtsW Division Protein. Journal of Bacteriology, 2002, 184, 1925-1931.	2.2	39
75	Functional mapping of conserved, surface-exposed charges of antibody variable domains. Journal of Molecular Recognition, 2002, 15, 94-103.	2.1	13
76	Increase of the deacylation rate of PBP2x fromStreptococcus pneumoniaeby single point mutations mimicking the classâ $\in f$ A Î ² -lactamases. FEBS Journal, 2002, 269, 1678-1683.	0.2	26
77	BIACORE Data Processing: An Evaluation of the Global Fitting Procedure. Analytical Biochemistry, 2001, 293, 194-203.	2.4	45
78	Cysteine protease isoforms from Trypanosoma cruzi, cruzipain 2 and cruzain, present different substrate preference and susceptibility to inhibitors. Molecular and Biochemical Parasitology, 2001, 114, 41-52.	1.1	74
79	Self-assembly of the Vascular Endothelial Cadherin Ectodomain in a Ca2+-dependent Hexameric Structure. Journal of Biological Chemistry, 2001, 276, 3581-3588.	3.4	27
80	Deacylation Kinetics Analysis of Streptococcus pneumoniae Penicillin-Binding Protein 2x Mutants Resistant to β-Lactam Antibiotics Using Electrospray Ionization– Mass Spectrometry. Analytical Biochemistry, 2000, 284, 240-246.	2.4	25
81	Effects on interaction kinetics of mutations at the VH-VL interface of Fabs depend on the structural context. Journal of Molecular Recognition, 2000, 13, 127-139.	2.1	33
82	Expression, purification, crystallization and preliminary X-ray analysis of the Î1-carrageenase fromAlteromonas fortis. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 766-768.	2.5	23
83	Mutations in the Active Site of Penicillin-binding Protein PBP2x from Streptococcus pneumoniae. Journal of Biological Chemistry, 1999, 274, 19175-19180.	3.4	80
84	Schmid's Metaphyseal Chondrodysplasia Mutations Interfere with Folding of the C-terminal Domain of Human Collagen X Expressed inEscherichia coli. Journal of Biological Chemistry, 1999, 274, 18909-18915.	3.4	25
85	Expression, purification, crystallization and preliminary X-ray analysis of the κ-carrageenase from Pseudoalteromonas carrageenovora. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 918-920.	2.5	24
86	Mapping of the interaction between the immunodominant loop of the ectodomain of HIV-1 gp41 and human complement protein C1q. FEBS Journal, 1999, 265, 656-663.	0.2	13
87	Glycosyltransferase Domain of Penicillin-Binding Protein 2a from Streptococcus pneumoniae Is Membrane Associated. Journal of Bacteriology, 1999, 181, 2773-2781.	2.2	31
88	Alteration of Endothelial Cell Monolayer Integrity Triggers Resynthesis of Vascular Endothelium Cadherin. Journal of Biological Chemistry, 1998, 273, 29786-29793.	3.4	58
89	Identification of a structural determinant for resistance to Â-lactam antibiotics in Gram-positive bacteria. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 13403-13406.	7.1	81
90	Identification, Purification, and Characterization of Transpeptidase and Glycosyltransferase Domains of <i>Streptococcus pneumoniae</i> Penicillin-Binding Protein 1a. Journal of Bacteriology, 1998, 180, 5652-5659.	2.2	50

#	Article	IF	CITATIONS
91	Role of the Occluding Loop in Cathepsin B Activity. Journal of Biological Chemistry, 1997, 272, 1197-1202.	3.4	241
92	Functional Mapping of Conserved Residues Located at the VL and VH Domain Interface of a Fab. Journal of Molecular Biology, 1996, 264, 1-6.	4.2	55
93	Reduction of Strong Lipase-Polyclonal Antibodies Binding by Limited Proteolysis. Analytical Biochemistry, 1995, 226, 31-34.	2.4	1
94	Codon-Based Combinatorial Alanine Scanning Site-Directed Mutagenesis: Design, Implementation, and Polymerase Chain Reaction Screening. Analytical Biochemistry, 1995, 229, 282-290.	2.4	18
95	Structural and Functional Roles of Asparagine 175 in the Cysteine Protease Papain. Journal of Biological Chemistry, 1995, 270, 16645-16652.	3.4	127
96	Redesigning the active site of Geotrichum candidum lipase. Protein Engineering, Design and Selection, 1995, 8, 835-842.	2.1	11
97	Processing of the Papain Precursor. Journal of Biological Chemistry, 1995, 270, 10838-10846.	3.4	130
98	Expression and characterization of Geotrichum candidum lipase I gene. Comparison of specificity profile with lipase II. FEBS Journal, 1995, 228, 863-9.	0.2	4
99	Modulation of the enzymatic activity of papain by interdomain residues remote from the active site. Protein Engineering, Design and Selection, 1994, 7, 769-776.	2.1	9
100	Identification of new cysteine protease gene isoforms in Trypanosoma cruzi. Molecular and Biochemical Parasitology, 1994, 67, 333-338.	1.1	74
101	Expression of functional papain precursor in Saccharomyces cerevisiae: rapid screening of mutants. Protein Engineering, Design and Selection, 1993, 6, 213-219.	2.1	29
102	Why are quiescent mesophyll protoplasts from Nicotiana sylvestris able to re-enter into the cell cycle and re-initiate a mitotic activity?. Biochimie, 1993, 75, 539-545.	2.6	7
103	Cloning and expression of Geotrichum candidum lipase II gene in yeast. Probing of the enzyme active site by site-directed mutagenesis. Journal of Biological Chemistry, 1993, 268, 26212-9.	3.4	22
104	Functional expression of human cathepsin S in Saccharomyces cerevisiae. Purification and characterization of the recombinant enzyme. Journal of Biological Chemistry, 1993, 268, 4832-8.	3.4	128
105	The pro-region of the Kex2 endoprotease ofSaccharomyces cerevisiaeis removed by self-processing. FEBS Letters, 1992, 299, 283-286.	2.8	56
106	Correlation of co-ordinated amino acid changes at the two-domain interface of cysteine proteases with protein stability. Journal of Molecular Biology, 1992, 224, 501-509.	4.2	27
107	Expression of the Saccharomyces cerevisiae Kex2p endoprotease in insect cells. Evidence for a carboxy-terminal autoprocessing event. FEBS Journal, 1992, 204, 121-126.	0.2	23
108	Enhanced secretion from insect cells of a foreign protein fused to the honeybee melittin signal peptide. Gene, 1991, 98, 177-183.	2.2	296

#	Article	IF	CITATIONS
109	Removal of an inter-domain hydrogen bond through site-directed mutagenesis: role of serine 176 in the mechanism of papain. Protein Engineering, Design and Selection, 1991, 4, 307-311.	2.1	17
110	Processing of the papain precursor. Purification of the zymogen and characterization of its mechanism of processing. Journal of Biological Chemistry, 1991, 266, 21451-7.	3.4	68
111	Genetic and molecular approaches to synthesis and action of the yeast killer toxin. Experientia, 1990, 46, 193-200.	1.2	45
112	Synthesis of the membrane fusion and hemagglutinin proteins of measles virus, using a novel baculovirus vector containing the beta-galactosidase gene. Journal of Virology, 1990, 64, 37-50.	3.4	258
113	Secretion of functional papain precursor from insect cells. Requirement for N-glycosylation of the pro-region. Journal of Biological Chemistry, 1990, 265, 16661-6.	3.4	59
114	The expression in Escherichia coli of a synthetic gene coding for the precursor of papain is prevented by its own putative signal sequence. Gene, 1989, 77, 229-236.	2.2	48
115	Coordinated amino acid changes in homologous protein families. Protein Engineering, Design and Selection, 1988, 2, 193-199.	2.1	87
116	Mutual antagonism among killer yeasts: competition between Kl and K2 killers and a novel cDNA-based K1-K2 killer strain of Saccharomyces cerevisiae. Canadian Journal of Microbiology, 1988, 34, 38-44.	1.7	33
117	A family of yeast expression vectors containing the phage f1 intergenic region1. Gene, 1987, 52, 225-233.	2.2	536
118	Yeast killer toxin: Site-directed mutations implicate the precursor protein as the immunity component. Cell, 1986, 46, 105-113.	28.9	95
119	Ligation of single-stranded oligodeoxyribonucleotides by T4 RNA ligase. Analytical Biochemistry, 1986, 158, 171-178.	2.4	121
120	Stable maintenance in chemostat-grown Escherichia coli of pBR322 and pACYC184 by disruption of the tetracycline resistance gene*. Bioscience Reports, 1985, 5, 29-37.	2.4	10
121	A direct-selection vector derived from pColE3-CA38 and adapted for foreign gene expression. Gene, 1985, 34, 87-93.	2.2	21
122	Relationships of the Col plasmids E2, E3, E4, E5, E6, and E7: Restriction mapping and colicin gene fusions. Plasmid, 1985, 13, 205-210.	1.4	25
123	Characterization and nucleotide sequence of a colicin-release gene in the hie region of plasmid ColE3-CA38. Gene, 1984, 29, 175-184.	2.2	37
124	Osmotic-shock â€~stress proteins' in protoplasts of Nicotiana sylvestris. Plant Science Letters, 1982, 26, 159-165.	1.8	57
125	Expression of the Gene Coding for the Small Subunit of Ribulosebisphosphate Carboxylase during Differentiation of Tobacco Plant Protoplasts. FEBS Journal, 1982, 126, 489-494.	0.2	51