Santina Bruzzone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8155101/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	P2X7 Receptor Antagonist Reduces Fibrosis and Inflammation in a Mouse Model of Alpha-Sarcoglycan Muscular Dystrophy. Pharmaceuticals, 2022, 15, 89.	3.8	11
2	Neuroprotective Potential of Dendritic Cells and Sirtuins in Multiple Sclerosis. International Journal of Molecular Sciences, 2022, 23, 4352.	4.1	15
3	Structure-Based Identification and Biological Characterization of New NAPRT Inhibitors. Pharmaceuticals, 2022, 15, 855.	3.8	8
4	Identification of NAPRT Inhibitors with Anti-Cancer Properties by In Silico Drug Discovery. Pharmaceuticals, 2022, 15, 848.	3.8	10
5	CD38 downregulation modulates NAD+ and NADP(H) levels in thermogenic adipose tissues. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158819.	2.4	18
6	SIRT6 enhances oxidative phosphorylation in breast cancer and promotes mammary tumorigenesis in mice. Cancer & Metabolism, 2021, 9, 6.	5.0	25
7	Protein kinase G phosphorylates the Alzheimer's diseaseâ€associated tau protein at distinct Ser/Thr sites. BioFactors, 2021, 47, 126-134.	5.4	5
8	Nampt controls skeletal muscle development by maintaining Ca2+ homeostasis and mitochondrial integrity. Molecular Metabolism, 2021, 53, 101271.	6.5	27
9	Role of CD38 in Adipose Tissue: Tuning Coenzyme Availability?. Nutrients, 2021, 13, 3734.	4.1	2
10	Editorial: The Versatile Role of Nicotinamide Adenine Dinucleotide in Immunity. Frontiers in Immunology, 2021, 12, 810280.	4.8	1
11	Probing Allosteric Hsp70 Inhibitors by Molecular Modelling Studies to Expedite the Development of Novel Combined F508del CFTR Modulators. Pharmaceuticals, 2021, 14, 1296.	3.8	4
12	Differential modulation of SIRT6 deacetylase and deacylase activities by lysine-based small molecules. Molecular Diversity, 2020, 24, 655-671.	3.9	8
13	eATP/P2X7R Axis: An Orchestrated Pathway Triggering Inflammasome Activation in Muscle Diseases. International Journal of Molecular Sciences, 2020, 21, 5963.	4.1	11
14	Amino acid depletion triggered by ÊŸ-asparaginase sensitizes MM cells to carfilzomib by inducing mitochondria ROS-mediated cell death. Blood Advances, 2020, 4, 4312-4326.	5.2	19
15	Sirt6 inhibition delays the onset of experimental autoimmune encephalomyelitis by reducing dendritic cell migration. Journal of Neuroinflammation, 2020, 17, 228.	7.2	27
16	Abscisic Acid: A Conserved Hormone in Plants and Humans and a Promising Aid to Combat Prediabetes and the Metabolic Syndrome. Nutrients, 2020, 12, 1724.	4.1	27
17	Abscisic acid stimulates the release of insulin and of GLPâ€1 in the rat perfused pancreas and intestine. Diabetes/Metabolism Research and Reviews, 2019, 35, e3102.	4.0	5
18	Reply to: Absence of evidence that Slc12a8 encodes a nicotinamide mononucleotide transporter. Nature Metabolism, 2019, 1, 662-665.	11.9	10

 $\mathbf{31}$

#	Article	IF	CITATIONS
19	The Danger Signal Extracellular ATP Is Involved in the Immunomediated Damage of α-Sarcoglycan–Deficient Muscular Dystrophy. American Journal of Pathology, 2019, 189, 354-369.	3.8	9
20	Slc12a8 is a nicotinamide mononucleotide transporter. Nature Metabolism, 2019, 1, 47-57.	11.9	183
21	SIRT6 deacetylase activity regulates NAMPT activity and NAD(P)(H) pools in cancer cells. FASEB Journal, 2019, 33, 3704-3717.	0.5	48
22	Depletion of SIRT6 enzymatic activity increases acute myeloid leukemia cells' vulnerability to DNA-damaging agents. Haematologica, 2018, 103, 80-90.	3.5	48
23	Re-evaluation of neuronal P2X7 expression using novel mouse models and a P2X7-specific nanobody. ELife, 2018, 7, .	6.0	128
24	Abstract 4461: Sirt6 deletion slows mouse mammary tumorigenesis. , 2018, , .		0
25	Nicotinic Acid Phosphoribosyltransferase Regulates Cancer Cell Metabolism, Susceptibility to NAMPT Inhibitors, and DNA Repair. Cancer Research, 2017, 77, 3857-3869.	0.9	81
26	Pharmacological Sirt6 inhibition improves glucose tolerance in a type 2 diabetes mouse model. FASEB Journal, 2017, 31, 3138-3149.	0.5	62
27	Regulation and Function of Extracellular Nicotinamide Phosphoribosyltransferase/Visfatin. , 2017, 7, 603-621.		78
28	Abscisic acid enhances glucose disposal and induces brown fat activity in adipocytes in vitro and in vivo. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 131-144.	2.4	32
29	SIRT6 inhibitors with salicylate-like structure show immunosuppressive and chemosensitizing effects. Bioorganic and Medicinal Chemistry, 2017, 25, 5849-5858.	3.0	37
30	Abscisic Acid: A Novel Nutraceutical for Glycemic Control. Frontiers in Nutrition, 2017, 4, 24.	3.7	52
31	Antitumor effect of combined NAMPT and CD73 inhibition in an ovarian cancer model. Oncotarget, 2016, 7, 2968-2984.	1.8	57
32	Tolerability and efficacy study of P2X7 inhibition in experimental Charcot-Marie-Tooth type 1A (CMT1A) neuropathy. Neurobiology of Disease, 2016, 95, 145-157.	4.4	28
33	G-protein coupling and nuclear translocation of the human abscisic acid receptor LANCL2. Scientific Reports, 2016, 6, 26658.	3.3	38
34	NAD ⁺ Levels Control T Cell Calcium Signaling and Activation. Messenger (Los) Tj ETQq0	008.gBT	Overlock 10
35	Abscisic Acid Stimulates Glucagon-Like Peptide-1 Secretion from L-Cells and Its Oral Administration Increases Plasma Glucagon-Like Peptide-1 Levels in Rats. PLoS ONE, 2015, 10, e0140588.	2.5	19

APO866 Increases Antitumor Activity of Cyclosporin-A by Inducing Mitochondrial and Endoplasmic Reticulum Stress in Leukemia Cells. Clinical Cancer Research, 2015, 21, 3934-3945. 7.0

#	Article	IF	CITATIONS
37	Selectivity hot-spots of sirtuin catalytic cores. Molecular BioSystems, 2015, 11, 2263-2272.	2.9	24
38	Quinazolinedione SIRT6 inhibitors sensitize cancer cells to chemotherapeutics. European Journal of Medicinal Chemistry, 2015, 102, 530-539.	5.5	78
39	The enzymatic activities of CD38 enhance CLL growth and trafficking: implications for therapeutic targeting. Leukemia, 2015, 29, 356-368.	7.2	33
40	Impaired Increase of Plasma Abscisic Acid in Response to Oral Glucose Load in Type 2 Diabetes and in Gestational Diabetes. PLoS ONE, 2015, 10, e0115992.	2.5	31
41	Nicotinamide phosphoribosyltransferase inhibition reduces intraplaque CXCL1 production and associated neutrophil infiltration in atherosclerotic mice. Thrombosis and Haemostasis, 2014, 112, 308-322.	3.4	44
42	Toward a Medicine-Oriented Use of the Human Hormone/Nutritional Supplement Abscisic Acid. Messenger (Los Angeles, Calif: Print), 2014, 3, 86-97.	0.3	10
43	The Diadenosine Homodinucleotide P18 Improves In Vitro Myelination in Experimental Charcotâ€Marieâ€Tooth Type 1A. Journal of Cellular Biochemistry, 2014, 115, 161-167.	2.6	8
44	Nicotinamide Phosphoribosyltransferase Promotes Epithelial-to-Mesenchymal Transition as a Soluble Factor Independent of Its Enzymatic Activity. Journal of Biological Chemistry, 2014, 289, 34189-34204.	3.4	64
45	A critical role of autophagy in antileukemia/lymphoma effects of APO866, an inhibitor of NAD biosynthesis. Autophagy, 2014, 10, 603-617.	9.1	28
46	Discovery of Novel and Selective SIRT6 Inhibitors. Journal of Medicinal Chemistry, 2014, 57, 4796-4804.	6.4	94
47	Inhibition of Nicotinamide Phosphoribosyltransferase Reduces Neutrophil-Mediated Injury in Myocardial Infarction. Antioxidants and Redox Signaling, 2013, 18, 630-641.	5.4	95
48	Fluridone as a new anti-inflammatory drug. European Journal of Pharmacology, 2013, 720, 7-15.	3.5	6
49	CD73 Protein as a Source of Extracellular Precursors for Sustained NAD+ Biosynthesis in FK866-treated Tumor Cells. Journal of Biological Chemistry, 2013, 288, 25938-25949.	3.4	129
50	Cycling Assay for Determining Intracellular Cyclic ADP-Ribose Levels. Cold Spring Harbor Protocols, 2013, 2013, pdb.prot072991.	0.3	1
51	A CD38/CD203a/CD73 ectoenzymatic pathway independent of CD39 drives a novel adenosinergic loop in human T lymphocytes. Oncolmmunology, 2013, 2, e26246.	4.6	216
52	Rejuvenating Sirtuins: The Rise of a New Family of Cancer Drug Targets. Current Pharmaceutical Design, 2013, 19, 614-623.	1.9	49
53	Editorial (Thematic Issue: NAD ⁺ Biosynthesis and Signaling as an Emerging Area in) Tj ETQq1 1 0.78	34314 rgBT 2.1	- /Qverlock 1
54	Nicotinamide Phosphoribosyltransferase (NAMPT) Inhibitors as Therapeutics: Rationales,	9.1	4.9

⁵⁴ Controversies, Clinical Experience. Current Drug Targets, 2013, 14, 637-643.

#	Article	IF	CITATIONS
55	Nicotinamide Phosphoribosyltransferase as a Target in Inflammation- Related Disorders. Current Topics in Medicinal Chemistry, 2013, 13, 2930-2938.	2.1	27
56	Nicotinamide Phosphoribosyltransferase (NAMPT) Inhibitors as Therapeutics: Rationales, Controversies, Clinical Experience. Current Drug Targets, 2013, 999, 1-6.	2.1	0
57	Regulation Of CLL Growth and Trafficking By The Enzymatic Functions Of CD38: Implications For Therapeutic Targeting. Blood, 2013, 122, 4112-4112.	1.4	0
58	Autocrine abscisic acid plays a key role in quartzâ€induced macrophage activation. FASEB Journal, 2012, 26, 1261-1271.	0.5	37
59	Abscisic Acid: A New Mammalian Hormone Regulating Clucose Homeostasis. Messenger (Los Angeles,) Tj ETQq1	1 8.38431	L4 ₅ gBT /Ove
60	The high-resolution crystal structure of periplasmic <i>Haemophilus influenzae</i> NAD nucleotidase reveals a novel enzymatic function of human CD73 related to NAD metabolism. Biochemical Journal, 2012, 441, 131-141.	3.7	83
61	Subcellular and Intercellular Traffic of NAD ⁺ , NAD ⁺ Precursors and NAD ⁺ -Derived Signal Metabolites and Second Messengers: Old and New Topological Paradoxes. Messenger (Los Angeles, Calif: Print), 2012, 1, 34-52.	0.3	6
62	NAD+ Levels Control Ca2+ Store Replenishment and Mitogen-induced Increase of Cytosolic Ca2+ by Cyclic ADP-ribose-dependent TRPM2 Channel Gating in Human T Lymphocytes. Journal of Biological Chemistry, 2012, 287, 21067-21081.	3.4	50
63	The NAD+-dependent Histone Deacetylase SIRT6 Promotes Cytokine Production and Migration in Pancreatic Cancer Cells by Regulating Ca2+ Responses. Journal of Biological Chemistry, 2012, 287, 40924-40937.	3.4	151
64	The plant hormone abscisic acid increases in human plasma after hyperglycemia and stimulates glucose consumption by adipocytes and myoblasts. FASEB Journal, 2012, 26, 1251-1260.	0.5	81
65	Abscisic acid ameliorates the systemic sclerosis fibroblast phenotype in vitro. Biochemical and Biophysical Research Communications, 2012, 422, 70-74.	2.1	19
66	Mesenchymal Stem Cells Shape Microglia Effector Functions Through the Release of CX3CL1. Stem Cells, 2012, 30, 2044-2053.	3.2	127
67	ABA says NO to UV-B: a universal response?. Trends in Plant Science, 2012, 17, 510-517.	8.8	85
68	Rejuvenating Sirtuins: The Rise of a New Family of Cancer Drug Targets. Current Pharmaceutical Design, 2012, 19, 614-623.	1.9	1
69	Autocrine abscisic acid mediates the UVâ€Bâ€induced inflammatory response in human granulocytes and keratinocytes. Journal of Cellular Physiology, 2012, 227, 2502-2510.	4.1	40
70	Regulation of Human Mesenchymal Stem Cell Functions by an Autocrine Loop Involving NAD ⁺ Release and P2Y11-Mediated Signaling. Stem Cells and Development, 2011, 20, 1183-1198.	2.1	50
71	Binding of abscisic acid to human LANCL2. Biochemical and Biophysical Research Communications, 2011, 415, 390-395.	2.1	37
72	Functional characterization of a synthetic abscisic acid analog with anti-inflammatory activity on human granulocytes and monocytes. Biochemical and Biophysical Research Communications, 2011, 415, 696-701.	2.1	8

#	Article	IF	CITATIONS
73	Synergistic Interactions between HDAC and Sirtuin Inhibitors in Human Leukemia Cells. PLoS ONE, 2011, 6, e22739.	2.5	68
74	Potent synergistic interaction between the Nampt inhibitor APO866 and the apoptosis activator TRAIL in human leukemia cells. Experimental Hematology, 2010, 38, 979-988.	0.4	48
75	Diadenosine Homodinucleotide Products of ADP-ribosyl Cyclases Behave as Modulators of the Purinergic Receptor P2X7. Journal of Biological Chemistry, 2010, 285, 21165-21174.	3.4	10
76	Catastrophic NAD+ Depletion in Activated T Lymphocytes through Nampt Inhibition Reduces Demyelination and Disability in EAE. PLoS ONE, 2009, 4, e7897.	2.5	143
77	LANCL2 Is Necessary for Abscisic Acid Binding and Signaling in Human Granulocytes and in Rat Insulinoma Cells. Journal of Biological Chemistry, 2009, 284, 28045-28057.	3.4	107
78	Abscisic Acid Released by Human Monocytes Activates Monocytes and Vascular Smooth Muscle Cell Responses Involved in Atherogenesis. Journal of Biological Chemistry, 2009, 284, 17808-17818.	3.4	74
79	Abscisic Acid Activates the Murine Microglial Cell Line N9 through the Second Messenger Cyclic ADP-ribose. Journal of Biological Chemistry, 2009, 284, 14777-14787.	3.4	64
80	P2X7-mediated Increased Intracellular Calcium Causes Functional Derangement in Schwann Cells from Rats with CMT1A Neuropathy. Journal of Biological Chemistry, 2009, 284, 23146-23158.	3.4	60
81	The Plant Hormone Abscisic Acid Stimulates the Proliferation of Human Hemopoietic Progenitors through the Second Messenger Cyclic ADP-Ribose. Stem Cells, 2009, 27, 2469-2477.	3.2	38
82	APO866 activity in hematologic malignancies: a preclinical in vitro study. Blood, 2009, 113, 6035-6037.	1.4	24
83	Deacetylase Inhibitor Cocktails Provide Striking Synergistic Interactions in Human Leukemia Cells Blood, 2009, 114, 4404-4404.	1.4	0
84	Cyclic ADP-Ribose-Mediated Expansion and Stimulation of Human Mesenchymal Stem Cells by the Plant Hormone Abscisic Acid. Stem Cells, 2008, 26, 2855-2864.	3.2	59
85	NAADP+ is an agonist of the human P2Y11 purinergic receptor. Cell Calcium, 2008, 43, 344-355.	2.4	55
86	Adenylic Dinucleotides Produced by CD38 Are Negative Endogenous Modulators of Platelet Aggregation. Journal of Biological Chemistry, 2008, 283, 24460-24468.	3.4	9
87	Abscisic Acid Is an Endogenous Stimulator of Insulin Release from Human Pancreatic Islets with Cyclic ADP Ribose as Second Messenger. Journal of Biological Chemistry, 2008, 283, 32188-32197.	3.4	129
88	Mitochondrial Dysfunction Induced by a Cytotoxic Adenine Dinucleotide Produced by ADP-ribosyl Cyclases from cADPR. Journal of Biological Chemistry, 2007, 282, 5045-5052.	3.4	9
89	Abscisic acid is an endogenous cytokine in human granulocytes with cyclic ADP-ribose as second messenger. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5759-5764.	7.1	183
90	NAADP+ synthesis from cADPRP and nicotinic acid by ADP-ribosyl cyclases. Biochemical and Biophysical Research Communications, 2006, 345, 573-580.	2.1	27

#	Article	IF	CITATIONS
91	Emerging Functions of Extracellular Pyridine Nucleotides. Molecular Medicine, 2006, 12, 324-327.	4.4	70
92	Extracellular NAD+ regulates intracellular calcium levels and induces activation of human granulocytes. Biochemical Journal, 2006, 393, 697-704.	3.7	67
93	Cyclic ADP-ribose is a second messenger in the lipopolysaccharide-stimulated activation of murine N9 microglial cell line. Journal of Neurochemistry, 2006, 99, 165-176.	3.9	36
94	Extracellular NAD+Is an Agonist of the Human P2Y11Purinergic Receptor in Human Granulocytes. Journal of Biological Chemistry, 2006, 281, 31419-31429.	3.4	129
95	Extracellular NAD+ Is an Agonist of the Human P2Y11 Purinergic Receptor in Human Granulocytes. Journal of Biological Chemistry, 2006, 281, 31419-31429.	3.4	13
96	Age at Onset: An Essential Variable for the Definition of Genetic Risk Factors for Sporadic Alzheimer's Disease. Annals of the New York Academy of Sciences, 2005, 1057, 260-278.	3.8	186
97	From The Cover: ADP-ribosyl cyclases generate two unusual adenine homodinucleotides with cytotoxic activity on mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14509-14514.	7.1	35
98	Concentrative Uptake of Cyclic ADP-ribose Generated by BST-1+ Stroma Stimulates Proliferation of Human Hematopoietic Progenitors. Journal of Biological Chemistry, 2005, 280, 5343-5349.	3.4	43
99	Abscisic Acid Signaling through Cyclic ADP-ribose in Hydroid Regeneration. Journal of Biological Chemistry, 2004, 279, 39783-39788.	3.4	52
100	Concentrative Influx of Functionally Active Cyclic ADP-ribose in Dimethyl Sulfoxide-differentiated HL-60 Cells. Journal of Biological Chemistry, 2004, 279, 22066-22075.	3.4	31
101	Glutamate-mediated overexpression of CD38 in astrocytes cultured with neurones. Journal of Neurochemistry, 2004, 89, 264-272.	3.9	52
102	Spatio-temporal propagation of Ca2+ signals by cyclic ADP-ribose in 3T3 cells stimulated via purinergic P2Y receptors. Journal of Cell Biology, 2003, 163, 837-845.	5.2	29
103	Cyclic ADPâ€ribose generation by CD38 improves human hemopoietic stem cell engraftment into NOD/SCID mice. FASEB Journal, 2003, 17, 310-312.	0.5	21
104	Cyclic ADP-ribose is a second messenger in the lipopolysaccharide-stimulated proliferation of human peripheral blood mononuclear cells. Biochemical Journal, 2003, 375, 395-403.	3.7	56
105	The Human Immunodeficiency Virus-1 Protein Tat and Its Discrete Fragments Evoke Selective Release of Acetylcholine from Human and Rat Cerebrocortical Terminals through Species-Specific Mechanisms. Journal of Neuroscience, 2003, 23, 6810-6818.	3.6	34
106	ABA- and cADPR-mediated effects on respiration and filtration downstream of the temperature-signaling cascade in sponges. Journal of Cell Science, 2003, 116, 629-636.	2.0	48
107	Equilibrative and Concentrative Nucleoside Transporters Mediate Influx of Extracellular Cyclic ADP-Ribose into 3T3 Murine Fibroblasts. Journal of Biological Chemistry, 2002, 277, 47097-47105.	3.4	61
108	Subcellular and Extracellular Trafficking of NAD+ and Cyclic ADP-Ribose: A New Way for Regulating		4

Subcellular and Extracellular Trafficking of NAD+ and Cyclic ADP-Ribose: A New Way for Regulating Intracellular Calcium Homeostasis. , 2002, , 241-267. 108

#	Article	IF	CITATIONS
109	Extracellular cyclic ADP-ribose potentiates ACh-induced contraction in bovine tracheal smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 280, L98-L106.	2.9	35
110	A Self-restricted CD38-connexin 43 Cross-talk Affects NAD+ and Cyclic ADP-ribose Metabolism and Regulates Intracellular Calcium in 3T3 Fibroblasts. Journal of Biological Chemistry, 2001, 276, 48300-48308.	3.4	99
111	Evidence of a role for cyclic ADP-ribose in calcium signalling and neurotransmitter release in cultured astrocytes. Journal of Neurochemistry, 2001, 78, 646-657.	3.9	117
112	Stromaâ€generated cyclic ADPâ€ribose stimulates the expansion of early human hemopoietic progenitors by a paracrine interaction. FASEB Journal, 2001, 15, 1610-1612.	0.5	37
113	Human CD38 and its ligand CD31 define a uniquelamina propriaT lymphocyte signaling pathway. FASEB Journal, 2001, 15, 580-582.	0.5	33
114	Connexin 43 hemichannels mediate Ca2+â€regulated transmembrane NAD+ fluxes in intact cells. FASEB Journal, 2001, 15, 10-12.	0.5	428
115	Paracrine Roles of NAD+ and Cyclic ADP-ribose in Increasing Intracellular Calcium and Enhancing Cell Proliferation of 3T3 Fibroblasts. Journal of Biological Chemistry, 2001, 276, 21642-21648.	3.4	103
116	The temperature-signaling cascade in sponges involves a heat-gated cation channel, abscisic acid, and cyclic ADP-ribose. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 14859-14864.	7.1	118
117	Topology of CD38. , 2000, 75, 79-98.		28
118	Extracellular cyclic ADPâ€ribose increases intracellular free calcium concentration and stimulates proliferation of human hemopoietic progenitors. FASEB Journal, 2000, 14, 680-690.	0.5	72
119	Ligandâ€induced internalization of CD38 results in intracellular Ca ²⁺ mobilization: role of NAD ⁺ transport across cell membranes. FASEB Journal, 1999, 13, 273-283.	0.5	100
120	Ectocellular CD38-catalyzed synthesis and intracellular Ca2+-mobilizing activity of cyclic ADP-ribose. Cell Biochemistry and Biophysics, 1998, 28, 45-62.	1.8	29
121	Dimeric and tetrameric forms of catalytically active transmembrane CD38 in transfected HeLa cells. FEBS Letters, 1998, 433, 275-278.	2.8	27
122	Expression of CD38 Increases Intracellular Calcium Concentration and Reduces Doubling Time in HeLa and 3T3 Cells. Journal of Biological Chemistry, 1998, 273, 8017-8024.	3.4	111
123	The transmembrane glycoprotein CD38 is a catalytically active transporter responsible for generation and influx of the second messenger cyclic ADPâ€ribose across membranes. FASEB Journal, 1998, 12, 1507-1520.	0.5	115
124	CD38 and ADP-ribosyl Cyclase Catalyze the Synthesis of a Dimeric ADP-ribose That Potentiates the Calcium-mobilizing Activity of Cyclic ADP-ribose. Journal of Biological Chemistry, 1997, 272, 12945-12951.	3.4	36