Manabu Murakami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/815388/publications.pdf

Version: 2024-02-01

51 papers

1,236 citations

430874 18 h-index 32 g-index

55 all docs

55 docs citations

55 times ranked 1618 citing authors

#	Article	IF	CITATIONS
1	Enhanced \hat{l}^2 -adrenergic response in mice with dominant-negative expression of the PKD2L1 channel. PLoS ONE, 2022, 17, e0261668.	2.5	О
2	The usefulness of measuring n-butyric acid concentration as a new indicator of blood decomposition in forensic autopsy. Legal Medicine, 2022, 57, 102071.	1.3	O
3	Requirement of the Ca2+ channel \hat{l}^2 2 subunit for sympathetic PKA phosphorylation. Journal of Pharmacological Sciences, 2021, 145, 253-261.	2.5	1
4	Problems in implementing interprofessional education in rural areas: an exploratory study. Rural and Remote Health, 2021, 21, 6726.	0.5	0
5	Attenuated \hat{l}^2 -adrenergic response in calcium/calmodulin-dependent protein kinase IV-knockout mice. PLoS ONE, 2021, 16, e0249932.	2.5	0
6	A dual prokaryotic (E. coli) expression system (pdMAX). PLoS ONE, 2021, 16, e0258553.	2.5	3
7	Enhancing students' motivations through early exposure in actual settings is key. The National Medical Journal of India, 2021, 34, 188-188.	0.3	0
8	Decreased cardiac pacemaking and attenuated \hat{l}^2 -adrenergic response in TRIC-A knockout mice. PLoS ONE, 2020, 15, e0244254.	2.5	1
9	Decreased cardiac pacemaking and attenuated \hat{l}^2 -adrenergic response in TRIC-A knockout mice. , 2020, 15, e0244254.		O
10	Decreased cardiac pacemaking and attenuated \hat{l}^2 -adrenergic response in TRIC-A knockout mice. , 2020, 15, e0244254.		0
11	Decreased cardiac pacemaking and attenuated \hat{l}^2 -adrenergic response in TRIC-A knockout mice. , 2020, 15, e0244254.		О
12	Decreased cardiac pacemaking and attenuated \hat{l}^2 -adrenergic response in TRIC-A knockout mice. , 2020, 15, e0244254.		0
13	A simple and dual expression plasmid system in prokaryotic (E. coli) and mammalian cells. PLoS ONE, 2019, 14, e0216169.	2.5	8
14	Medaka as a model for ECG analysis and the effect of verapamil. Journal of Pharmacological Sciences, 2018, 137, 55-60.	2.5	13
15	Anti-tumor growth effect of STIM1 suppression. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-6-18.	0.0	O
16	\hat{l}^2 -arrestins negatively control human adrenomedullin type 1-receptor internalization. Biochemical and Biophysical Research Communications, 2017, 487, 438-443.	2.1	2
17	Stromal interaction molecule 1 haploinsufficiency causes maladaptive response to pressure overload. PLoS ONE, 2017, 12, e0187950.	2.5	14
18	Modiï¬ed sympathetic nerve regulation in AKAP5-null mice. Biochemical and Biophysical Research Communications, 2016, 469, 897-902.	2.1	7

#	Article	IF	Citations
19	Inhibitory effects of two G protein-coupled receptor kinases on the cell surface expression and signaling of the human adrenomedullin receptor. Biochemical and Biophysical Research Communications, 2016, 470, 894-899.	2.1	7
20	Involvement of the orexin system in sympathetic nerve regulation. Biochemical and Biophysical Research Communications, 2015, 460, 1076-1081.	2.1	21
21	Involvement of the histamine H1 receptor in the regulation of sympathetic nerve activity. Biochemical and Biophysical Research Communications, 2015, 458, 584-589.	2.1	9
22	Modified autonomic regulation in mice mutated in the \hat{l}^24 subunit of the lh/lh calcium channel. Biochemical and Biophysical Research Communications, 2015, 461, 200-205.	2.1	0
23	Effects of Propofol on Electrocardiogram Measures in Mice. Journal of Pharmacological Sciences, 2014, 126, 351-358.	2.5	19
24	Inhalation Anesthesia Is Preferable for Recording Rat Cardiac Function Using an Electrocardiogram. Biological and Pharmaceutical Bulletin, 2014, 37, 834-839.	1.4	38
25	Involvement of the Orexin System in Adrenal Sympathetic Regulation. Pharmacology, 2013, 91, 250-258.	2.2	12
26	Behavioral and neurochemical characterization of mice deficient in the N-type Ca2+ channel $\hat{l}\pm 1B$ subunit. Behavioural Brain Research, 2010, 208, 224-230.	2.2	36
27	Decreased calcium channel currents and facilitated epinephrine release in the Ca2+ channel \hat{I}^2 3 subunit-null mice. Biochemical and Biophysical Research Communications, 2010, 394, 464-469.	2.1	7
28	Modified autonomic regulation in mice with a P/Q-type calcium channel mutation. Biochemical and Biophysical Research Communications, 2009, 381, 27-32.	2.1	10
29	Essential role of STIM1 in the development of cardiomyocyte hypertrophy. Biochemical and Biophysical Research Communications, 2009, 389, 172-176.	2.1	77
30	The Pathological Role of Transient Receptor Potential Channels in Heart Disease. Circulation Journal, 2009, 73, 419-427.	1.6	98
31	TRP channel and cardiovascular disease. , 2008, 118, 337-351.		180
32	Modified Sympathetic Nerve System Activity with Overexpression of the Voltage-dependent Calcium Channel Î ² 3 Subunit. Journal of Biological Chemistry, 2008, 283, 24554-24560.	3.4	22
33	Modified sympathetic regulation in N-type calcium channel null-mouse. Biochemical and Biophysical Research Communications, 2007, 354, 1016-1020.	2.1	16
34	Involvement of the calcium channel $\hat{1}^23$ subunit in olfactory signal transduction. Biochemical and Biophysical Research Communications, 2007, 355, 1019-1024.	2.1	13
35	Functional role of stromal interaction molecule 1 (STIM1) in vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 2007, 361, 934-940.	2.1	87
36	Modified behavioral characteristics following ablation of the voltage-dependent calcium channel \hat{l}^2 3 subunit. Brain Research, 2007, 1160, 102-112.	2.2	33

#	Article	IF	CITATIONS
37	Regulatory role of neuron-restrictive silencing factor in expression of TRPC1. Biochemical and Biophysical Research Communications, 2006, 351, 764-770.	2.1	28
38	Identification of a cardiac isoform of the murine calcium channel $\hat{l}\pm 1C$ (Cav1.2-a) subunit and its preferential binding with the \hat{l}^22 subunit. Journal of Molecular and Cellular Cardiology, 2006, 41, 115-125.	1.9	9
39	Decreases in Pheromonal Responses at the Accessory Olfactory Bulb of Mice with a Deficiency of the .ALPHA.1B or .BETA.3 Subunits of Voltage-Dependent Ca2+-Channels. Biological and Pharmaceutical Bulletin, 2006, 29, 437-442.	1.4	5
40	Involvement of Voltage-Dependent Ca $<$ sup $>2+sup> Channel \hat{l}^2<sub>3sub> Subunit in the Autonomic Control of Heart Rate Variability. Pharmacology, 2006, 76, 170-179.$	2.2	8
41	Genomic Organization and Functional Analysis of Murine PKD2L1. Journal of Biological Chemistry, 2005, 280, 5626-5635.	3.4	50
42	Antinociceptive effect of different types of calcium channel inhibitors and the distribution of various calcium channel $\hat{l}\pm 1$ subunits in the dorsal horn of spinal cord in mice. Brain Research, 2004, 1024, 122-129.	2.2	71
43	Removal of Ca2+ Channel \hat{l}^2 3 Subunit Enhances Ca2+ Oscillation Frequency and Insulin Exocytosis. Cell, 2004, 119, 273-284.	28.9	105
44	Inhibitory effect of pranidipine on N-type voltage-dependent Ca2+ channels in mice. Neuroscience Letters, 2004, 367, 118-122.	2.1	4
45	Structures of the Murine Genes for the \hat{l}^21 - and \hat{l}^24 -Subunits of the Voltage-Dependent Calcium Channel. Journal of Molecular Neuroscience, 2003, 21, 13-22.	2.3	1
46	Genetic characterization of a new splice variant of the beta2 subunit of the voltage-dependent calcium channel. Molecular and Cellular Biochemistry, 2003, 254, 217-225.	3.1	6
47	Identification and characterization of the murine TRPM4 channel. Biochemical and Biophysical Research Communications, 2003, 307, 522-528.	2.1	60
48	Modified Cardiovascular L-type Channels in Mice Lacking the Voltage-dependent Ca2+ Channel \hat{l}^2 3 Subunit. Journal of Biological Chemistry, 2003, 278, 43261-43267.	3.4	45
49	Pain Perception in Mice Lacking the \hat{l}^2 3 Subunit of Voltage-activated Calcium Channels. Journal of Biological Chemistry, 2002, 277, 40342-40351.	3.4	70
50	Antinociceptive effect of cilnidipine, a novel N-type calcium channel antagonist. Brain Research, 2000, 868, 123-127.	2.2	22
51	OSTEOMALACIA CAUSED BY INTRAVENOUS ADMINISTRATION OF SACCHARATED FERRIC OXIDE FOR TREATMENT OF IRON DEFICIENCY ANEMIA ASSOCIATED WITH NONSPECIFIC MULTIPLE ULCERS OF THE SMALL INTESTINE: REPORT OF TWO CASES. The Journal of the Japanese Society of Internal Medicine, 1982, 71, 1566-1572.	0.0	18