Hong-Yan Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/815381/publications.pdf

Version: 2024-02-01

		50276	98798
68	7,668	46	67
papers	citations	h-index	g-index
68	68	68	9210
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Construction of a ternary WO3/CsPbBr3/ZIF-67 heterostructure for enhanced photocatalytic carbon dioxide reduction. Science China Materials, 2022, 65, 1550-1559.	6.3	19
2	Self-assembled lead-free double perovskite-MXene heterostructure with efficient charge separation for photocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2022, 312, 121358.	20.2	53
3	Surface passivated halide perovskite single-crystal for efficient photoelectrochemical synthesis of dimethoxydihydrofuran. Nature Communications, 2021, 12, 1202.	12.8	58
4	Plasmonic CsPbBr3–Au nanocomposite for excitation wavelength dependent photocatalytic CO2 reduction. Journal of Energy Chemistry, 2021, 53, 309-315.	12.9	70
5	In Situ Construction of Direct Zâ€Scheme Cs _{<i>x</i>} WO ₃ /CsPbBr ₃ Heterojunctions via Cosharing Cs Atom. Solar Rrl, 2021, 5, 2100036.	5.8	11
6	Engineering multinary heterointerfaces in two-dimensional cobalt molybdenum phosphide hybrid nanosheets for efficient electrocatalytic water splitting. Sustainable Energy and Fuels, 2021, 5, 3458-3466.	4.9	9
7	Constructing a Cs ₃ Sb ₂ Br ₉ /gâ€C ₃ N ₄ Hybrid for Photocatalytic Aromatic C(<i>sp</i> ³)H Bond Activation. Solar Rrl, 2021, 5, 2100559.	5.8	18
8	Immobilizing Re(CO) ₃ Br(dcbpy) Complex on CsPbBr ₃ Nanocrystal for Boosted Charge Separation and Photocatalytic CO ₂ Reduction. Solar Rrl, 2020, 4, 1900365.	5.8	51
9	Zâ€6cheme 2D/2D Heterojunction of CsPbBr ₃ /Bi ₂ WO ₆ for Improved Photocatalytic CO ₂ Reduction. Advanced Functional Materials, 2020, 30, 2004293.	14.9	234
10	In Situ Photosynthesis of an MAPbl ₃ /CoP Hybrid Heterojunction for Efficient Photocatalytic Hydrogen Evolution. Advanced Functional Materials, 2020, 30, 2001478.	14.9	92
11	All-Solid-State Z-Scheme α-Fe2O3/Amine-RGO/CsPbBr3 Hybrids for Visible-Light-Driven Photocatalytic CO2 Reduction. CheM, 2020, 6, 766-780.	11.7	280
12	Solvent selection and Pt decoration towards enhanced photocatalytic CO ₂ reduction over CsPbBr ₃ perovskite single crystals. Sustainable Energy and Fuels, 2020, 4, 2249-2255.	4.9	47
13	In Situ Construction of a Cs ₂ Snl ₆ Perovskite Nanocrystal/SnS ₂ Nanosheet Heterojunction with Boosted Interfacial Charge Transfer. Journal of the American Chemical Society, 2019, 141, 13434-13441.	13.7	303
14	Intrinsic Selfâ€Trapped Emission in 0D Leadâ€Free (C ₄ H ₁₄ N ₂) ₂ In ₂ Br ₁₀ Single Crystal. Angewandte Chemie, 2019, 131, 15581-15586.	2.0	190
15	Intrinsic Selfâ€Trapped Emission in OD Leadâ€Free (C ₄ H ₁₄ N ₂) ₂ In ₂ Br ₁₀ Single Crystal. Angewandte Chemie - International Edition, 2019, 58, 15435-15440.	13.8	244
16	Solution-Processed Anatase Titania Nanowires: From Hyperbranched Design to Optoelectronic Applications. Accounts of Chemical Research, 2019, 52, 633-644.	15.6	16
17	Constructing CsPbBr _x l _{3â^'x} nanocrystal/carbon nanotube composites with improved charge transfer and light harvesting for enhanced photoelectrochemical activity. Journal of Materials Chemistry A, 2019, 7, 5409-5415.	10.3	34
18	Hierarchical CsPbBr ₃ nanocrystal-decorated ZnO nanowire/macroporous graphene hybrids for enhancing charge separation and photocatalytic CO ₂ reduction. Journal of Materials Chemistry A, 2019, 7, 13762-13769.	10.3	115

#	Article	IF	CITATIONS
19	A laminar MAPbBr3/MAPbBr3â^'xIx graded heterojunction single crystal for enhancing charge extraction and optoelectronic performance. Journal of Materials Chemistry C, 2019, 7, 5670-5676.	5 . 5	20
20	A Highly Redâ€Emissive Leadâ€Free Indiumâ€Based Perovskite Single Crystal for Sensitive Water Detection. Angewandte Chemie - International Edition, 2019, 58, 5277-5281.	13.8	310
21	A Highly Redâ€Emissive Leadâ€Free Indiumâ€Based Perovskite Single Crystal for Sensitive Water Detection. Angewandte Chemie, 2019, 131, 5331-5335.	2.0	57
22	The top-down synthesis of single-layered Cs ₄ CuSb ₂ Cl ₁₂ halide perovskite nanocrystals for photoelectrochemical application. Nanoscale, 2019, 11, 5180-5187.	5 . 6	65
23	Porous ZnO@ZnSe nanosheet array for photoelectrochemical reduction of CO2. Electrochimica Acta, 2018, 274, 298-305.	5.2	32
24	CsPbBr $<$ sub $>$ 3 $<$ /sub $>$ Nanocrystal/MO $<$ sub $>$ 2 $<$ /sub $>$ (M = Si, Ti, Sn) Composites: Insight into Charge-Carrier Dynamics and Photoelectrochemical Applications. ACS Applied Materials & Samp; Interfaces, 2018, 10, 42301-42309.	8.0	66
25	All-Inorganic Lead-Free Cs ₂ PdX ₆ (X = Br, I) Perovskite Nanocrystals with Single Unit Cell Thickness and High Stability. ACS Energy Letters, 2018, 3, 2613-2619.	17.4	143
26	Core@Shell CsPbBr ₃ @Zeolitic Imidazolate Framework Nanocomposite for Efficient Photocatalytic CO ₂ Reduction. ACS Energy Letters, 2018, 3, 2656-2662.	17.4	425
27	Amorphousâ€TiO ₂ â€Encapsulated CsPbBr ₃ Nanocrystal Composite Photocatalyst with Enhanced Charge Separation and CO ₂ Fixation. Advanced Materials Interfaces, 2018, 5, 1801015.	3.7	125
28	Atomically Thin Defectâ€Rich Fe–Mn–O Hybrid Nanosheets as High Efficient Electrocatalyst for Water Oxidation. Advanced Functional Materials, 2018, 28, 1802463.	14.9	163
29	Enhanced Solar-Driven Gaseous CO ₂ Conversion by CsPbBr ₃ Nanocrystal/Pd Nanosheet Schottky-Junction Photocatalyst. ACS Applied Energy Materials, 2018, 1, 5083-5089.	5.1	135
30	Recent advances in hierarchical three-dimensional titanium dioxide nanotree arrays for high-performance solar cells. Journal of Materials Chemistry A, 2017, 5, 12699-12717.	10.3	52
31	A CsPbBr ₃ Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO ₂ Reduction. Journal of the American Chemical Society, 2017, 139, 5660-5663.	13.7	946
32	Self-supported NiMoP ₂ nanowires on carbon cloth as an efficient and durable electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 7191-7199.	10.3	168
33	Inorganic cesium lead halide CsPbX3 nanowires for long-term stable solar cells. Science China Materials, 2017, 60, 285-294.	6.3	48
34	Iron-assisted engineering of molybdenum phosphide nanowires on carbon cloth for efficient hydrogen evolution in a wide pH range. Journal of Materials Chemistry A, 2017, 5, 22790-22796.	10.3	34
35	Ni x S y /NiSe 2 Hybrid Catalyst Grown In Situ on Conductive Glass Substrate as Efficient Counter Electrode for Dye-Sensitized Solar Cells. Electrochimica Acta, 2017, 250, 244-250.	5.2	11
36	Large-Area Synthesis of a Ni ₂ P Honeycomb Electrode for Highly Efficient Water Splitting. ACS Applied Materials & Distriction (1988) and ACS Applied Materials (1988) and ACS Applied Materi	8.0	62

#	Article	IF	CITATIONS
37	3D Cathodes of Cupric Oxide Nanosheets Coated onto Macroporous Antimonyâ€Doped Tin Oxide for Photoelectrochemical Water Splitting. ChemSusChem, 2016, 9, 3012-3018.	6.8	17
38	CdS/CdSe co-sensitized hierarchical TiO ₂ nanofiber/ZnO nanosheet heterojunction photoanode for quantum dot-sensitized solar cells. RSC Advances, 2016, 6, 78202-78209.	3.6	16
39	Ordered macroporous CH ₃ NH ₃ Pbl ₃ perovskite semitransparent film for high-performance solar cells. Journal of Materials Chemistry A, 2016, 4, 15662-15669.	10.3	54
40	Hierarchical ZnO nanorod-on-nanosheet arrays electrodes for efficient CdSe quantum dot-sensitized solar cells. Science China Materials, 2016, 59, 807-816.	6.3	21
41	Toward High Performance Photoelectrochemical Water Oxidation: Combined Effects of Ultrafine Cobalt Iron Oxide Nanoparticle. Advanced Functional Materials, 2016, 26, 4414-4421.	14.9	97
42	Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution. Energy and Environmental Science, 2016, 9, 1468-1475.	30.8	437
43	In situ formation of zinc ferrite modified Al-doped ZnO nanowire arrays for solar water splitting. Journal of Materials Chemistry A, 2016, 4, 5124-5129.	10.3	51
44	Achieving high-performance planar perovskite solar cell with Nb-doped TiO ₂ compact layer by enhanced electron injection and efficient charge extraction. Journal of Materials Chemistry A, 2016, 4, 5647-5653.	10.3	163
45	Electrospun TiO 2 nanofiber based hierarchical photoanode for efficient dye-sensitized solar cells. Electrochimica Acta, 2016, 189, 259-264.	5.2	39
46	Hierarchical TiO ₂ â€"B/anatase core/shell nanowire arrays for efficient dye-sensitized solar cells. RSC Advances, 2016, 6, 1288-1295.	3.6	6
47	Achieving Highly Efficient Photoelectrochemical Water Oxidation with a TiCl ₄ Treated 3D Antimonyâ€Doped SnO ₂ Macropore/Branched αâ€Fe ₂ O ₃ Nanorod Heterojunction Photoanode. Advanced Science, 2015, 2, 1500049.	11.2	65
48	Water Splitting: Achieving Highly Efficient Photoelectrochemical Water Oxidation with a TiCl ₄ Treated 3D Antimonyâ€Doped SnO ₂ Macropore/Branched αâ€Fe ₂ O ₃ Nanorod Heterojunction Photoanode (Adv. Sci. 7/2015). Advanced Science, 2015, 2, .	11.2	0
49	Improving the Extraction of Photogenerated Electrons with SnO ₂ Nanocolloids for Efficient Planar Perovskite Solar Cells. Advanced Functional Materials, 2015, 25, 7200-7207.	14.9	194
50	CdS/CdSe co-sensitized TiO2 nanowire-coated hollow Spheres exceeding 6% photovoltaic performance. Nano Energy, 2015, 11, 621-630.	16.0	91
51	CdS/CdSe co-sensitized vertically aligned anatase TiO2 nanowire arrays for efficient solar cells. Nano Energy, 2014, 8, 1-8.	16.0	81
52	Recent advances in hierarchical macroporous composite structures for photoelectric conversion. Energy and Environmental Science, 2014, 7, 3887-3901.	30.8	42
53	A family of vertically aligned nanowires with smooth, hierarchical and hyperbranched architectures for efficient energy conversion. Nano Energy, 2014, 9, 15-24.	16.0	46
54	A novel metal–organic gel based electrolyte for efficient quasi-solid-state dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 15406.	10.3	45

#	Article	IF	CITATIONS
55	Fabrication of a double layered photoanode consisting of SnO2 nanofibers and nanoparticles for efficient dye-sensitized solar cells. RSC Advances, 2013, 3, 13804.	3.6	28
56	Electrospun Hierarchical TiO ₂ Nanorods with High Porosity for Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Solar Cells.	8.0	91
57	Template-free solvothermal fabrication of hierarchical TiO2 hollow microspheres for efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 13274.	10.3	44
58	Dextran based highly conductive hydrogel polysulfide electrolyte for efficient quasi-solid-state quantum dot-sensitized solar cells. Electrochimica Acta, 2013, 92, 117-123.	5.2	64
59	A novel TCO- and Pt-free counter electrode for high efficiency dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 1724-1730.	10.3	53
60	Macroporous SnO ₂ Synthesized via a Template-Assisted Reflux Process for Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Samp; Interfaces, 2013, 5, 5105-5111.	8.0	61
61	Oxidative cleavage of $\hat{CA}=\hat{AC}$ bond of cinnamaldehyde to benzaldehyde in the presence of \hat{I}^2 -cyclodextrin under mild conditions. Supramolecular Chemistry, 2012, 24, 247-254.	1.2	5
62	Hierarchically micro/nanostructured photoanode materials for dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 15475.	6.7	141
63	High-performance dye-sensitized solar cells based on hierarchical yolk–shell anatase TiO ₂ beads. Journal of Materials Chemistry, 2012, 22, 1627-1633.	6.7	67
64	Oriented hierarchical single crystalline anatase TiO ₂ nanowire arrays on Ti-foil substrate for efficient flexible dye-sensitized solar cells. Energy and Environmental Science, 2012, 5, 5750-5757.	30.8	353
65	Dye-sensitized solar cells based on a double layered TiO2 photoanode consisting of hierarchical nanowire arrays and nanoparticles with greatly improved photovoltaic performance. Journal of Materials Chemistry, 2012, 22, 18057.	6.7	100
66	Reduced Graphene Oxide-Hierarchical ZnO Hollow Sphere Composites with Enhanced Photocurrent and Photocatalytic Activity. Journal of Physical Chemistry C, 2012, 116, 8111-8117.	3.1	413
67	Highly Catalytic Carbon Nanotube/Pt Nanohybridâ€Based Transparent Counter Electrode for Efficient Dyeâ€Sensitized Solar Cells. Chemistry - an Asian Journal, 2012, 7, 1795-1802.	3.3	27
68	CdS/CdSe Quantum Dot Shell Decorated Vertical ZnO Nanowire Arrays by Spinâ€Coatingâ€Based SILAR for Photoelectrochemical Cells and Quantumâ€Dotâ€Sensitized Solar Cells. ChemPhysChem, 2012, 13, 1435-1439.	2.1	50