Daniel E Speiser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8153591/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular definition of severe acute respiratory syndrome coronavirus 2 receptorâ€binding domain mutations: Receptor affinity versus neutralization of receptor interaction. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 143-149.	5.7	26
2	A scalable and highly immunogenic virusâ€like particleâ€based vaccine against SARSâ€CoVâ€2. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 243-257.	5.7	35
3	Sensitive identification of neoantigens and cognate TCRs in human solid tumors. Nature Biotechnology, 2022, 40, 656-660.	17.5	41
4	Shared acute phase traits in effector and memory human CD8 T cells. Current Research in Immunology, 2022, 3, 1-12.	2.8	2
5	Bedside formulation of a personalized multi-neoantigen vaccine against mammary carcinoma. , 2022, 10, e002927.		14
6	The Future of SARS-CoV-2 Vaccination. New England Journal of Medicine, 2022, 386, 899-900.	27.0	4
7	Increased Receptor Affinity and Reduced Recognition by Specific Antibodies Contribute to Immune Escape of SARS-CoV-2 Variant Omicron. Vaccines, 2022, 10, 743.	4.4	11
8	Increased receptor affinity of SARS-CoV-2: a new immune escape mechanism. Npj Vaccines, 2022, 7, .	6.0	6
9	SARS-CoV-2 structural features may explain limited neutralizing-antibody responses. Npj Vaccines, 2021, 6, 2.	6.0	48
10	Prediction of neo-epitope immunogenicity reveals TCR recognition determinants and provides insight into immunoediting. Cell Reports Medicine, 2021, 2, 100194.	6.5	77
11	Not All Tumor-Infiltrating CD8+ T Cells Are Created Equal. Cancer Cell, 2021, 39, 145-147.	16.8	5
12	Tumor-specific cytolytic CD4 T cells mediate immunity against human cancer. Science Advances, 2021, 7,	10.3	157
13	Constant regulation for stable CD8 T ell functional avidity and its possible implications for cancer immunotherapy. European Journal of Immunology, 2021, 51, 1348-1360.	2.9	4
14	Mutually exclusive lymphangiogenesis or perineural infiltration in human skin squamous-cell carcinoma. Oncotarget, 2021, 12, 638-648.	1.8	2
15	Yellow fever virus vaccination: an emblematic model to elucidate robust human immune responses. Human Vaccines and Immunotherapeutics, 2021, 17, 2471-2481.	3.3	8
16	Melanoma dedifferentiation induced by IFN-γ epigenetic remodeling in response to anti–PD-1 therapy. Journal of Clinical Investigation, 2021, 131, .	8.2	35
17	Inflammatory B cells correlate with failure to checkpoint blockade in melanoma patients. Oncolmmunology, 2021, 10, 1873585.	4.6	15
18	Keratinocyte differentiation antigen-specific T cells in immune checkpoint inhibitor-treated NSCLC patients are associated with improved survival. Oncolmmunology, 2021, 10, 2006893.	4.6	4

#	Article	IF	CITATIONS
19	Virusâ€like particles for vaccination against cancer. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1579.	6.1	74
20	High Peptide Dose Vaccination Promotes the Early Selection of Tumor Antigen-Specific CD8 T-Cells of Enhanced Functional Competence. Frontiers in Immunology, 2020, 10, 3016.	4.8	11
21	Murine CD8 Tâ€cell functional avidity is stable in vivo but not in vitro: Independence from homologous prime/boost time interval and antigen density. European Journal of Immunology, 2020, 50, 505-514.	2.9	6
22	Analysis of cancer cell-intrinsic immune regulation in response to CD8 + T cell attack. Methods in Enzymology, 2020, 631, 443-466.	1.0	0
23	Uncoupling interferon signaling and antigen presentation to overcome immunotherapy resistance due to JAK1 loss in melanoma. Science Translational Medicine, 2020, 12, .	12.4	77
24	CD40 Agonist Restores the Antitumor Efficacy of Anti-PD1 Therapy in Muscle-Invasive Bladder Cancer in an IFN I/II-Mediated Manner. Cancer Immunology Research, 2020, 8, 1180-1192.	3.4	19
25	The commensal skin microbiota triggers type I IFN–dependent innate repair responses in injured skin. Nature Immunology, 2020, 21, 1034-1045.	14.5	90
26	BAFF 60-mer, and Differential BAFF 60-mer Dissociating Activities in Human Serum, Cord Blood and Cerebrospinal Fluid. Frontiers in Cell and Developmental Biology, 2020, 8, 577662.	3.7	10
27	COVID-19: Mechanisms of Vaccination and Immunity. Vaccines, 2020, 8, 404.	4.4	81
28	Central memory CD8+ TÂcells derive from stem-like Tcf7hi effector cells in the absence of cytotoxic differentiation. Immunity, 2020, 53, 985-1000.e11.	14.3	107
29	Conserved Interferon-Î ³ Signaling Drives Clinical Response to Immune Checkpoint Blockade Therapy in Melanoma. Cancer Cell, 2020, 38, 500-515.e3.	16.8	203
30	LAG-3 and PD-1+LAG-3 inhibition promote anti-tumor immune responses in human autologous melanoma/T cell co-cultures. OncoImmunology, 2020, 9, 1736792.	4.6	36
31	Identification of a superagonist variant of the immunodominant Yellow fever virus epitope NS4b 214-222 by combinatorial peptide library screening. Molecular Immunology, 2020, 125, 43-50.	2.2	0
32	Immunosuppressive Mediators Impair Proinflammatory Innate Lymphoid Cell Function in Human Malignant Melanoma. Cancer Immunology Research, 2020, 8, 556-564.	3.4	21
33	Minimal immune response to booster vaccination against Yellow Fever associated with pre-existing antibodies. Vaccine, 2020, 38, 2172-2182.	3.8	10
34	Disulfide-Linked Peptides for Blocking BTLA/HVEM Binding. International Journal of Molecular Sciences, 2020, 21, 636.	4.1	15
35	Early drop of circulating T cells negatively correlates with the protective immune response to Yellow Fever vaccination. Human Vaccines and Immunotherapeutics, 2020, 16, 3103-3110.	3.3	3
36	Optimized combinatorial pMHC class II multimer labeling for precision immune monitoring of		4

tumor-specific CD4 T cells in patients. , 2020, 8, e000435.

#	Article	IF	CITATIONS
37	Cover Image, Volume 12, Issue 1. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1610.	6.1	0
38	Attenuation of chronic antiviral T-cell responses through constitutive COX2-dependent prostanoid synthesis by lymph node fibroblasts. PLoS Biology, 2019, 17, e3000072.	5.6	18
39	Low Avidity T Cells Do Not Hinder High Avidity T Cell Responses Against Melanoma. Frontiers in Immunology, 2019, 10, 2115.	4.8	2
40	Adenosine mediates functional and metabolic suppression of peripheral and tumor-infiltrating CD8+ T cells. , 2019, 7, 257.		120
41	Intratumoral CD8 ⁺ T cells with stem cell–like properties: Implications for cancer immunotherapy. Science Translational Medicine, 2019, 11, .	12.4	42
42	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	2.9	766
43	Defining â€~T cell exhaustion'. Nature Reviews Immunology, 2019, 19, 665-674.	22.7	879
44	Uncoupling protein 2 reprograms the tumor microenvironment to support the anti-tumor immune cycle. Nature Immunology, 2019, 20, 206-217.	14.5	51
45	Biomodulina T partially restores immunosenescent CD4 and CD8 T cell compartments in the elderly. Experimental Gerontology, 2019, 124, 110633.	2.8	11
46	Targeting Mutated Plus Germline Epitopes Confers Pre-clinical Efficacy of an Instantly Formulated Cancer Nano-Vaccine. Frontiers in Immunology, 2019, 10, 1015.	4.8	39
47	High-throughput Screening of Human Tumor Antigen–specific CD4 T Cells, Including Neoantigen-reactive T Cells. Clinical Cancer Research, 2019, 25, 4320-4331.	7.0	15
48	Association of Checkpoint Inhibitor–Induced Toxic Effects With Shared Cancer and Tissue Antigens in Non–Small Cell Lung Cancer. JAMA Oncology, 2019, 5, 1043.	7.1	266
49	Maf deficiency in T cells dysregulates Treg - TH17 balance leading to spontaneous colitis. Scientific Reports, 2019, 9, 6135.	3.3	25
50	MicroRNA-155 Expression Is Enhanced by T-cell Receptor Stimulation Strength and Correlates with Improved Tumor Control in Melanoma. Cancer Immunology Research, 2019, 7, 1013-1024.	3.4	24
51	Vaccination with nanoparticles combined with micro-adjuvants protects against cancer. , 2019, 7, 114.		41
52	Circulating CD56bright NK cells inversely correlate with survival of melanoma patients. Scientific Reports, 2019, 9, 4487.	3.3	63
53	Tumor-associated factors are enriched in lymphatic exudate compared to plasma in metastatic melanoma patients. Journal of Experimental Medicine, 2019, 216, 1091-1107.	8.5	102
54	Enhancement of Antiviral CD8+ T-Cell Responses and Complete Remission of Metastatic Melanoma in an HIV-1-Infected Subject Treated with Pembrolizumab. Journal of Clinical Medicine, 2019, 8, 2089.	2.4	20

#	Article	IF	CITATIONS
55	Intratumoral Tcf1+PD-1+CD8+ T Cells with Stem-like Properties Promote Tumor Control in Response to Vaccination and Checkpoint Blockade Immunotherapy. Immunity, 2019, 50, 195-211.e10.	14.3	924
56	T cell–induced CSF1 promotes melanoma resistance to PD1 blockade. Science Translational Medicine, 2018, 10, .	12.4	229
57	The C-terminal extension landscape of naturally presented HLA-I ligands. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5083-5088.	7.1	48
58	T cell receptor alpha variable 12â€⊋ bias in the immunodominant response to Yellow fever virus. European Journal of Immunology, 2018, 48, 258-272.	2.9	44
59	Tumor infiltrating lymphocytes in lymph node metastases of stage III melanoma correspond to response and survival in nine patients treated with ipilimumab at the time of stage IV disease. Cancer Immunology, Immunotherapy, 2018, 67, 39-45.	4.2	45
60	Human TSCM cell dynamics in vivo are compatible with long-lived immunological memory and stemness. PLoS Biology, 2018, 16, e2005523.	5.6	46
61	Lymphatic vessel density is associated with CD8 ⁺ T cell infiltration and immunosuppressive factors in human melanoma. Oncolmmunology, 2018, 7, e1462878.	4.6	47
62	Self-associated molecular patterns mediate cancer immune evasion by engaging Siglecs on T cells. Journal of Clinical Investigation, 2018, 128, 4912-4923.	8.2	214
63	Broad and Conserved Immune Regulation by Genetically Heterogeneous Melanoma Cells. Cancer Research, 2017, 77, 1623-1636.	0.9	13
64	T memory stem cells in health and disease. Nature Medicine, 2017, 23, 18-27.	30.7	396
65	More T Cells versus Better T Cells in Patients with Breast Cancer. Cancer Discovery, 2017, 7, 1062-1064.	9.4	6
66	Tumor lymphangiogenesis promotes T cell infiltration and potentiates immunotherapy in melanoma. Science Translational Medicine, 2017, 9, .	12.4	174
67	Immunoregulation of Dendritic Cell Subsets by Inhibitory Receptors in Urothelial Cancer. European Urology, 2017, 71, 854-857.	1.9	22
68	Rapid and Continued T-Cell Differentiation into Long-term Effector and Memory Stem Cells in Vaccinated Melanoma Patients. Clinical Cancer Research, 2017, 23, 3285-3296.	7.0	47
69	Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. ELife, 2017, 6, .	6.0	795
70	TCR-ligand dissociation rate is a robust and stable biomarker of CD8+ T cell potency. JCI Insight, 2017, 2,	5.0	46
71	ILC2-modulated T cell–to-MDSC balance is associated with bladder cancer recurrence. Journal of Clinical Investigation, 2017, 127, 2916-2929.	8.2	176
72	A Well-Controlled Experimental System to Study Interactions of Cytotoxic T Lymphocytes with Tumor Cells. Frontiers in Immunology, 2016, 7, 326.	4.8	22

#	Article	IF	CITATIONS
73	Very Late Antigen-1 Marks Functional Tumor-Resident CD8 T Cells and Correlates with Survival of Melanoma Patients. Frontiers in Immunology, 2016, 7, 573.	4.8	73
74	Regulatory circuits of T cell function in cancer. Nature Reviews Immunology, 2016, 16, 599-611.	22.7	445
75	Characterization of nivolumab-associated skin reactions in patients with metastatic non-small cell lung cancer. Oncolmmunology, 2016, 5, e1231292.	4.6	89
76	Comprehensive Genetic Landscape of Uveal Melanoma by Whole-Genome Sequencing. American Journal of Human Genetics, 2016, 99, 1190-1198.	6.2	135
77	Anticancer Teamwork: Cross-Presenting Dendritic Cells Collaborate with Therapeutic Monoclonal Antibodies. Cancer Discovery, 2016, 6, 17-19.	9.4	8
78	Vaccination with LAG-3Ig (IMP321) and Peptides Induces Specific CD4 and CD8 T-Cell Responses in Metastatic Melanoma Patients—Report of a Phase I/IIa Clinical Trial. Clinical Cancer Research, 2016, 22, 1330-1340.	7.0	74
79	From T cell "exhaustion―to anti-cancer immunity. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1865, 49-57.	7.4	18
80	Molecular profiling of <scp>CD</scp> 8 T cells in autochthonous melanoma identifies <i>Maf</i> as driver of exhaustion. EMBO Journal, 2015, 34, 2042-2058.	7.8	100
81	Genome-wide RNA profiling of long-lasting stem cell-like memory CD8 T cells induced by Yellow Fever vaccination in humans. Genomics Data, 2015, 5, 297-301.	1.3	11
82	Inhibitory Receptors Beyond T Cell Exhaustion. Frontiers in Immunology, 2015, 6, 310.	4.8	188
83	Identifying Individual T Cell Receptors of Optimal Avidity for Tumor Antigens. Frontiers in Immunology, 2015, 6, 582.	4.8	73
84	Consensus nomenclature for CD8 ⁺ T cell phenotypes in cancer. Oncolmmunology, 2015, 4, e998538.	4.6	119
85	Quantitative TCR:pMHC Dissociation Rate Assessment by NTAmers Reveals Antimelanoma T Cell Repertoires Enriched for High Functional Competence. Journal of Immunology, 2015, 195, 356-366.	0.8	30
86	Identification of Rare High-Avidity, Tumor-Reactive CD8+ T Cells by Monomeric TCR–Ligand Off-Rates Measurements on Living Cells. Cancer Research, 2015, 75, 1983-1991.	0.9	54
87	Long-lasting stem cell–like memory CD8 ⁺ T cells with a naÃ⁻ve-like profile upon yellow fever vaccination. Science Translational Medicine, 2015, 7, 282ra48.	12.4	174
88	High-throughput monitoring of human tumor-specific T-cell responses with large peptide pools. Oncolmmunology, 2015, 4, e1029702.	4.6	17
89	STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15408-15413.	7.1	404
90	Classification of current anticancer immunotherapies. Oncotarget, 2014, 5, 12472-12508.	1.8	395

6

#	Article	IF	CITATIONS
91	Cancer immunotherapy drives implementation science in oncology. Human Vaccines and Immunotherapeutics, 2014, 10, 3107-3110.	3.3	8
92	Pulmonary Sarcoid–like Granulomatosis after Multiple Vaccinations of a Long-term Surviving Patient with Metastatic Melanoma. Cancer Immunology Research, 2014, 2, 1148-1153.	3.4	8
93	Anti–CTLA-4 therapy broadens the melanoma-reactive CD8 ⁺ T cell response. Science Translational Medicine, 2014, 6, 254ra128.	12.4	325
94	T cell differentiation in chronic infection and cancer: functional adaptation or exhaustion?. Nature Reviews Immunology, 2014, 14, 768-774.	22.7	248
95	Development of a T Cell Receptor Targeting an HLA-A*0201 Restricted Epitope from the Cancer-Testis Antigen SSX2 for Adoptive Immunotherapy of Cancer. PLoS ONE, 2014, 9, e93321.	2.5	19
96	T cells maintain an exhausted phenotype after antigen withdrawal and population reexpansion. Nature Immunology, 2013, 14, 603-610.	14.5	228
97	Mobilizing and evaluating anticancer T cells: pitfalls and solutions. Expert Review of Vaccines, 2013, 12, 1325-1340.	4.4	5
98	Identification of Multiple Mechanisms of Resistance to Vemurafenib in a Patient with BRAFV600E-Mutated Cutaneous Melanoma Successfully Rechallenged after Progression. Clinical Cancer Research, 2013, 19, 5749-5757.	7.0	113
99	Hit Parade for Adoptive Cell Transfer Therapy: The Best T Cells for Superior Clinical Responses. Cancer Discovery, 2013, 3, 379-381.	9.4	4
100	Molecular Insights for Optimizing T Cell Receptor Specificity Against Cancer. Frontiers in Immunology, 2013, 4, 154.	4.8	35
101	Inhibitory Receptor Expression Depends More Dominantly on Differentiation and Activation than "Exhaustion―of Human CD8 T Cells. Frontiers in Immunology, 2013, 4, 455.	4.8	202
102	Radioimmunotherapy Combined with Maintenance Anti-CD20 Antibody May Trigger Long-Term Protective T Cell Immunity in Follicular Lymphoma Patients. Clinical and Developmental Immunology, 2013, 2013, 1-8.	3.3	9
103	SHP-1 phosphatase activity counteracts increased T cell receptor affinity. Journal of Clinical Investigation, 2013, 123, 1044-1056.	8.2	109
104	Persistence of EBV Antigen-Specific CD8 T Cell Clonotypes during Homeostatic Immune Reconstitution in Cancer Patients. PLoS ONE, 2013, 8, e78686.	2.5	15
105	A molecular profile of T-cell exhaustion in cancer. Oncolmmunology, 2012, 1, 369-371.	4.6	6
106	Interplay between T Cell Receptor Binding Kinetics and the Level of Cognate Peptide Presented by Major Histocompatibility Complexes Governs CD8+ T Cell Responsiveness. Journal of Biological Chemistry, 2012, 287, 23068-23078.	3.4	121
107	The three main stumbling blocks for anticancer T cells. Trends in Immunology, 2012, 33, 364-372.	6.8	127
108	Nanoâ€particle vaccination combined with <scp>TLR</scp> â€7 and â€9 ligands triggers memory and effector <scp>CD</scp> 8 ⁺ <scp>T</scp> â€cell responses in melanoma patients. European Journal of Immunology, 2012, 42, 3049-3061.	2.9	173

#	Article	IF	CITATIONS
109	Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nature Genetics, 2012, 44, 133-139.	21.4	369
110	Vaccinationâ€induced functional competence of circulating human tumorâ€specific CD8 Tâ€cells. International Journal of Cancer, 2012, 130, 2607-2617.	5.1	56
111	Differentiation associated regulation of microRNA expression in vivo in human CD8+ T cell subsets. Journal of Translational Medicine, 2011, 9, 44.	4.4	67
112	Reversible Major Histocompatibility Complex I-Peptide Multimers Containing Ni2+-Nitrilotriacetic Acid Peptides and Histidine Tags Improve Analysis and Sorting of CD8+ T Cells. Journal of Biological Chemistry, 2011, 286, 41723-41735.	3.4	42
113	Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma patients. Journal of Clinical Investigation, 2011, 121, 2350-2360.	8.2	707
114	Frequent MAGE Mutations in Human Melanoma. PLoS ONE, 2010, 5, e12773.	2.5	22
115	Evidence for a TCR Affinity Threshold Delimiting Maximal CD8 T Cell Function. Journal of Immunology, 2010, 184, 4936-4946.	0.8	196
116	Molecularly defined vaccines for cancer immunotherapy, and protective T cell immunity. Seminars in Immunology, 2010, 22, 144-154.	5.6	39
117	BTLA mediates inhibition of human tumor-specific CD8+ T cells that can be partially reversed by vaccination. Journal of Clinical Investigation, 2010, 120, 157-167.	8.2	252
118	Tumor Antigen–Specific FOXP3+ CD4 T Cells Identified in Human Metastatic Melanoma: Peptide Vaccination Results in Selective Expansion of Th1-like Counterparts. Cancer Research, 2009, 69, 8085-8093.	0.9	40
119	Dominant Human CD8 T Cell Clonotypes Persist Simultaneously as Memory and Effector Cells in Memory Phase. Journal of Immunology, 2009, 182, 6718-6726.	0.8	18
120	Fine Structural Variations of αβTCRs Selected by Vaccination with Natural versus Altered Self-Antigen in Melanoma Patients. Journal of Immunology, 2009, 183, 5397-5406.	0.8	48
121	Unmodified self antigen triggers human CD8 T cells with stronger tumor reactivity than altered antigen. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3849-3854.	7.1	136
122	Distinct sets of αβ TCRs confer similar recognition of tumor antigen NY-ESO-1 _{157–165} by interacting with its central Met/Trp residues. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15010-15015.	7.1	39
123	In Vivo Persistence of Codominant Human CD8+T Cell Clonotypes Is Not Limited by Replicative Senescence or Functional Alteration. Journal of Immunology, 2007, 179, 2368-2379.	0.8	26
124	Decreased specific CD8+ T cell cross-reactivity of antigen recognition following vaccination with Melan-A peptide. European Journal of Immunology, 2006, 36, 1805-1814.	2.9	17
125	A Novel Approach to Characterize Clonality and Differentiation of Human Melanoma-Specific T Cell Responses: Spontaneous Priming and Efficient Boosting by Vaccination. Journal of Immunology, 2006, 177, 1338-1348.	0.8	78
126	Melan-A/MART-1-Specific CD4 T Cells in Melanoma Patients: Identification of New Epitopes and Ex Vivo Visualization of Specific T Cells by MHC Class II Tetramers. Journal of Immunology, 2006, 177, 6769-6779.	0.8	48

#	Article	IF	CITATIONS
127	New Generation Vaccine Induces Effective Melanoma-Specific CD8+ T Cells in the Circulation but Not in the Tumor Site. Journal of Immunology, 2006, 177, 1670-1678.	0.8	157
128	Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. Journal of Clinical Investigation, 2005, 115, 739-746.	8.2	569
129	Toward improved immunocompetence of adoptively transferred CD8+ T cells. Journal of Clinical Investigation, 2005, 115, 1467-1469.	8.2	28
130	Effector Function of Human Tumor-Specific CD8 T Cells in Melanoma Lesions: A State of Local Functional Tolerance. Cancer Research, 2004, 64, 2865-2873.	0.9	351
131	Ex Vivo Analysis of Human Antigen-Specific CD8+ T-Cell Responses: Quality Assessment of Fluorescent HLA-A2 Multimer and Interferon-1³ ELISPOT Assays for Patient Immune Monitoring. Journal of Immunotherapy, 2004, 27, 298-308.	2.4	40
132	Evaluation of melanoma vaccines with molecularly defined antigens by ex vivo monitoring of tumor-specific T cells. Seminars in Cancer Biology, 2003, 13, 461-472.	9.6	50
133	Disease-driven T cell activation predicts immune responses to vaccination against melanoma. Cancer Immunity, 2003, 3, 12.	3.2	8
134	In vivo activation of melanoma-specific CD8+ T cells by endogenous tumor antigen and peptide vaccines. A comparison to virus-specific T cells. European Journal of Immunology, 2002, 32, 731.	2.9	96
135	Can hTERT peptide (540-548) -specific CD8 T cells recognize and kill tumor cells?. Cancer Immunity, 2002, 2, 14.	3.2	10
136	Human CD8+ T cells expressing HLA-DR and CD28 show telomerase activity and are distinct from cytolytic effector T cells. European Journal of Immunology, 2001, 31, 459-466.	2.9	48
137	TNF receptor 1 (TNFR1) and CD95 are not required for T cell deletion after virus infection but contribute to peptide-induced deletion under limited conditions. European Journal of Immunology, 2000, 30, 683-688.	2.9	72
138	Efficient Simultaneous Presentation of NY-ESO-1/LAGE-1 Primary and Nonprimary Open Reading Frame-Derived CTL Epitopes in Melanoma. Journal of Immunology, 2000, 165, 7253-7261.	0.8	77
139	In Vivo Expression of Natural Killer Cell Inhibitory Receptors by Human Melanoma–Specific Cytolytic T Lymphocytes. Journal of Experimental Medicine, 1999, 190, 775-782.	8.5	179
140	Optimal activation of tumor-reactive T cells by selected antigenic peptide analogues. International Immunology, 1999, 11, 1971-1980.	4.0	49
141	High Frequencies of Naive Melan-a/Mart-1–Specific Cd8+ T Cells in a Large Proportion of Human Histocompatibility Leukocyte Antigen (Hla)-A2 Individuals. Journal of Experimental Medicine, 1999, 190, 705-716.	8.5	447
142	CD28-negative cytolytic effector T cells frequently express NK receptors and are present at variable proportions in circulating lymphocytes from healthy donors and melanoma patients. European Journal of Immunology, 1999, 29, 1990-1999.	2.9	111
143	CD28-negative cytolytic effector T cells frequently express NK receptors and are present at variable proportions in circulating lymphocytes from healthy donors and melanoma patients. , 1999, 29, 1990.		1
144	CD28-negative cytolytic effector T cells frequently express NK receptors and are present at variable proportions in circulating lymphocytes from healthy donors and melanoma patients. European Journal of Immunology, 1999, 29, 1990-1999.	2.9	7

#	Article	IF	CITATIONS
145	Extrathymic positive selection of $\hat{I}\pm\hat{I}^2$ T-cell precursors in nude mice. Nature, 1992, 355, 170-172.	27.8	39