Armistead G Russell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8151994/publications.pdf

Version: 2024-02-01

296 papers

19,132 citations

72 h-index 123 g-index

326 all docs

326 docs citations

times ranked

326

18497 citing authors

#	Article	IF	CITATIONS
1	A data framework for assessing social inequality and equity in multiâ€sector social, ecological, infrastructural urban systems: Focus on fineâ€spatial scales. Journal of Industrial Ecology, 2022, 26, 145-163.	2.8	10
2	The Oxidative Potential of Fine Particulate Matter and Biological Perturbations in Human Plasma and Saliva Metabolome. Environmental Science & Environ	4.6	14
3	Emissions, chemistry or bidirectional surface transfer? Gas phase formic acid dynamics in the atmosphere. Atmospheric Environment, 2022, 274, 118995.	1.9	5
4	Using land use variable information and a random forest approach to correct spatial mean bias in fused CMAQ fields for particulate and gas species. Atmospheric Environment, 2022, 274, 118982.	1.9	5
5	Global Emissions of Hydrogen Chloride and Particulate Chloride from Continental Sources. Environmental Science & Environmental	4.6	15
6	Application of an improved gas-constrained source apportionment method using data fused fields: A case study in North Carolina, USA. Atmospheric Environment, 2022, 276, 119031.	1.9	2
7	Neighborhood characteristics as confounders and effect modifiers for the association between air pollution exposure and subjective cognitive functioning. Environmental Research, 2022, 212, 113221.	3.7	10
8	Assessment of Airport-Related Emissions and Their Impact on Air Quality in Atlanta, GA, Using CMAQ and TROPOMI. Environmental Science & Eamp; Technology, 2022, 56, 98-108.	4.6	7
9	Evaluation of the Use of Saliva Metabolome as a Surrogate of Blood Metabolome in Assessing Internal Exposures to Traffic-Related Air Pollution. Environmental Science & Exposures to Traffic-Related Air Pollution. Environmental Science & Exposures to Traffic-Related Air Pollution. Environmental Science & Exposure to Traffic Air Polluti	4.6	10
10	Implications for ozone control by understanding the survivor bias in observed ozone-volatile organic compounds system. Npj Climate and Atmospheric Science, 2022, 5, .	2.6	21
11	Impact of Circular, Waste-Heat Reuse Pathways on PM _{2.5} -Air Quality, CO ₂ Emissions, and Human Health in India: Comparison with Material Exchange Potential. Environmental Science & Technology, 2022, 56, 9773-9783.	4.6	3
12	Source apportionment of ozone and fine particulate matter in the United States for 2016 and 2028. Atmospheric Environment, 2022, 285, 119226.	1.9	6
13	Targeting Atmospheric Oxidants Can Better Reduce Sulfate Aerosol in China: H ₂ O ₂ Aqueous Oxidation Pathway Dominates Sulfate Formation in Haze. Environmental Science & 2021, 2022, 56, 10608-10618.	4.6	23
14	Evaluating oil and gas contributions to ambient nonmethane hydrocarbon mixing ratios and ozone-related metrics in the Colorado Front Range. Atmospheric Environment, 2021, 246, 118113.	1.9	6
15	Individual and population level protection from particulate matter exposure by wearing facemasks. Environment International, 2021, 146, 106026.	4.8	20
16	Increased air pollution exposure among the Chinese population during the national quarantine in 2020. Nature Human Behaviour, 2021, 5, 239-246.	6.2	45
17	Four Decades of United States Mobile Source Pollutants: Spatial–Temporal Trends Assessed by Ground-Based Monitors, Air Quality Models, and Satellites. Environmental Science & Dechnology, 2021, 55, 882-892.	4.6	17
18	High-resolution hybrid inversion of IASI ammonia columns to constrain US ammonia emissions using the CMAQ adjoint model. Atmospheric Chemistry and Physics, 2021, 21, 2067-2082.	1.9	22

#	Article	IF	CITATIONS
19	Orthogonalization and machine learning methods for residential energy estimation with social and economic indicators. Applied Energy, 2021, 283, 116114.	5.1	5
20	Estimating US Background Ozone Using Data Fusion. Environmental Science & Estimating US Background Ozone Using Data Fusion. Environmental Science & Estimating US Background Ozone Using Data Fusion. Environmental Science & Estimating US Background Ozone Using Data Fusion. Environmental Science & Estimating US Background Ozone Using Data Fusion. Environmental Science & Estimating US Background Ozone Using Data Fusion. Environmental Science & Estimating US Background Ozone Using Data Fusion. Environmental Science & Estimating US Background Ozone Using Data Fusion. Environmental Science & Estimating US Background Ozone Using Data Fusion. Environmental Science & Estimation Using Data Fusion.	4.6	5
21	Aerosol acidity and liquid water content regulate the dry deposition of inorganic reactive nitrogen. Atmospheric Chemistry and Physics, 2021, 21, 6023-6033.	1.9	28
22	Low-Molecular-Weight Carboxylic Acids in the Southeastern U.S.: Formation, Partitioning, and Implications for Organic Aerosol Aging. Environmental Science & Echnology, 2021, 55, 6688-6699.	4.6	30
23	Determining the Role of Acidity, Fate and Formation of IEPOX-Derived SOA in CMAQ. Atmosphere, 2021, 12, 707.	1.0	5
24	Significant contrasts in aerosol acidity between China and the United States. Atmospheric Chemistry and Physics, 2021, 21, 8341-8356.	1.9	13
25	Application and evaluation of a low-cost PM sensor and data fusion with CMAQ simulations to quantify the impacts of prescribed burning on air quality in Southwestern Georgia, USA. Journal of the Air and Waste Management Association, 2021, 71, 815-829.	0.9	5
26	Satellite Monitoring for Air Quality and Health. Annual Review of Biomedical Data Science, 2021, 4, 417-447.	2.8	25
27	The Oxidative Potential of Fine Particulate Matter and Metabolic Perturbations in Plasma and Saliva. ISEE Conference Abstracts, 2021, 2021, .	0.0	0
28	The state of science on severe air pollution episodes: Quantitative and qualitative analysis. Environment International, 2021, 156, 106732.	4.8	26
29	The response of streams in the Adirondack region of New York to projected changes in sulfur and nitrogen deposition under changing climate. Science of the Total Environment, 2021, 800, 149626.	3.9	6
30	Novel Method for Ozone Isopleth Construction and Diagnosis for the Ozone Control Strategy of Chinese Cities. Environmental Science & Environmental Sci	4.6	39
31	Impact of Formation Pathways on Secondary Inorganic Aerosol During Haze Pollution in Beijing: Quantitative Evidence From Highâ€Resolution Observation and Modeling. Geophysical Research Letters, 2021, 48, .	1.5	9
32	Toward enhanced CO2 adsorption on bimodal calcium-based materials with porous truncated architectures. Applied Surface Science, 2020, 505, 144512.	3.1	20
33	Electrochemical ammonia synthesis catalyzed with a CoFe layered double hydroxide – A new initiative in clean fuel synthesis. Journal of Cleaner Production, 2020, 250, 119525.	4.6	20
34	High-performance of nanostructured Ni/CeO2 catalyst on CO2 methanation. Applied Catalysis B: Environmental, 2020, 268, 118474.	10.8	226
35	Intense Warming Will Significantly Increase Cropland Ammonia Volatilization Threatening Food Security and Ecosystem Health. One Earth, 2020, 3, 126-134.	3.6	26
36	Unveiling the critical role of p-d hybridization interaction in M13â^'nGan clusters on CO2 adsorption. Fuel, 2020, 280, 118446.	3.4	9

#	Article	IF	CITATIONS
37	Near-road vehicle emissions air quality monitoring for exposure modeling. Atmospheric Environment, 2020, 224, 117318.	1.9	20
38	Greater Contribution From Agricultural Sources to Future Reactive Nitrogen Deposition in the United States. Earth's Future, 2020, 8, e2019EF001453.	2.4	3
39	Air Pollutant Correlations in China: Secondary Air Pollutant Responses to NO _{<i>x</i>} and SO ₂ Control. Environmental Science and Technology Letters, 2020, 7, 695-700.	3.9	113
40	Using High-Temporal-Resolution Ambient Data to Investigate Gas-Particle Partitioning of Ammonium over Different Seasons. Environmental Science & Envir	4.6	10
41	Temporal changes in short-term associations between cardiorespiratory emergency department visits and PM2.5 in Los Angeles, 2005 to 2016. Environmental Research, 2020, 190, 109967.	3.7	16
42	Fine Particle Iron in Soils and Road Dust Is Modulated by Coal-Fired Power Plant Sulfur. Environmental Science & Environmental	4.6	17
43	Connecting Air Quality with Emotional Well-Being and Neighborhood Infrastructure in a US City. Environmental Health Insights, 2020, 14, 117863022091548.	0.6	12
44	Assessment of the Near-Road (monitoring) Network including comparison with nearby monitors within U.S. cities. Environmental Research Letters, 2020, 15, 114026.	2.2	13
45	Characterization and comparison of PM _{2.5} oxidative potential assessed by two acellular assays. Atmospheric Chemistry and Physics, 2020, 20, 5197-5210.	1.9	46
46	Aerosol pH and liquid water content determine when particulate matter is sensitive to ammonia and nitrate availability. Atmospheric Chemistry and Physics, 2020, 20, 3249-3258.	1.9	72
47	Characterization of water-insoluble oxidative potential of PM2.5 using the dithiothreitol assay. Atmospheric Environment, 2020, 224, 117327.	1.9	63
48	Apportioning prescribed fire impacts on PM2.5 among individual fires through dispersion modeling. Atmospheric Environment, 2020, 223, 117260.	1.9	7
49	Evaluating a multipollutant metric for use in characterizing traffic-related air pollution exposures within near-road environments. Environmental Research, 2020, 184, 109389.	3.7	10
50	Accelerated epigenetic age as a biomarker of cardiovascular sensitivity to traffic-related air pollution. Aging, 2020, 12, 24141-24155.	1.4	18
51	A multiphase CMAQ version 5.0 adjoint. Geoscientific Model Development, 2020, 13, 2925-2944.	1.3	15
52	Aerosols in an arid environment: The role of aerosol water content, particulate acidity, precursors, and relative humidity on secondary inorganic aerosols. Science of the Total Environment, 2019, 646, 564-572.	3.9	46
53	Energy and air pollution benefits of household fuel policies in northern China. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16773-16780.	3.3	152
54	CO2 hydrogenation to light olefins with high-performance Fe0.30Co0.15Zr0.45K0.10O1.63. Journal of Catalysis, 2019, 377, 224-232.	3.1	37

#	Article	IF	CITATIONS
55	Current and Future Responses of Aerosol pH and Composition in the U.S. to Declining SO ₂ Emissions and Increasing NH ₃ Emissions. Environmental Science & En	4.6	16
56	Low-energy-consumption and environmentally friendly CO2 capture via blending alcohols into amine solution. Applied Energy, 2019, 254, 113696.	5.1	39
57	Global Fire Forecasts Using Both Largeâ€6cale Climate Indices and Local Meteorological Parameters. Global Biogeochemical Cycles, 2019, 33, 1129-1145.	1.9	17
58	Aerosol pH Dynamics During Haze Periods in an Urban Environment in China: Use of Detailed, Hourly, Speciated Observations to Study the Role of Ammonia Availability and Secondary Aerosol Formation and Urban Environment. Journal of Geophysical Research D: Atmospheres, 2019, 124, 9730-9742.	1.2	35
59	The Impacts of Prescribed Fire on PM2.5 Air Quality and Human Health: Application to Asthma-Related Emergency Room Visits in Georgia, USA. International Journal of Environmental Research and Public Health, 2019, 16, 2312.	1.2	25
60	Development of a WebGIS-Based Analysis Tool for Human Health Protection from the Impacts of Prescribed Fire Smoke in Southeastern USA. International Journal of Environmental Research and Public Health, 2019, 16, 1981.	1.2	8
61	Relaxing Energy Policies Coupled with Climate Change Will Significantly Undermine Efforts to Attain US Ozone Standards. One Earth, 2019, 1, 229-239.	3.6	13
62	Application of a Fusion Method for Gas and Particle Air Pollutants between Observational Data and Chemical Transport Model Simulations Over the Contiguous United States for 2005–2014. International Journal of Environmental Research and Public Health, 2019, 16, 3314.	1.2	17
63	On the accuracy and potential of Google Maps location history data to characterize individual mobility for air pollution health studies. Environmental Pollution, 2019, 252, 924-930.	3.7	21
64	Detailed Analysis of Estimated pH, Activity Coefficients, and Ion Concentrations between the Three Aerosol Thermodynamic Models. Environmental Science & Environmental Science & 2019, 53, 8903-8913.	4.6	25
65	Fusion Method Combining Ground-Level Observations with Chemical Transport Model Predictions Using an Ensemble Deep Learning Framework: Application in China to Estimate Spatiotemporally-Resolved PM _{2.5} Exposure Fields in 2014–2017. Environmental Science & Technology, 2019, 53, 7306-7315.	4.6	40
66	Characterization of Spatial Air Pollution Patterns Near a Large Railyard Area in Atlanta, Georgia. International Journal of Environmental Research and Public Health, 2019, 16, 535.	1.2	15
67	Review of Acellular Assays of Ambient Particulate Matter Oxidative Potential: Methods and Relationships with Composition, Sources, and Health Effects. Environmental Science & Emp; Technology, 2019, 53, 4003-4019.	4.6	321
68	Impact of air pollution control policies on cardiorespiratory emergency department visits, Atlanta, GA, 1999–2013. Environment International, 2019, 126, 627-634.	4.8	13
69	Air quality accountability: Developing long-term daily time series of pollutant changes and uncertainties in Atlanta, Georgia resulting from the 1990 Clean Air Act Amendments. Environment International, 2019, 123, 522-534.	4.8	12
70	Perturbations of the arginine metabolome following exposures to traffic-related air pollution in a panel of commuters with and without asthma. Environment International, 2019, 127, 503-513.	4.8	78
71	Empirical Development of Ozone Isopleths: Applications to Los Angeles. Environmental Science and Technology Letters, 2019, 6, 294-299.	3.9	25
72	High-Resolution Data Sets Unravel the Effects of Sources and Meteorological Conditions on Nitrate and Its Gas-Particle Partitioning. Environmental Science & Eachnology, 2019, 53, 3048-3057.	4.6	46

#	Article	IF	Citations
73	Elucidating emissions control strategies for ozone to protect human health and public welfare within the continental United States. Environmental Research Letters, 2019, 14, 124093.	2.2	5
74	Source-Apportioned PM2.5 and Cardiorespiratory Emergency Department Visits. Epidemiology, 2019, 30, 789-798.	1.2	18
75	CO2 hydrogenation to high-value products via heterogeneous catalysis. Nature Communications, 2019, 10, 5698.	5.8	571
76	Demographic Inequities in Health Outcomes and Air Pollution Exposure in the Atlanta Area and its Relationship to Urban Infrastructure. Journal of Urban Health, 2019, 96, 219-234.	1.8	33
77	Monitoring particulate matter in India: recent trends and future outlook. Air Quality, Atmosphere and Health, 2019, 12, 45-58.	1.5	93
78	Drought Impacts on Secondary Organic Aerosol: A Case Study in the Southeast United States. Environmental Science & Environment	4.6	3
79	Spatial PM _{2.5} mobile source impacts using a calibrated indicator method. Journal of the Air and Waste Management Association, 2019, 69, 402-414.	0.9	2
80	Air pollutant exposure field modeling using air quality model-data fusion methods and comparison with satellite AOD-derived fields: application over North Carolina, USA. Air Quality, Atmosphere and Health, 2018, 11, 11-22.	1.5	22
81	Burned Area Comparisons Between Prescribed Burning Permits in Southeastern United States and Two Satelliteâ€Derived Products. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4746-4757.	1.2	25
82	Modeling biogenic secondary organic aerosol (BSOA) formation from monoterpene reactions with NO3: A case study of the SOAS campaign using CMAQ. Atmospheric Environment, 2018, 184, 146-155.	1.9	21
83	Cross-comparison and evaluation of air pollution field estimation methods. Atmospheric Environment, 2018, 179, 49-60.	1.9	50
84	Impacts of rural worker migration on ambient air quality and health in China: From the perspective of upgrading residential energy consumption. Environment International, 2018, 113, 290-299.	4.8	19
85	Source-specific pollution exposure and associations with pulmonary response in the Atlanta Commuters Exposure Studies. Journal of Exposure Science and Environmental Epidemiology, 2018, 28, 337-347.	1.8	16
86	Single-atom silver-manganese nanocatalysts based on atom-economy design for reaction temperature-controlled selective hydrogenation of bioresources-derivable diethyl oxalate to ethyl glycolate and acetaldehyde diethyl acetal. Applied Catalysis B: Environmental, 2018, 232, 348-354.	10.8	21
87	Associations of mobile source air pollution during the first year of life with childhood pneumonia, bronchiolitis, and otitis media. Environmental Epidemiology, 2018, 2, e007.	1.4	16
88	Source apportionment for fine particulate matter in a Chinese city using an improved gas-constrained method and comparison with multiple receptor models. Environmental Pollution, 2018, 233, 1058-1067.	3.7	25
89	Spatial, seasonal and diurnal patterns in physicochemical characteristics and sources of PM2.5 in both inland and coastal regions within a megacity in China. Journal of Hazardous Materials, 2018, 342, 139-149.	6.5	48
90	Using cell phone location to assess misclassification errors in air pollution exposure estimation. Environmental Pollution, 2018, 233, 261-266.	3.7	54

#	Article	IF	Citations
91	Understanding nitrate formation in a world with less sulfate. Atmospheric Chemistry and Physics, 2018, 18, 12765-12775.	1.9	63
92	Estimating Acute Cardiovascular Effects of Ambient PM2.5 Metals. Environmental Health Perspectives, 2018, 126, 027007.	2.8	53
93	Simulating Biogenic Secondary Organic Aerosol During Summertime in China. Journal of Geophysical Research D: Atmospheres, 2018, 123, 11,100.	1.2	11
94	Source impact modeling of spatiotemporal trends in PM2.5 oxidative potential across the eastern United States. Atmospheric Environment, 2018, 193, 158-167.	1.9	21
95	Linked Response of Aerosol Acidity and Ammonia to SO ₂ and NO _{<i>x</i>} Emissions Reductions in the United States. Environmental Science & Emp; Technology, 2018, 52, 9861-9873.	4.6	38
96	Forecasting the Impacts of Prescribed Fires for Dynamic Air Quality Management. Atmosphere, 2018, 9, 220.	1.0	9
97	Catalyst-TiO(OH)2 could drastically reduce the energy consumption of CO2 capture. Nature Communications, 2018, 9, 2672.	5.8	122
98	Errors associated with the use of roadside monitoring in the estimation of acute traffic pollutant-related health effects. Environmental Research, 2018, 165, 210-219.	3.7	21
99	Use of high-resolution metabolomics for the identification of metabolic signals associated with traffic-related air pollution. Environment International, 2018, 120, 145-154.	4.8	113
100	First-principles and experimental studies of [ZrO(OH)] < sup>+ < /sup> or ZrO(OH) < sub>2 < /sub> for enhancing CO < sub>2 < /sub> desorption kinetics â€" imperative for significant reduction of CO < sub>2 < /sub> capture energy consumption. Journal of Materials Chemistry A, 2018, 6, 17671-17681.	5.2	13
101	Characterization of aerosol composition, aerosol acidity, and organic acid partitioning at an agriculturally intensive rural southeastern US site. Atmospheric Chemistry and Physics, 2018, 18, 11471-11491.	1.9	88
102	Application and evaluation of two model fusion approaches to obtain ambient air pollutant concentrations at a fine spatial resolution (250m) in Atlanta. Environmental Modelling and Software, 2018, 109, 182-190.	1.9	16
103	Scientific assessment of background ozone over the U.S.: Implications for air quality management. Elementa, 2018, 6, 56.	1.1	80
104	Field Test of Several Low-Cost Particulate Matter Sensors in High and Low Concentration Urban Environments. Aerosol and Air Quality Research, 2018, 18, 565-578.	0.9	91
105	Local and regional contributions to fine particulate matter in Beijing during heavy haze episodes. Science of the Total Environment, 2017, 580, 283-296.	3.9	93
106	A New Combined Stepwise-Based High-Order Decoupled Direct and Reduced-Form Method To Improve Uncertainty Analysis in PM2.5 Simulations. Environmental Science & Environmental Science & 2017, 51, 3852-3859.	4.6	12
107	Spatial and temporal source apportionment of PM 2.5 in Georgia, 2002 to 2013. Atmospheric Environment, 2017, 161, 112-121.	1.9	17
108	TiO(OH)2 â€" highly effective catalysts for optimizing CO2 desorption kinetics reducing CO2 capture cost: A new pathway. Scientific Reports, 2017, 7, 2943.	1.6	21

#	Article	IF	CITATIONS
109	Computation-predicted, stable, and inexpensive single-atom nanocatalyst Pt@Mo ₂ C – an important advanced material for H ₂ production. Journal of Materials Chemistry A, 2017, 5, 14658-14672.	5.2	34
110	Daily ambient air pollution metrics for five cities: Evaluation of data-fusion-based estimates and uncertainties. Atmospheric Environment, 2017, 158, 36-50.	1.9	27
111	pH of Aerosols in a Polluted Atmosphere: Source Contributions to Highly Acidic Aerosol. Environmental Science & Environmental	4.6	147
112	Daily estimation of ground-level PM2.5 concentrations at 4 km resolution over Beijing-Tianjin-Hebei by fusing MODIS AOD and ground observations. Science of the Total Environment, 2017, 580, 235-244.	3.9	79
113	Source apportionment and heavy metal health risk (HMHR) quantification from sources in a southern city in China, using an ME2-HMHR model. Environmental Pollution, 2017, 221, 335-342.	3.7	99
114	Measurement error in mobile source air pollution exposure estimates due to residential mobility during pregnancy. Journal of Exposure Science and Environmental Epidemiology, 2017, 27, 513-520.	1.8	47
115	Recommendations on statistics and benchmarks to assess photochemical model performance. Journal of the Air and Waste Management Association, 2017, 67, 582-598.	0.9	326
116	C ₂ Oxygenate Synthesis via Fischerâ€"Tropsch Synthesis on Co ₂ C and Co/Co ₂ C Interface Catalysts: How To Control the Catalyst Crystal Facet for Optimal Selectivity. ACS Catalysis, 2017, 7, 8285-8295.	5 . 5	81
117	Urban cross-sector actions for carbon mitigation with local health co-benefits in China. Nature Climate Change, 2017, 7, 736-742.	8.1	102
118	Air quality modeling for accountability research: Operational, dynamic, and diagnostic evaluation. Atmospheric Environment, 2017, 166, 551-565.	1.9	27
119	Fine particulate matter and cardiovascular disease: Comparison of assessment methods for long-term exposure. Environmental Research, 2017, 159, 16-23.	3.7	63
120	Responses in Ozone and Its Production Efficiency Attributable to Recent and Future Emissions Changes in the Eastern United States. Environmental Science & Environmental Scien	4.6	16
121	Development of PM _{2.5} Source Profiles Using a Hybrid Chemical Transport-Receptor Modeling Approach. Environmental Science & Environmental Sc	4.6	20
122	Synthesis of methanol from CO ₂ hydrogenation promoted by dissociative adsorption of hydrogen on a Ga ₃ Ni ₅ (221) surface. Physical Chemistry Chemical Physics, 2017, 19, 18539-18555.	1.3	43
123	Oxidative potential of PM 2.5 during Atlanta rush hour: Measurements of in-vehicle dithiothreitol (DTT) activity. Atmospheric Environment, 2017, 165, 169-178.	1.9	44
124	Accountability assessment of regulatory impacts on ozone and PM2.5 concentrations using statistical and deterministic pollutant sensitivities. Air Quality, Atmosphere and Health, 2017, 10, 695-711.	1.5	15
125	Size distribution, directional source contributions and pollution status of PM from Chengdu, China during a long-term sampling campaign. Journal of Environmental Sciences, 2017, 56, 1-11.	3.2	14
126	Evaluating the effectiveness of air quality regulations: A review of accountability studies and frameworks. Journal of the Air and Waste Management Association, 2017, 67, 144-172.	0.9	62

#	Article	IF	Citations
127	Associations between Source-Specific Fine Particulate Matter and Emergency Department Visits for Respiratory Disease in Four U.S. Cities. Environmental Health Perspectives, 2017, 125, 97-103.	2.8	110
128	Associations between Ambient Fine Particulate Oxidative Potential and Cardiorespiratory Emergency Department Visits. Environmental Health Perspectives, 2017, 125, 107008.	2.8	96
129	Municipal solid waste and dung cake burning: discoloring the Taj Mahal and human health impacts in Agra. Environmental Research Letters, 2016, 11, 104009.	2.2	26
130	Meta-principles for developing smart, sustainable, and healthy cities. Science, 2016, 352, 940-943.	6.0	267
131	Improving the Accuracy of Daily PM _{2.5} Distributions Derived from the Fusion of Ground-Level Measurements with Aerosol Optical Depth Observations, a Case Study in North China. Environmental Science & Environmenta	4.6	118
132	A method for quantifying bias in modeled concentrations and source impacts for secondary particulate matter. Frontiers of Environmental Science and Engineering, 2016, 10, 1.	3.3	12
133	The social and spatial distribution of temperature-related health impacts from urban heat island reduction policies. Environmental Science and Policy, 2016, 66, 366-374.	2.4	72
134	Quantification of long-term primary and secondary source contributions to carbonaceous aerosols. Environmental Pollution, 2016, 219, 897-905.	3.7	23
135	Chemical characterization and toxicity of particulate matter emissions from roadside trash combustion in urban India. Atmospheric Environment, 2016, 147, 22-30.	1.9	59
136	Calibrating R-LINE model results with observational data to develop annual mobile source air pollutant fields at fine spatial resolution: Application in Atlanta. Atmospheric Environment, 2016, 147, 446-457.	1.9	31
137	Air pollution complex: Understanding the sources, formation processes and health effects. Frontiers of Environmental Science and Engineering, 2016, 10, 1.	3.3	3
138	Composition and oxidation state of sulfur in atmospheric particulate matter. Atmospheric Chemistry and Physics, 2016, 16, 13389-13398.	1.9	16
139	Oxidative potential of ambient water-soluble PM _{2.5} in the southeastern United States: contrasts in sources and health associations between ascorbic acid (AA) and dithiothreitol (DTT) assays. Atmospheric Chemistry and Physics, 2016, 16, 3865-3879.	1.9	223
140	Pediatric emergency department visits and ambient Air pollution in the U.S. State of Georgia: a case-crossover study. Environmental Health, 2016, 15, 115.	1.7	66
141	"What We Breathe Impacts Our Health: Improving Understanding of the Link between Air Pollution and Health― Environmental Science & Technology, 2016, 50, 4895-4904.	4.6	294
142	High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years. Nature Geoscience, 2016, 9, 282-285.	5.4	327
143	Method for Fusing Observational Data and Chemical Transport Model Simulations To Estimate Spatiotemporally Resolved Ambient Air Pollution. Environmental Science & Technology, 2016, 50, 3695-3705.	4.6	86
144	Estimating the Impact of Air Pollution Controls on Ambient Concentrations. Springer Proceedings in Complexity, 2016, , 141-146.	0.2	1

#	Article	IF	CITATIONS
145	Chemical transport model consistency in simulating regulatory outcomes and the relationship to model performance. Atmospheric Environment, 2015, 116, 159-171.	1.9	13
146	Premature deaths attributed to source-specific BC emissions in six urban US regions. Environmental Research Letters, 2015, 10, 114014.	2.2	14
147	Development of PM _{2.5} source impact spatial fields using a hybrid source apportionment air quality model. Geoscientific Model Development, 2015, 8, 2153-2165.	1.3	36
148	Operational forecasting of source impacts for dynamic air quality management. Atmospheric Environment, 2015, 116, 320-322.	1.9	7
149	Amine-Based CO ₂ Capture Technology Development from the Beginning of 2013â€"A Review. ACS Applied Materials & Development from the Beginning of 2013â€"A Review.	4.0	686
150	Air quality impacts and health-benefit valuation of a low-emission technology for rail yard locomotives in Atlanta Georgia. Science of the Total Environment, 2015, 533, 156-164.	3.9	14
151	A new mesoporous amine-TiO2 based pre-combustion CO2 capture technology. Applied Energy, 2015, 147, 214-223.	5.1	41
152	Particulate matter components, sources, and health: Systematic approaches to testing effects. Journal of the Air and Waste Management Association, 2015, 65, 544-558.	0.9	185
153	Fire emission uncertainties and their effect on smoke dispersion predictions: a case study at Eglin Air Force Base, Florida, USA. International Journal of Wildland Fire, 2015, 24, 276.	1.0	11
154	Differences Between Magnitudes and Health Impacts of BC Emissions Across the United States Using 12 km Scale Seasonal Source Apportionment. Environmental Science & Environmental Science & 2015, 49, 4362-4371.	4.6	20
155	Regional Air Quality Management Aspects of Climate Change: Impact of Climate Mitigation Options on Regional Air Emissions. Environmental Science & Eamp; Technology, 2015, 49, 5170-5177.	4.6	17
156	Abatement of SO2–NOx binary gas mixtures using a ferruginous active absorbent: Part I. Synergistic effects and mechanism. Journal of Environmental Sciences, 2015, 30, 55-64.	3.2	11
157	Organic Aerosols Associated with the Generation of Reactive Oxygen Species (ROS) by Water-Soluble PM _{2.5} . Environmental Science & Environmen	4.6	259
158	Impacts of Potential CO ₂ -Reduction Policies on Air Quality in the United States. Environmental Science & Environmental Science & Environmen	4.6	25
159	Ensemble-Based Source Apportionment of Fine Particulate Matter and Emergency Department Visits for Pediatric Asthma. American Journal of Epidemiology, 2015, 181, 504-512.	1.6	31
160	Meteorological detrending of primary and secondary pollutant concentrations: Method application and evaluation using long-term (2000–2012) data in Atlanta. Atmospheric Environment, 2015, 119, 201-210.	1.9	58
161	Reactive Oxygen Species Generation Linked to Sources of Atmospheric Particulate Matter and Cardiorespiratory Effects. Environmental Science & Environmental Science & 2015, 49, 13605-13612.	4.6	258
162	New approach for optimal electricity planning and dispatching with hourly time-scale air quality and health considerations. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10884-10889.	3.3	42

#	Article	IF	CITATIONS
163	Characterizing the Spatial and Temporal Patterns of Open Burning of Municipal Solid Waste (MSW) in Indian Cities. Environmental Science & Environmenta	4.6	80
164	Fractionating ambient humic-like substances (HULIS) for their reactive oxygen species activity – Assessing the importance of quinones and atmospheric aging. Atmospheric Environment, 2015, 120, 351-359.	1.9	110
165	Modified nanosepiolite as an inexpensive support of tetraethylenepentamine for CO2 sorption. Nano Energy, 2015, 11, 235-246.	8.2	82
166	New insights into synergistic effects and active species toward HgO emission control by Fe(VI) absorbent. Fuel, 2015, 140, 309-316.	3.4	6
167	Environmental Particulate (PM2.5) Augments Stiffness-Induced Alveolar Epithelial Cell Mechanoactivation of Transforming Growth Factor Beta. PLoS ONE, 2014, 9, e106821.	1.1	44
168	Comparing Multipollutant Emissions-Based Mobile Source Indicators to Other Single Pollutant and Multipollutant Indicators in Different Urban Areas. International Journal of Environmental Research and Public Health, 2014, 11, 11727-11752.	1.2	6
169	Source apportionment of fine particulate matter during autumn haze episodes in Shanghai, China. Journal of Geophysical Research D: Atmospheres, 2014, 119, 1903-1914.	1.2	109
170	Joint Effects of Ambient Air Pollutants on Pediatric Asthma Emergency Department Visits in Atlanta, 1998–2004. Epidemiology, 2014, 25, 666-673.	1.2	79
171	Characterization of Selenium in Ambient Aerosols and Primary Emission Sources. Environmental Science &	4.6	22
172	Reactive oxygen species associated with water-soluble PM _{2.5} in the southeastern United States: spatiotemporal trends and source apportionment. Atmospheric Chemistry and Physics, 2014, 14, 12915-12930.	1.9	224
173	Fine particulate matter source apportionment using a hybrid chemical transport and receptor model approach. Atmospheric Chemistry and Physics, 2014, 14, 5415-5431.	1.9	42
174	Improved Spatiotemporal Source-Based Air Pollutant Mixture Characterization for Health Studies. Springer Proceedings in Complexity, 2014, , 25-30.	0.2	1
175	Avoided Heat-Related Mortality through Climate Adaptation Strategies in Three US Cities. PLoS ONE, 2014, 9, e100852.	1.1	130
176	Regional adjustment of emission strengths via four dimensional data assimilation. Asia-Pacific Journal of Atmospheric Sciences, 2013, 49, 361-374.	1.3	3
177	Impact of nitrogen and climate change interactions on ambient air pollution and human health. Biogeochemistry, 2013, 114, 121-134.	1.7	85
178	Review of recent advances in carbon dioxide separation and capture. RSC Advances, 2013, 3, 22739.	1.7	632
179	Characterization and stability of a new, high-capacity amine-functionalized CO2 sorbent. International Journal of Greenhouse Gas Control, 2013, 18, 51-56.	2.3	13
180	Catalytic regeneration of mercury sorbents. Journal of Hazardous Materials, 2013, 262, 642-648.	6.5	14

#	Article	IF	Citations
181	Climate Change Adaptation Through Urban Heat Management in Atlanta, Georgia. Environmental Science & E	4.6	41
182	Fuel-based fine particulate and black carbon emission factors from a railyard area in Atlanta. Journal of the Air and Waste Management Association, 2013, 63, 648-658.	0.9	21
183	New CO ₂ Sorbent Synthesized with Nanoporous TiO(OH) ₂ and K ₂ CO ₃ . Energy & En	2.5	28
184	Application of an Ensemble-Trained Source Apportionment Approach at a Site Impacted by Multiple Point Sources. Environmental Science & Environmental S	4.6	25
185	Analysis of NO, NO2, and O3 Between Model Simulations and Ground-Based, Aircraft, and Satellite Observations. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	1
186	Bayesian-Based Ensemble Source Apportionment of PM _{2.5} . Environmental Science & Environmenta	4.6	47
187	Revising the use of potassium (K) in the source apportionment of PM2.5. Atmospheric Pollution Research, 2013, 4, 14-21.	1.8	120
188	Environmental Risk Assessment: Comparison of Receptor and Air Quality Models for Source Apportionment. Human and Ecological Risk Assessment (HERA), 2013, 19, 1385-1403.	1.7	10
189	Downscaling a global climate model to simulate climate change over the US and the implication on regional and urban air quality. Geoscientific Model Development, 2013, 6, 1429-1445.	1.3	38
190	Development of outcome-based, multipollutant mobile source indicators. Journal of the Air and Waste Management Association, 2012, 62, 431-442.	0.9	24
191	Development of risk-based air quality management strategies under impacts of climate change. Journal of the Air and Waste Management Association, 2012, 62, 557-565.	0.9	4
192	PM10 characterization and source apportionment at two residential areas in Bogota. Atmospheric Pollution Research, 2012, 3, 72-80.	1.8	43
193	Ensemble-trained source apportionment of fine particulate matter and method uncertainty analysis. Atmospheric Environment, 2012, 61, 387-394.	1.9	43
194	Characterization of ambient air pollution measurement error in a time-series health study using a geostatistical simulation approach. Atmospheric Environment, 2012, 57, 101-108.	1.9	31
195	Air pollution and health: bridging the gap from sources to health outcomes: conference summary. Air Quality, Atmosphere and Health, 2012, 5, 9-62.	1.5	54
196	Reaction Kinetics of CO ₂ Carbonation with Mg-Rich Minerals. Journal of Physical Chemistry A, 2011, 115, 7638-7644.	1.1	28
197	Modeling secondary organic aerosol in CMAQ using multigenerational oxidation of semi-volatile organic compounds. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	26
198	Emission of Oxygenated Polycyclic Aromatic Hydrocarbons from Indoor Solid Fuel Combustion. Environmental Science & Environment	4.6	120

#	Article	IF	CITATIONS
199	Emissions of PAHs from Indoor Crop Residue Burning in a Typical Rural Stove: Emission Factors, Size Distributions, and Gasâ 'Particle Partitioning. Environmental Science & Emp; Technology, 2011, 45, 1206-1212.	4.6	215
200	Factors affecting the direct mineralization of CO2 with olivine. Journal of Environmental Sciences, 2011, 23, 1233-1239.	3.2	48
201	Comparison of two thermal-optical methods for the determination of organic carbon and elemental carbon: Results from the southeastern United States. Atmospheric Environment, 2011, 45, 1913-1918.	1.9	38
202	Mesoporous amine-modified SiO2 aerogel: a potential CO2 sorbent. Energy and Environmental Science, 2011, 4, 2070.	15.6	214
203	Impact of exposure measurement error in air pollution epidemiology: effect of error type in time-series studies. Environmental Health, 2011, 10, 61.	1.7	154
204	Using synoptic classification to evaluate an operational air quality forecasting system in Atlanta. Atmospheric Pollution Research, 2010, 1, 280-287.	1.8	16
205	Comparison of SOC estimates and uncertainties from aerosol chemical composition and gas phase data in Atlanta. Atmospheric Environment, 2010, 44, 3907-3914.	1.9	39
206	An examination of exposure measurement error from air pollutant spatial variability in time-series studies. Journal of Exposure Science and Environmental Epidemiology, 2010, 20, 135-146.	1.8	111
207	Sensitivity of Air Pollution-Induced Premature Mortality to Precursor Emissions under the Influence of Climate Change. International Journal of Environmental Research and Public Health, 2010, 7, 2222-2237.	1.2	23
208	Emission Factors of Particulate Matter and Elemental Carbon for Crop Residues and Coals Burned in Typical Household Stoves in China. Environmental Science & Echnology, 2010, 44, 7157-7162.	4.6	229
209	Ambient Air Pollutant Measurement Error: Characterization and Impacts in a Time-Series Epidemiologic Study in Atlanta. Environmental Science & Environ	4.6	56
210	Lower Tropospheric Aerosol Measurements by MAX-DOAS During Severe Asian Dust Period. Aerosol Science and Technology, 2009, 43, 1208-1217.	1.5	4
211	Particulate matter and human health focus issue. Environmental Science & Environmental Science & Particulate matter and human health focus issue. Environmental Science & Particulate matter and human health focus issue. Environmental Science & Particulate matter and human health focus issue. Environmental Science & Particulate matter and human health focus issue. Environmental Science & Particulate matter and human health focus issue. Environmental Science & Particulate matter and human health focus issue. Environmental Science & Particulate matter and human health focus issue. Environmental Science & Particulate matter and human health focus issue. Environmental Science & Particulate matter and human health focus issue. Environmental Science & Particulate matter and human health focus issue. Environmental Science & Particulate matter and human health focus issue. Environmental Science & Particulate matter and human health focus issue. Environmental Science & Particulate matter and human health focus issue. Environmental En	4.6	4
212	A Focus on Particulate Matter and Health. Environmental Science & Environmenta	4.6	203
213	Ensemble-Trained PM _{2.5} Source Apportionment Approach for Health Studies. Environmental Science & Description of the substitution of the	4.6	45
214	Assessment of Biomass Burning Emissions and Their Impacts on Urban and Regional PM _{2.5} : A Georgia Case Study. Environmental Science & Enviro	4.6	79
215	Roadside, Urban, and Rural Comparison of Primary and Secondary Organic Molecular Markers in Ambient PM _{2.5} . Environmental Science & Technology, 2009, 43, 4287-4293.	4.6	58
216	Potential Impact of Climate Change on Air Pollution-Related Human Health Effects. Environmental Science & Environmental Scienc	4.6	165

#	Article	IF	CITATIONS
217	Sensitivity of inverse estimation of 2004 elemental carbon emissions inventory in the United States to the choice of observational networks. Geophysical Research Letters, 2009, 36, .	1.5	26
218	Topâ€down analysis of the elemental carbon emissions inventory in the United States by inverse modeling using Community Multiscale Air Quality model with decoupled direct method (CMAQâ€DDM). Journal of Geophysical Research, 2009, 114, .	3.3	21
219	Estimating the contribution of strong daily export events to total pollutant export from the United States in summer. Journal of Geophysical Research, 2009, 114 , .	3.3	13
220	Accounting for high-order correlations in probabilistic characterization of environmental variables, and evaluation. Stochastic Environmental Research and Risk Assessment, 2008, 22, 159-168.	1.9	4
221	Source apportionment of PM2.5: Comparing PMF and CMB results for four ambient monitoring sites in the southeastern United States. Atmospheric Environment, 2008, 42, 4126-4137.	1.9	159
222	Comparison of PM2.5 source apportionment using positive matrix factorization and molecular marker-based chemical mass balance. Science of the Total Environment, 2008, 394, 290-302.	3.9	49
223	Impacts of future climate change and emissions reductions on nitrogen and sulfur deposition over the United States. Geophysical Research Letters, 2008, 35, .	1.5	10
224	Single-Source Impact Analysis Using Three-Dimensional Air Quality Models. Journal of the Air and Waste Management Association, 2008, 58, 1351-1359.	0.9	24
225	Simulation of Air Quality Impacts from Prescribed Fires on an Urban Area. Environmental Science & Emp; Technology, 2008, 42, 3676-3682.	4.6	53
226	Current and Future Linked Responses of Ozone and PM _{2.5} to Emission Controls. Environmental Science & Environmental	4.6	13
227	Spatial and Seasonal Trends in Biogenic Secondary Organic Aerosol Tracers and Water-Soluble Organic Carbon in the Southeastern United States. Environmental Science & Technology, 2008, 42, 5171-5176.	4.6	139
228	Diagnosis of Aged Prescribed Burning Plumes Impacting an Urban Area. Environmental Science & Emp; Technology, 2008, 42, 1438-1444.	4.6	68
229	Air Quality Impacts from Prescribed Forest Fires under Different Management Practices. Environmental Science & Environmental S	4.6	34
230	EPA Supersites Program-Related Emissions-Based Particulate Matter Modeling: Initial Applications and Advances. Journal of the Air and Waste Management Association, 2008, 58, 289-302.	0.9	18
231	Fine Particle Sources and Cardiorespiratory Morbidity: An Application of Chemical Mass Balance and Factor Analytical Source-Apportionment Methods. Environmental Health Perspectives, 2008, 116, 459-466.	2.8	236
232	Determining the Sources of Regional Haze in the Southeastern United States Using the CMAQ Model. Journal of Applied Meteorology and Climatology, 2007, 46, 1731-1743.	0.6	16
233	Chapter 2.14 Forecasting ozone and PM2.5 in southeastern U.S Developments in Environmental Science, 2007, 6, 220-229.	0.5	0
234	Source Apportionment of Fine Particulate Matter in the Southeastern United States. Journal of the Air and Waste Management Association, 2007, 57, 1123-1135.	0.9	36

#	Article	IF	CITATIONS
235	Source Apportionment of Daily Fine Particulate Matter at Jefferson Street, Atlanta, GA, during Summer and Winter. Journal of the Air and Waste Management Association, 2007, 57, 228-242.	0.9	91
236	Area of Influence (AOI) Development: Â Fast Generation of Receptor-Oriented Sensitivity Fields for Use in Regional Air Quality Modeling. Environmental Science & Environmental Science & 1, 3997-4003.	4.6	4
237	Sensitivities of Ozone and Fine Particulate Matter Formation to Emissions under the Impact of Potential Future Climate Change. Environmental Science & Environmental Science & 2007, 41, 8355-8361.	4.6	37
238	Regional Air Quality:  Local and Interstate Impacts of NOx and SO2 Emissions on Ozone and Fine Particulate Matter in the Eastern United States. Environmental Science & Env	4.6	20
239	Impacts of global climate change and emissions on regional ozone and fine particulate matter concentrations over the United States. Journal of Geophysical Research, 2007, 112, .	3.3	184
240	Speciation of ambient fine organic carbon particles and source apportionment of PM $<$ sub $>2.5sub> in Indian cities. Journal of Geophysical Research, 2007, 112, .$	3.3	163
241	A study of secondary organic aerosol formation in the anthropogenicâ€influenced southeastern United States. Journal of Geophysical Research, 2007, 112, .	3.3	517
242	Estimating uncertainties and uncertainty contributors of CMB PM2.5 source apportionment results. Atmospheric Environment, 2007, 41, 9616-9624.	1.9	48
243	Effects of Instrument Precision and Spatial Variability on the Assessment of the Temporal Variation of Ambient Air Pollution in Atlanta, Georgia. Journal of the Air and Waste Management Association, 2006, 56, 876-888.	0.9	42
244	Spatial distribution of carbonaceous aerosol in the southeastern United States using molecular markers and carbon isotope data. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	65
245	Re-examination of the 2003 North American electrical blackout impacts on regional air quality. Geophysical Research Letters, 2006, 33, .	1.5	7
246	Evaluation of Fine Particle Number Concentrations in CMAQ. Aerosol Science and Technology, 2006, 40, 985-996.	1.5	20
247	Control Strategy Optimization for Attainment and Exposure Mitigation: Case Study for Ozone in Macon, Georgia. Environmental Management, 2006, 38, 451-462.	1.2	24
248	PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models. Atmospheric Environment, 2006, 40, 4946-4959.	1.9	634
249	Source apportionment of PM2.5 in the southeastern United States using receptor and emissions-based models: Conceptual differences and implications for time-series health studies. Atmospheric Environment, 2006, 40, 2533-2551.	1.9	84
250	Air Quality Measurements for the Aerosol Research and Inhalation Epidemiology Study. Journal of the Air and Waste Management Association, 2006, 56, 1445-1458.	0.9	64
251	Atmospheric aerosol over two urban–rural pairs in the southeastern United States: Chemical composition and possible sources. Atmospheric Environment, 2005, 39, 4453-4470.	1.9	116
252	Airport related emissions and impacts on air quality: Application to the Atlanta International Airport. Atmospheric Environment, 2005, 39, 5787-5798.	1.9	178

#	Article	IF	Citations
253	Optimization-Based Source Apportionment of PM2.5Incorporating Gas-to-Particle Ratios. Environmental Science & Environmental Sc	4.6	99
254	Nonlinear Response of Ozone to Emissions:Â Source Apportionment and Sensitivity Analysis. Environmental Science & Environmenta	4.6	263
255	Gaseous and Particulate Emissions from Prescribed Burning in Georgia. Environmental Science & Emp; Technology, 2005, 39, 9049-9056.	4.6	207
256	REGIONAL ATMOSPHERIC POLLUTION AND TRANSBOUNDARY AIR QUALITY MANAGEMENT. Annual Review of Environment and Resources, 2005, 30, 1-37.	5.6	68
257	Estimates of PM2.5 levels in the southeastern United States for the year 2010: What else can be done?. Fuel Processing Technology, 2004, 85, 631-639.	3.7	4
258	Peer Reviewed: Why Carbon Monoxide Still Matters. Environmental Science & Environmental Science & Peer Reviewed: Why Carbon Monoxide Still Matters. Environmental Science & Peer Reviewed: Why Carbon Monoxide Still Matters. Environmental Science & Peer Reviewed: Why Carbon Monoxide Still Matters. Environmental Science & Peer Reviewed: Why Carbon Monoxide Still Matters. Environmental Science & Peer Reviewed: Why Carbon Monoxide Still Matters. Environmental Science & Peer Reviewed: Why Carbon Monoxide Still Matters. Environmental Science & Peer Reviewed: Why Carbon Monoxide Still Matters. Environmental Science & Peer Reviewed: Why Carbon Monoxide Still Matters. Environmental Science & Peer Reviewed: Why Carbon Monoxide Still Matters. Environmental Science & Peer Reviewed: Why Carbon Monoxide Still Matters. Environmental Science & Peer Reviewed: Why Carbon Monoxide Still Matters. Environmental Science & Peer Reviewed: Why Carbon Monoxide Still Matters. Environmental Science & Peer Reviewed: Why Carbon Monoxide Still Matters. Environmental Science & Peer Reviewed: Why Carbon Monoxide Still Matters. Environmental Science & Peer Reviewed: Why Carbon Monoxide Still Matters. Environmental Science & Peer Reviewed: Why Carbon Monoxide Still Matters. Environmental Science & Peer Reviewed: Why Carbon Monoxide Still Matters. Environmental Science & Peer Reviewed: Why Carbon Monoxide Still Matters. Environmental Science & Peer Reviewed: Why Carbon Monoxide Still Matters. Environmental Science & Peer Reviewed: Why Carbon Monoxide Still Matters. Environmental Science & Peer Reviewed: Why Carbon Monoxide Still Matters. Environmental Science & Peer Reviewed: Why Carbon Monoxide Still Matters. Environmental Science & Peer Reviewed: Why Carbon Monoxide Still Matters. Environmental Science & Peer Reviewed: Why Carbon Monoxide Still Matters. Environmental Science & Peer Reviewed: Why Carbon Monoxide Still Matters. Environmental Science & Peer Reviewed: Why Carbon Monoxide Still Matters. Environmental Science & Peer Reviewed: Why Carbo	4.6	3
259	Ozone Formation Potential of Organic Compounds in the Eastern United States:Â A Comparison of Episodes, Inventories, and Domains. Environmental Science & Episodes, Inventories, Episodes, Episodes	4.6	14
260	Nonlinearity in atmospheric response: A direct sensitivity analysis approach. Journal of Geophysical Research, 2004, 109, .	3.3	78
261	Daily sampling of PM2.5in Atlanta: Results of the first year of the Assessment of Spatial Aerosol Composition in Atlanta study. Journal of Geophysical Research, 2003, 108, SOS 3-1.	3.3	60
262	Evaluation of Incremental Reactivity and Its Uncertainty in Southern California. Environmental Science & Environmental Science	4.6	38
263	High-Order, Direct Sensitivity Analysis of Multidimensional Air Quality Models. Environmental Science & Environmental Science	4.6	170
264	Emission Strength Validation Using Four-Dimensional Data Assimilation: Application to Primary Aerosol and Precursors to Ozone and Secondary Aerosol. Journal of the Air and Waste Management Association, 2001, 51, 1538-1550.	0.9	12
265	Long-term trends of primary and secondary pollutant concentrations in Switzerland and their response to emission controls and economic changes. Atmospheric Environment, 2001, 35, 1351-1363.	1.9	45
266	Estimation of emission adjustments from the application of four-dimensional data assimilation to photochemical air quality modeling. Atmospheric Environment, 2001, 35, 2879-2894.	1.9	40
267	NARSTO critical review of photochemical models and modeling. Atmospheric Environment, 2000, 34, 2283-2324.	1.9	402
268	Modeling and Direct Sensitivity Analysis of Biogenic Emissions Impacts on Regional Ozone Formation in the Mexico-U.S. Border Area. Journal of the Air and Waste Management Association, 2000, 50, 21-31.	0.9	14
269	Iterative Inverse Modeling and Direct Sensitivity Analysis of a Photochemical Air Quality Model. Environmental Science & Environmental Science & Envir	4.6	33
270	An optimization model for photochemical air pollution control. European Journal of Operational Research, 1998, 106, 1-14.	3.5	29

#	Article	IF	CITATIONS
271	Temporal and Spatial Distributions of Ozone in Atlanta: Regulatory and Epidemiologic Implications. Journal of the Air and Waste Management Association, 1998, 48, 418-426.	0.9	78
272	REGIONAL PHOTOCHEMICAL AIR QUALITY MODELING: Model Formulations, History, and State of the Science. Annual Review of Environment and Resources, 1997, 22, 537-588.	1.2	15
273	Fast, Direct Sensitivity Analysis of Multidimensional Photochemical Models. Environmental Science & Environmental Science	4.6	160
274	Environmental Policy Analysis, Peer Reviewed: Cost–Benefit and Uncertainty Issues in Using Organic Reactivity to Regulate Urban Ozone. Environmental Science & Environmental Science & 1997, 31, 238A-244A.	4.6	11
275	Motorization of China implies changes in Pacific air chemistry and primary production. Geophysical Research Letters, 1997, 24, 2671-2674.	1.5	54
276	Title is missing!. Journal of Atmospheric Chemistry, 1997, 27, 31-70.	1.4	21
277	Parallel and distributed application of an urban-to-regional multiscale model. Computers and Chemical Engineering, 1997, 21, 399-408.	2.0	6
278	A free lunch at higher CAFE? A review of economic, environmental and social benefits. Energy Policy, 1996, 24, 253-264.	4.2	14
279	Quantification of Individual VOC Reactivity Using a Chemically Detailed, Three-Dimensional Photochemical Model. Environmental Science & Environmental	4.6	30
280	Reduction of nitrogen oxides from post-combustion gases utilizing molecular radical species. Fuel, 1993, 72, 1419-1427.	3.4	13
281	Future directions in photochemical air quality modeling. Water, Air, and Soil Pollution, 1993, 67, 181-193.	1.1	4
282	Photochemical modeling of the Southern California air quality study. Environmental Science & Eamp; Technology, 1993, 27, 378-388.	4.6	204
283	Mathematical modeling of the concentrations of volatile organic compounds: model performance using a lumped chemical mechanism. Environmental Science & Environmental Science & 27, 1638-1649.	4.6	38
284	Mathematical modeling and control of the dry deposition flux of nitrogen-containing air pollutants. Environmental Science & En	4.6	72
285	A nonlinear filtering algorithm for multi-dimensional finite element pollutant advection schemes. Atmospheric Environment Part A General Topics, 1993, 27, 793-799.	1.3	7
286	Controlled Wind Tunnel Experiments for Particle Bounceoff and Resuspension. Aerosol Science and Technology, 1992, 17, 245-262.	1.5	65
287	A comparison of fast chemical kinetic solvers for air quality modeling. Atmospheric Environment Part A General Topics, 1992, 26, 1783-1789.	1.3	39
288	Resuspension of particulate chemical species at forested sites. Environmental Science & Emp; Technology, 1992, 26, 2428-2435.	4.6	22

#	ARTICLE	IF	CITATIONS
289	Use of Sensitivity Analysis to Compare Chemical Mechanisms for Air-Quality Modeling. Environmental Science & Environmental Sci	4.6	36
290	A Stochastic Model for Particle Deposition and Bounceoff. Aerosol Science and Technology, 1992, 17, 231-244.	1.5	21
291	A multiscale finite element pollutant transport scheme for urban and regional modeling. Atmospheric Environment Part A General Topics, 1991, 25, 2385-2394.	1.3	29
292	Smog, Supercomputers and Society. Computers in Physics, 1990, 4, 227.	0.6	2
293	A new approach to photochemical pollution control: implications of spatial patterns in pollutant responses to reductions in nitrogen oxides and reactive organic gas emissions. Environmental Science & Environmental Science	4.6	147
294	Mathematical modeling of the formation of nitrogen-containing air pollutants. 1. Evaluation of an Eulerian photochemical model. Environmental Science & Eulerian photochemical model. Environmental Science & Eulerian photochemical model.	4.6	99
295	Mathematical modeling of the formation of nitrogen-containing pollutants. 2. Evaluation of the effect of emission controls. Environmental Science & En	4.6	33
296	On some aspects of nighttime atmospheric chemistry. Environmental Science & En	4.6	77