
Dany Spencer Adams

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8150619/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Early, H+-V-ATPase-dependent proton flux is necessary for consistent left-right patterning of non-mammalian vertebrates. Development (Cambridge), 2006, 133, 1657-1671.	2.5	238
2	H+ pump-dependent changes in membrane voltage are an early mechanism necessary and sufficient to induce Xenopus tail regeneration. Development (Cambridge), 2007, 134, 1323-1335.	2.5	233
3	Apoptosis is required during early stages of tail regeneration in Xenopus laevis. Developmental Biology, 2007, 301, 62-69.	2.0	214
4	A Chemical Genetics Approach Reveals H,K-ATPase-Mediated Membrane Voltage Is Required for Planarian Head Regeneration. Chemistry and Biology, 2011, 18, 77-89.	6.0	165
5	Endogenous voltage gradients as mediators of cell-cell communication: strategies for investigating bioelectrical signals during pattern formation. Cell and Tissue Research, 2013, 352, 95-122.	2.9	151
6	Transmembrane potential of GlyCl-expressing instructor cells induces a neoplastic-like conversion of melanocytes via a serotonergic pathway. DMM Disease Models and Mechanisms, 2011, 4, 67-85.	2.4	119
7	Vâ€ATPaseâ€dependent ectodermal voltage and ph regionalization are required for craniofacial morphogenesis. Developmental Dynamics, 2011, 240, 1889-1904.	1.8	112
8	Bioelectric signalling via potassium channels: a mechanism for craniofacial dysmorphogenesis in KCNJ2â€associated Andersen–Tawil Syndrome. Journal of Physiology, 2016, 594, 3245-3270.	2.9	110
9	Modulation of potassium channel function confers a hyperproliferative invasive phenotype on embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16608-16613.	7.1	101
10	Long-Term, Stochastic Editing of Regenerative Anatomy via Targeting Endogenous Bioelectric Gradients. Biophysical Journal, 2017, 112, 2231-2243.	0.5	101
11	Measuring Resting Membrane Potential Using the Fluorescent Voltage Reporters DiBAC ₄ (3) and CC2-DMPE. Cold Spring Harbor Protocols, 2012, 2012, pdb.prot067702.	0.3	93
12	Xenopus TRPN1 (NOMPC) localizes to microtubule-based cilia in epithelial cells, including inner-ear hair cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12572-12577.	7.1	92
13	Gap Junctional Blockade Stochastically Induces Different Species-Specific Head Anatomies in Genetically Wild-Type Girardia dorotocephala Flatworms. International Journal of Molecular Sciences, 2015, 16, 27865-27896.	4.1	84
14	H,K-ATPase protein localization and Kir4.1 function reveal concordance of three axes during early determination of left–right asymmetry. Mechanisms of Development, 2008, 125, 353-372.	1.7	82
15	Light-activation of the Archaerhodopsin H+-pump reverses age-dependent loss of vertebrate regeneration: sparking system-level controls <i>in vivo</i> . Biology Open, 2013, 2, 306-313.	1.2	77
16	Use of genetically encoded, light-gated ion translocators to control tumorigenesis. Oncotarget, 2016, 7, 19575-19588.	1.8	74
17	General Principles for Measuring Resting Membrane Potential and Ion Concentration Using Fluorescent Bioelectricity Reporters. Cold Spring Harbor Protocols, 2012, 2012, pdb.top067710.	0.3	71
18	Inverse drug screens: a rapid and inexpensive method for implicating molecular targets. Genesis, 2006, 44, 530-540.	1.6	50

#	Article	IF	CITATIONS
19	Establishing and Maintaining a Colony of Planarians. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5053.	0.3	50
20	Live Imaging of Planarian Membrane Potential Using DiBAC ₄ (3): Figure 1 Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5055.	0.3	47
21	Optogenetics in Developmental Biology: using light to control ion flux-dependent signals in Xenopus embryos. International Journal of Developmental Biology, 2014, 58, 851-861.	0.6	46
22	A New Tool for Tissue Engineers: Ions As Regulators of Morphogenesis During Development and Regeneration. Tissue Engineering - Part A, 2008, 14, 1461-1468.	3.1	44
23	Normal Table of <i>Xenopus</i> development: a new graphical resource. Development (Cambridge), 2022, 149, .	2.5	40
24	Fishing on chips: Upâ€andâ€coming technological advances in analysis of zebrafish and <scp><i>X</i></scp> <i>enopus</i> embryos. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2014, 85, 921-932.	1.5	36
25	Planarians: A Versatile and Powerful Model System for Molecular Studies of Regeneration, Adult Stem Cell Regulation, Aging, and Behavior. Cold Spring Harbor Protocols, 2008, 2008, pdb.emo101.	0.3	33
26	Mechanisms of cell shape change: the cytomechanics of cellular response to chemical environment and mechanical loading. Journal of Cell Biology, 1992, 117, 83-93.	5.2	27
27	Long-Distance Signals Are Required for Morphogenesis of the Regenerating Xenopus Tadpole Tail, as Shown by Femtosecond-Laser Ablation. PLoS ONE, 2011, 6, e24953.	2.5	24
28	Gene Knockdown in Planarians Using RNA Interference. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5054.	0.3	20
29	The Zahn drawings: new illustrations of <i>Xenopus</i> embryo and tadpole stages for studies of craniofacial development. Development (Cambridge), 2017, 144, 2708-2713.	2.5	15
30	IP3 receptors and Ca2+ signals in adult skeletal muscle satellite cells in situ. Biological Research, 2004, 37, 635-9.	3.4	11
31	Patterned femtosecond-laser ablation of Xenopus laevis melanocytes for studies of cell migration, wound repair, and developmental processes. Biomedical Optics Express, 2011, 2, 2383.	2.9	9
32	Making Solutions from Hydrated Compounds. Cold Spring Harbor Protocols, 2008, 2008, pdb.ip54.	0.3	4
33	Making Solutions from Dry Chemicals. Cold Spring Harbor Protocols, 2008, 2008, pdb.ip53.	0.3	3
34	Making and Diluting Stock Solutions. Cold Spring Harbor Protocols, 2008, 2008, pdb.ip55.	0.3	2
35	Photoconversion for Tracking the Dynamics of Cell Movement in <i>Xenopus laevis</i> Embryos. Cold Spring Harbor Protocols, 2012, 2012, pdb.prot068502.	0.3	1