
Vitaly Citovsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8150495/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid generation of inoculum of a plant RNA virus using overlap PCR. Virology, 2021, 553, 46-50.	2.4	4
2	Receptor-like kinase BAM1 facilitates early movement of the Tobacco mosaic virus. Communications Biology, 2021, 4, 511.	4.4	16
3	Modulation of plant DNA damage response gene expression during Agrobacterium infection. Biochemical and Biophysical Research Communications, 2021, 554, 7-12.	2.1	3
4	Histone Deubiquitinase OTU1 Epigenetically Regulates DA1 and DA2, Which Control Arabidopsis Seed and Organ Size. IScience, 2020, 23, 100948.	4.1	13
5	Biolistic Approach for Transient Gene Expression Studies in Plants. Methods in Molecular Biology, 2020, 2124, 125-139.	0.9	28
6	Pathways of DNA Transfer to Plants from <i>Agrobacterium tumefaciens</i> and Related Bacterial Species. Annual Review of Phytopathology, 2019, 57, 231-251.	7.8	62
7	Coordinate activation of a target gene by KDM1C histone demethylase and OTLD1 histone deubiquitinase in Arabidopsis. Epigenetics, 2019, 14, 602-610.	2.7	10
8	My BBRC: From learning biochemistry to editorial decisions. Biochemical and Biophysical Research Communications, 2019, 520, 672-673.	2.1	0
9	Beyond Agrobacterium-Mediated Transformation: Horizontal Gene Transfer from Bacteria to Eukaryotes. Current Topics in Microbiology and Immunology, 2018, 418, 443-462.	1.1	17
10	The <i>Agrobacterium</i> F-Box Protein Effector VirF Destabilizes the <i>Arabidopsis</i> GLABROUS1 Enhancer/Binding Protein-Like Transcription Factor VFP4, a Transcriptional Activator of Defense Response Genes. Molecular Plant-Microbe Interactions, 2018, 31, 576-586.	2.6	16
11	The <i>Agrobacterium</i> VirE2 effector interacts with multiple members of the <i>Arabidopsis</i> VIP1 protein family. Molecular Plant Pathology, 2018, 19, 1172-1183.	4.2	13
12	The Plasmodesmal Localization Signal of TMV MP Is Recognized by Plant Synaptotagmin SYTA. MBio, 2018, 9, .	4.1	33
13	Transcriptional Activation of Virulence Genes of Rhizobium etli. Journal of Bacteriology, 2017, 199, .	2.2	10
14	Myosin-driven transport network in plants is functionally robust and distinctive. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1756-1758.	7.1	7
15	Adaptor proteins GIR1 and GIR2. I. Interaction with the repressor GLABRA2 and regulation of root hair development. Biochemical and Biophysical Research Communications, 2017, 488, 547-553.	2.1	18
16	Adaptor proteins GIR1 and GIR2. II. Interaction with the co-repressor TOPLESS and promotion of histone deacetylation of target chromatin. Biochemical and Biophysical Research Communications, 2017, 488, 609-613.	2.1	17
17	Identification of Plasmodesmal Localization Sequences in Proteins In Planta . Journal of Visualized Experiments, 2017, , .	0.3	4
18	Activation of gene expression by histone deubiquitinase OTLD1. Epigenetics, 2017, 12, 584-590.	2.7	14

#	Article	IF	CITATIONS
19	The histone deubiquitinase OTLD1 targets euchromatin to regulate plant growth. Science Signaling, 2016, 9, ra125.	3.6	17
20	Transfer of DNA from Bacteria to Eukaryotes. MBio, 2016, 7, .	4.1	112
21	Advancing Crop Transformation in the Era of Genome Editing. Plant Cell, 2016, 28, tpc.00196.2016.	6.6	429
22	Plant homologs of mammalian MBT-domain protein-regulated KDM1 histone lysine demethylases do not interact with plant Tudor/PWWP/MBT-domain proteins. Biochemical and Biophysical Research Communications, 2016, 470, 913-916.	2.1	6
23	Identification of a Functional Plasmodesmal Localization Signal in a Plant Viral Cell-To-Cell-Movement Protein. MBio, 2016, 7, e02052-15.	4.1	40
24	A Functional Bacterium-to-Plant DNA Transfer Machinery of Rhizobium etli. PLoS Pathogens, 2016, 12, e1005502.	4.7	50
25	Nopaline-type Ti plasmid of Agrobacterium encodes a VirF-like functional F-box protein. Scientific Reports, 2015, 5, 16610.	3.3	11
26	Interaction of Arabidopsis Trihelix-Domain Transcription Factors VFP3 and VFP5 with Agrobacterium Virulence Protein VirF. PLoS ONE, 2015, 10, e0142128.	2.5	13
27	The Tomato yellow leaf curl virus (TYLCV) V2 protein inhibits enzymatic activity of the host papain-like cysteine protease CYP1. Biochemical and Biophysical Research Communications, 2015, 460, 525-529.	2.1	28
28	Plasmodesmata-associated proteins. Plant Signaling and Behavior, 2014, 9, e27899.	2.4	16
29	<i><scp>A</scp>grobacterium</i> â€ <scp>Tâ€DNA</scp> â€encoded protein <scp>A</scp> tu6002 interferes with the host auxin response. Molecular Plant Pathology, 2014, 15, 275-283.	4.2	3
30	Assaying Proteasomal Degradation in a Cell-free System in Plants. Journal of Visualized Experiments, 2014, , .	0.3	13
31	Transient Gene Expression in Epidermal Cells of Plant Leaves by Biolistic DNA Delivery. Methods in Molecular Biology, 2013, 940, 17-26.	0.9	27
32	Disassembly of synthetic <i>Agrobacterium</i> T-DNA–protein complexes via the host SCF ^{VBF} ubiquitin–ligase complex pathway. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 169-174.	7.1	28
33	Characterization of VIP1 activity as a transcriptional regulator in vitro and in planta. Scientific Reports, 2013, 3, 2440.	3.3	19
34	The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation. International Journal of Developmental Biology, 2013, 57, 467-481.	0.6	91
35	A Plasmodesmal Glycosyltransferase-Like Protein. PLoS ONE, 2013, 8, e58025.	2.5	20
36	A mutation in negative regulator of basal resistance WRKY17 of Arabidopsis increases susceptibility to Agrobacterium-mediated genetic transformation. F1000Research, 2013, 2, 33.	1.6	6

#	Article	IF	CITATIONS
37	The <i>Tomato yellow leaf curl virus</i> (TYLCV) V2 protein interacts with the host papain-like cysteine protease CYP1. Plant Signaling and Behavior, 2012, 7, 983-989.	2.4	48
38	The Role of the Ubiquitin-Proteasome System in <i>Agrobacterium tumefaciens</i> -Mediated Genetic Transformation of Plants. Plant Physiology, 2012, 160, 65-71.	4.8	18
39	Focus on Ubiquitin in Plant Biology. Plant Physiology, 2012, 160, 1-1.	4.8	20
40	Expression of complete metabolic pathways in transgenic plants. Biotechnology and Genetic Engineering Reviews, 2012, 28, 1-14.	6.2	8
41	Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology, 2012, 13, 614-629.	4.2	1,678
42	Intellectual Property Aspects of Plant Transformation. , 2011, , 243-270.		1
43	Host Factors Involved in Genetic Transformation of Plant Cells byAgrobacterium. , 2011, , 1-29.		2
44	Novel Dual Binary Vectors (pCLEAN) for Plant Transformation. , 2011, , 139-147.		1
45	Epigenetic control of Agrobacterium T-DNA integration. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2011, 1809, 388-394.	1.9	32
46	Hijacking of the Host SCF Ubiquitin Ligase Machinery by Plant Pathogens. Frontiers in Plant Science, 2011, 2, 87.	3.6	30
47	Extracellular VirB5 Enhances T-DNA Transfer from Agrobacterium to the Host Plant. PLoS ONE, 2011, 6, e25578.	2.5	20
48	Pectin Methylesterase Enhances Tomato Bushy Stunt Virus P19 RNA Silencing Suppressor Effects. , 2011, , 125-134.		2
49	Protein Membrane Overlay Assay: A Protocol to Test Interaction Between Soluble and Insoluble Proteins in vitro . Journal of Visualized Experiments, 2011, , .	0.3	3
50	To Gate, or Not to Gate: Regulatory Mechanisms for Intercellular Protein Transport and Virus Movement in Plants. Molecular Plant, 2011, 4, 782-793.	8.3	78
51	Biology of callose (β-1,3-glucan) turnover at plasmodesmata. Protoplasma, 2011, 248, 117-130.	2.1	252
52	<i>Agrobacterium</i> Counteracts Host-Induced Degradation of Its Effector F-Box Protein. Science Signaling, 2011, 4, ra69.	3.6	46
53	Involvement of KDM1C histone demethylase–OTLD1 otubain-like histone deubiquitinase complexes in plant gene repression. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11157-11162.	7.1	57
54	A Cell-to-cell Macromolecular Transport Assay in Planta Utilizing Biolistic Bombardment. Journal of Visualized Experiments, 2010, , .	0.3	3

#	Article	IF	CITATIONS
55	Pol II-directed short RNAs suppress the nuclear export of mRNA. Plant Molecular Biology, 2010, 74, 591-603.	3.9	6
56	The roles of plant phenolics in defence and communication during <i>Agrobacterium</i> and <i>Rhizobium</i> infection. Molecular Plant Pathology, 2010, 11, 705-719.	4.2	356
57	The Small Subunit of Snapdragon Geranyl Diphosphate Synthase Modifies the Chain Length Specificity of Tobacco Geranylgeranyl Diphosphate Synthase in Planta. Plant Cell, 2010, 21, 4002-4017.	6.6	91
58	ANK, a Host Cytoplasmic Receptor for the Tobacco mosaic virus Cell-to-Cell Movement Protein, Facilitates Intercellular Transport through Plasmodesmata. PLoS Pathogens, 2010, 6, e1001201.	4.7	60
59	Autoluminescent Plants. PLoS ONE, 2010, 5, e15461.	2.5	65
60	Plant defense pathways subverted by <i>Agrobacterium</i> for genetic transformation. Plant Signaling and Behavior, 2010, 5, 1245-1248.	2.4	17
61	Agrobacterium Induces Expression of a Host F-Box Protein Required for Tumorigenicity. Cell Host and Microbe, 2010, 7, 197-209.	11.0	85
62	Agrobacterium aiming for the host chromatin. Communicative and Integrative Biology, 2009, 2, 42-45.	1.4	9
63	Functional transient genetic transformation of Arabidopsis leaves by biolistic bombardment. Nature Protocols, 2009, 4, 71-77.	12.0	102
64	Systems biology of plant–pathogen interactions. Seminars in Cell and Developmental Biology, 2009, 20, 1015-1016.	5.0	0
65	Proteasomal degradation in plant–pathogen interactions. Seminars in Cell and Developmental Biology, 2009, 20, 1048-1054.	5.0	48
66	Regulation of Root Elongation by Histone Acetylation in Arabidopsis. Journal of Molecular Biology, 2009, 385, 45-50.	4.2	48
67	African swine fever virus p10 protein exhibits nuclear import capacity and accumulates in the nucleus during viral infection. Veterinary Microbiology, 2008, 130, 47-59.	1.9	16
68	Probing Interactions Between Plant Virus Movement Proteins and Nucleic Acids. Methods in Molecular Biology, 2008, 451, 293-316.	0.9	1
69	Localizing protein–protein interactions by bimolecular fluorescence complementation in planta. Methods, 2008, 45, 196-206.	3.8	46
70	Interaction with host SGS3 is required for suppression of RNA silencing by tomato yellow leaf curl virus V2 protein. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 157-161.	7.1	287
71	Association of the <i>Agrobacterium</i> T-DNA–protein complex with plant nucleosomes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15429-15434.	7.1	69
72	Recent Patents on Agrobacterium-Mediated Gene and Protein Transfer,for Research and Biotechnology. Recent Patents on DNA & Gene Sequences, 2008, 2, 69-81.	0.7	10

#	Article	IF	CITATIONS
73	Agrobacterium tumefaciens-Induced Bacteraemia Does Not Lead to Reporter Gene Expression in Mouse Organs. PLoS ONE, 2008, 3, e2352.	2.5	8
74	Intracellular Transport of Agrobacterium T-DNA. , 2008, , 365-394.		1
75	Spread Throughout the Plant: Systemic Transport of Viruses. , 2007, , 85-118.		22
76	Arabidopsis Co-Repressor Complexes Containing Polyamine Oxidase-Like Proteins and Plant-Specific Histone Methyltransferases. Plant Signaling and Behavior, 2007, 2, 174-177.	2.4	9
77	Arabidopsis VIRE2 INTERACTING PROTEIN2 Is Required for Agrobacterium T-DNA Integration in Plants. Plant Cell, 2007, 19, 1695-1708.	6.6	109
78	Yeast-Plant Coupled Vector System for Identification of Nuclear Proteins. Plant Physiology, 2007, 145, 1264-1271.	4.8	10
79	pSITE Vectors for Stable Integration or Transient Expression of Autofluorescent Protein Fusions in Plants: Probing Nicotiana benthamiana-Virus Interactions. Molecular Plant-Microbe Interactions, 2007, 20, 740-750.	2.6	188
80	C2H2 zinc finger-SET histone methyltransferase is a plant-specific chromatin modifier. Developmental Biology, 2007, 303, 259-269.	2.0	66
81	How pollen tubes grow. Developmental Biology, 2007, 303, 405-420.	2.0	143
82	Biological systems of the host cell involved in Agrobacterium infection. Cellular Microbiology, 2007, 9, 9-20.	2.1	140
83	Suppressor of RNA silencing encoded by Tomato yellow leaf curl virus-Israel. Virology, 2007, 358, 159-165.	2.4	184
84	Advanced Expression Vector Systems: New Weapons for Plant Research and Biotechnology. Plant Physiology, 2007, 145, 1087-1089.	4.8	5
85	Agrobacterium-mediated genetic transformation of tea leaf explants: effects of counteracting bactericidity of leaf polyphenols without loss of bacterial virulence. Plant Cell Reports, 2007, 26, 169-176.	5.6	45
86	Will you let me use your nucleus? How Agrobacterium gets its T-DNA expressed in the host plant cellThis paper is one of a selection of papers published in this Special Issue, entitled The Nucleus: A Cell Within A Cell Canadian Journal of Physiology and Pharmacology, 2006, 84, 333-345.	1.4	38
87	Subcellular Localization of Interacting Proteins by Bimolecular Fluorescence Complementation in Planta. Journal of Molecular Biology, 2006, 362, 1120-1131.	4.2	352
88	Pollen-specific pectin methylesterase involved in pollen tube growth. Developmental Biology, 2006, 294, 83-91.	2.0	185
89	The Use of Fluorescence Dequenching Measurements to Follow Viral Membrane Fusion Events. Methods of Biochemical Analysis, 2006, 33, 129-164.	0.2	71
90	Nuclear import and export of plant virus proteins and genomes. Molecular Plant Pathology, 2006, 7, 131-146.	4.2	61

#	Article	IF	CITATIONS
91	Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Current Opinion in Biotechnology, 2006, 17, 147-154.	6.6	355
92	Arrest in Viral Transport as the Basis for Plant Resistance to Infection. , 2006, , 289-314.		1
93	A case of promiscuity: Agrobacterium's endless hunt for new partners. Trends in Genetics, 2006, 22, 29-37.	6.7	164
94	Mammalian Cells. , 2006, 344, 435-451.		1
95	Nuclear Export of African Swine Fever Virus p37 Protein Occurs through Two Distinct Pathways and Is Mediated by Three Independent Signals. Journal of Virology, 2006, 80, 1393-1404.	3.4	20
96	The VirE3 protein of Agrobacterium mimics a host cell function required for plant genetic transformation. EMBO Journal, 2005, 24, 428-437.	7.8	109
97	pSAT vectors: a modular series of plasmids for autofluorescent protein tagging and expression of multiple genes in plants. Plant Molecular Biology, 2005, 57, 503-516.	3.9	405
98	Uncoupling of the functions of the Arabidopsis VIP1 protein in transient and stable plant genetic transformation by Agrobacterium. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5733-5738.	7.1	141
99	Control improves with age: Intercellular transport in plant embryos and adults. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1817-1818.	7.1	22
100	Identification of an interactor of cadmium ion-induced glycine-rich protein involved in regulation of callose levels in plant vasculature. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12089-12094.	7.1	66
101	The Plant VirE2 Interacting Protein 1. A Molecular Link between the Agrobacterium T-Complex and the Host Cell Chromatin?. Plant Physiology, 2005, 138, 1318-1321.	4.8	66
102	Plant Viruses. Invaders of Cells and Pirates of Cellular Pathways. Plant Physiology, 2005, 138, 1809-1814.	4.8	91
103	Involvement of KU80 in T-DNA integration in plant cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 19231-19236.	7.1	79
104	Effects of Calreticulin on Viral Cell-to-Cell Movement. Plant Physiology, 2005, 138, 1866-1876.	4.8	156
105	Nuclear Import of Agrobacterium T-DNA. , 2005, , 83-99.		6
106	Two African Swine Fever Virus Proteins Derived from a Common Precursor Exhibit Different Nucleocytoplasmic Transport Activities. Journal of Virology, 2004, 78, 9731-9739.	3.4	16
107	Protein Interactions Involved in Nuclear Import of the Agrobacterium VirE2 Protein in Vivo and in Vitro. Journal of Biological Chemistry, 2004, 279, 29528-29533.	3.4	61
108	Three-dimensional Reconstruction of Agrobacterium VirE2 Protein with Single-stranded DNA. Journal of Biological Chemistry, 2004, 279, 25359-25363.	3.4	63

#	Article	IF	CITATIONS
109	High-Throughput Fluorescent Tagging of Full-Length Arabidopsis Gene Products in Planta. Plant Physiology, 2004, 135, 25-38.	4.8	237
110	Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature, 2004, 431, 87-92.	27.8	232
111	Agrobacterium T-DNA integration: molecules and models. Trends in Genetics, 2004, 20, 375-383.	6.7	263
112	Reorganization of specific chromosomal domains and activation of silent genes in plant cells acquiring pluripotentiality. Developmental Dynamics, 2004, 230, 12-22.	1.8	83
113	The Ins and Outs of Nondestructive Cell-to-Cell and Systemic Movement of Plant Viruses. Critical Reviews in Plant Sciences, 2004, 23, 195-250.	5.7	197
114	Functional analysis of the Cucumber mosaic virus 2b protein: pathogenicity and nuclear localization. Journal of General Virology, 2004, 85, 3135-3147.	2.9	76
115	Systemic movement of a tobamovirus requires host cell pectin methylesterase. Plant Journal, 2003, 35, 386-392.	5.7	144
116	Modes of intercellular transcription factor movement in the Arabidopsis apex. Development (Cambridge), 2003, 130, 3735-3745.	2.5	204
117	The Agrobacterium-Plant Cell Interaction. Taking Biology Lessons from a Bug Â. Plant Physiology, 2003, 133, 943-947.	4.8	40
118	Site-Specific Integration of Agrobacterium tumefaciens T-DNA via Double-Stranded Intermediates. Plant Physiology, 2003, 133, 1011-1023.	4.8	134
119	Identification of Arabidopsis rat Mutants. Plant Physiology, 2003, 132, 494-505.	4.8	159
120	Increasing plant susceptibility to Agrobacterium infection by overexpression of the Arabidopsis nuclear protein VIP1. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10435-10440.	7.1	137
121	Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends in Cell Biology, 2002, 12, 121-129.	7.9	171
122	The systemic movement of a tobamovirus is inhibited by a cadmium-ion-induced glycine-rich protein. Nature Cell Biology, 2002, 4, 478-486.	10.3	117
123	Phosphorylation of viral movement proteins – regulation of cell-to-cell trafficking: Response. Trends in Microbiology, 2001, 9, 8.	7.7	2
124	Comparison between nuclear localization of nopaline- and octopine-specific Agrobacterium VirE2 proteins in plant, yeast and mammalian cells. Molecular Plant Pathology, 2001, 2, 171-176.	4.2	41
125	Inhibition of systemic onset of post-transcriptional gene silencing by non-toxic concentrations of cadmium. Plant Journal, 2001, 28, 283-291.	5.7	42
126	RNA commutes to work: regulation of plant gene expression by systemically transported RNA molecules. BioEssays, 2001, 23, 1087-1090.	2.5	23

#	Article	IF	CITATIONS
127	September 11th: A touchstone for reflections on who we are and where we are going. BioEssays, 2001, 23, 1085-1086.	2.5	0
128	VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO Journal, 2001, 20, 3596-3607.	7.8	242
129	Cell-to-cell movement of tobacco mosaic virus: enigmas and explanations. Molecular Plant Pathology, 2000, 1, 33-39.	4.2	35
130	From host recognition to T-DNA integration: the function of bacterial and plant genes in the Agrobacterium-plant cell interaction. Molecular Plant Pathology, 2000, 1, 201-212.	4.2	67
131	A genetic system for detection of protein nuclear import and export. Nature Biotechnology, 2000, 18, 433-437.	17.5	107
132	Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. EMBO Journal, 2000, 19, 913-920.	7.8	306
133	Nucleic Acid Transport in Plant-Microbe Interactions: The Molecules That Walk Through the Walls. Annual Review of Microbiology, 2000, 54, 187-219.	7.3	147
134	Systemic transport of RNA in plants. Trends in Plant Science, 2000, 5, 52-54.	8.8	69
135	Tobacco Mosaic Virus: Pioneering Research for a Century. Plant Cell, 1999, 11, 301.	6.6	6
136	Characterization of a tomato karyopherin that interacts with the Tomato Yellow Leaf Curl Virus (TYLCV) capsid protein. Journal of Experimental Botany, 1999, 50, 731-732.	4.8	30
137	Tobacco mosaic virus: a pioneer to cell–to–cell movement. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 637-643.	4.0	61
138	Cell-to-Cell Movement of Tobacco Mosaic Virus. Current Plant Science and Biotechnology in Agriculture, 1999, , 359-363.	0.0	0
139	AnArabidopsis thalianaMutant with Virus-Inducible Phenotype. Virology, 1998, 249, 119-128.	2.4	11
140	Preservation of plant cell ultrastructure during immunolocalization of virus particles. Journal of Virological Methods, 1998, 74, 223-229.	2.1	11
141	Nuclear import of the capsid protein of tomato yellow leaf curl virus (TYLCV) in plant and insect cells. Plant Journal, 1998, 13, 393-399.	5.7	126
142	Inhibition of plant viral systemic infection by nonâ€ŧoxic concentrations of cadmium. Plant Journal, 1998, 13, 591-602.	5.7	81
143	Non-toxic concentrations of cadmium inhibit systemic movement of turnip vein clearing virus by a salicylic acid-independent mechanism. Plant Journal, 1998, 16, 13-20.	5.7	44
144	Arabidopsis Protocols.Jose M. Martinez-Zapater , Julio Salinas. Quarterly Review of Biology, 1998, 73, 345-345.	0.1	0

#	Article	IF	CITATIONS
145	Identification of an Arabidopsis thaliana Mutation (vsm1) That Restricts Systemic Movement of Tobamoviruses. Molecular Plant-Microbe Interactions, 1998, 11, 706-709.	2.6	58
146	Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 10723-10728.	7.1	191
147	TheAgrobacteriumDNA Transfer Complex. Critical Reviews in Plant Sciences, 1997, 16, 279-295.	5.7	101
148	The molecular structure of agrobacterium VirE2-single stranded DNA complexes involved in nuclear import. Journal of Molecular Biology, 1997, 271, 718-727.	4.2	100
149	TRANSPORT OF PROTEINS AND NUCLEIC ACIDS THROUGH PLASMODESMATA. Annual Review of Plant Biology, 1997, 48, 27-50.	14.3	146
150	Movement and subcellular localization of a tobamovirus in <i>Arabidopsis</i> . Plant Journal, 1997, 12, 537-545.	5.7	3
151	Movement and subcellular localization of a tobamovirus in Arabidopsis. Plant Journal, 1997, 12, 537-545.	5.7	291
152	Nucleic Acid Transport in Plant-Pathogen Interactions. , 1997, 19, 201-214.		13
153	The Agrobacterium DNA Transfer Complex. Critical Reviews in Plant Sciences, 1997, 16, 279-296.	5.7	14
154	Agrobacterium VirE2 protein mediates nuclear uptake of single-stranded DNA in plant cells Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 2392-2397.	7.1	144
155	Agrobacterium-Plant Cell DNA Transport: Have Virulence Proteins, Will Travel. Plant Cell, 1996, 8, 1699.	6.6	1
156	Transport of DNA into the Nuclei of Xenopus Oocytes by a Modified VirE2 Protein of Agrobacterium. Plant Cell, 1996, 8, 363.	6.6	1
157	Agrobacterium-plant cell DNA transport: have virulence proteins, will travel Plant Cell, 1996, 8, 1699-1710.	6.6	270
158	Transport of protein—nucleic acid complexes within and between plant cells. Membrane Protein Transport, 1995, , 39-57.	0.2	6
159	Direct functional assay for tobacco mosaic virus cell-to-cell movement protein and identification of a domain involved in increasing plasmodesmal permeability Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 1433-1437.	7.1	261
160	Nuclear import of Agrobacterium VirD2 and VirE2 proteins in maize and tobacco Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 3210-3214.	7.1	128
161	Visualizing protein import into the plant cell nucleus. , 1994, , 551-566.		1
162	Phosphorylation of tobacco mosaic virus cell-to-cell movement protein by a developmentally regulated plant cell wall-associated protein kinase Genes and Development, 1993, 7, 904-910.	5.9	165

#	Article	IF	CITATIONS
163	Cell-to-cell movement of plant viruses. Trends in Microbiology, 1993, 1, 105-109.	7.7	27
164	Transport of Nucleic Acids Through Membrane Channels: Snaking Through Small Holes. Annual Review of Microbiology, 1993, 47, 167-197.	7.3	125
165	Probing Plasmodesmal Transport with Plant Viruses. Plant Physiology, 1993, 102, 1071-1076.	4.8	61
166	Visualization and Characterization of Tobacco Mosaic Virus Movement Protein Binding to Single-Stranded Nucleic Acids. Plant Cell, 1992, 4, 397.	6.6	2
167	Nuclear localization of Agrobacterium VirE2 protein in plant cells. Science, 1992, 256, 1802-1805.	12.6	307
168	The VirD2 protein of A. tumefaciens contains a C-terminal bipartite nuclear localization signal: Implications for nuclear uptake of DNA in plant cells. Cell, 1992, 68, 109-118.	28.9	267
169	How do plant virus nucleic acids move through intercellular connections?. BioEssays, 1991, 13, 373-379.	2.5	102
170	Gene I, a potential cell-to-cell movement locus of cauliflower mosaic virus, encodes an RNA-binding protein Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 2476-2480.	7.1	105
171	The emerging structure of theAgrobacterium T-DNA transfer complex. BioEssays, 1990, 12, 103-108.	2.5	72
172	The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell, 1990, 60, 637-647.	28.9	482
173	Cooperative interaction of Agrobacterium VirE2 protein with single-stranded DNA: implications for the T-DNA transfer process Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 1193-1197.	7.1	216
174	[41] Implantation of Isolated Carriers and receptors into living cells by Sendai virus envelope-mediated fusion. Methods in Enzymology, 1989, 171, 829-850.	1.0	4
175	Single-Stranded DNA Binding Protein Encoded by the virE Locus of Agrobacterium tumefaciens. Science, 1988, 240, 501-504.	12.6	154
176	Active Function of Membrane Receptors in Fusion of Enveloped Viruses with Cell Plasma Membranes. , 1988, , 413-426.		4
177	Active function of membrane receptors for enveloped viruses. Experimental Cell Research, 1986, 166, 279-294.	2.6	18
178	Fusion of Sendai virions with phosphatidylcholine-cholesterol liposomes reflects the viral activity required for fusion with biological membranes. FEBS Letters, 1985, 193, 135-140.	2.8	53
179	A mutation in negative regulator of basal resistance WRKY17 of Arabidopsis increases susceptibility to Agrobacterium-mediated transient genetic transformation. F1000Research, 0, 2, 33.	1.6	1