
Vitaly Citovsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8150495/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology, 2012, 13, 614-629.	4.2	1,678
2	The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell, 1990, 60, 637-647.	28.9	482
3	Advancing Crop Transformation in the Era of Genome Editing. Plant Cell, 2016, 28, tpc.00196.2016.	6.6	429
4	pSAT vectors: a modular series of plasmids for autofluorescent protein tagging and expression of multiple genes in plants. Plant Molecular Biology, 2005, 57, 503-516.	3.9	405
5	The roles of plant phenolics in defence and communication during <i>Agrobacterium</i> and <i>Rhizobium</i> infection. Molecular Plant Pathology, 2010, 11, 705-719.	4.2	356
6	Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Current Opinion in Biotechnology, 2006, 17, 147-154.	6.6	355
7	Subcellular Localization of Interacting Proteins by Bimolecular Fluorescence Complementation in Planta. Journal of Molecular Biology, 2006, 362, 1120-1131.	4.2	352
8	Nuclear localization of Agrobacterium VirE2 protein in plant cells. Science, 1992, 256, 1802-1805.	12.6	307
9	Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. EMBO Journal, 2000, 19, 913-920.	7.8	306
10	Movement and subcellular localization of a tobamovirus in Arabidopsis. Plant Journal, 1997, 12, 537-545.	5.7	291
11	Interaction with host SGS3 is required for suppression of RNA silencing by tomato yellow leaf curl virus V2 protein. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 157-161.	7.1	287
12	Agrobacterium-plant cell DNA transport: have virulence proteins, will travel Plant Cell, 1996, 8, 1699-1710.	6.6	270
13	The VirD2 protein of A. tumefaciens contains a C-terminal bipartite nuclear localization signal: Implications for nuclear uptake of DNA in plant cells. Cell, 1992, 68, 109-118.	28.9	267
14	Agrobacterium T-DNA integration: molecules and models. Trends in Genetics, 2004, 20, 375-383.	6.7	263
15	Direct functional assay for tobacco mosaic virus cell-to-cell movement protein and identification of a domain involved in increasing plasmodesmal permeability Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 1433-1437.	7.1	261
16	Biology of callose (β-1,3-glucan) turnover at plasmodesmata. Protoplasma, 2011, 248, 117-130.	2.1	252
17	VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO Journal, 2001, 20, 3596-3607.	7.8	242
18	High-Throughput Fluorescent Tagging of Full-Length Arabidopsis Gene Products in Planta. Plant Physiology, 2004, 135, 25-38.	4.8	237

#	Article	IF	CITATIONS
19	Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature, 2004, 431, 87-92.	27.8	232
20	Cooperative interaction of Agrobacterium VirE2 protein with single-stranded DNA: implications for the T-DNA transfer process Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 1193-1197.	7.1	216
21	Modes of intercellular transcription factor movement in the Arabidopsis apex. Development (Cambridge), 2003, 130, 3735-3745.	2.5	204
22	The Ins and Outs of Nondestructive Cell-to-Cell and Systemic Movement of Plant Viruses. Critical Reviews in Plant Sciences, 2004, 23, 195-250.	5.7	197
23	Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 10723-10728.	7.1	191
24	pSITE Vectors for Stable Integration or Transient Expression of Autofluorescent Protein Fusions in Plants: Probing Nicotiana benthamiana-Virus Interactions. Molecular Plant-Microbe Interactions, 2007, 20, 740-750.	2.6	188
25	Pollen-specific pectin methylesterase involved in pollen tube growth. Developmental Biology, 2006, 294, 83-91.	2.0	185
26	Suppressor of RNA silencing encoded by Tomato yellow leaf curl virus-Israel. Virology, 2007, 358, 159-165.	2.4	184
27	Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends in Cell Biology, 2002, 12, 121-129.	7.9	171
28	Phosphorylation of tobacco mosaic virus cell-to-cell movement protein by a developmentally regulated plant cell wall-associated protein kinase Genes and Development, 1993, 7, 904-910.	5.9	165
29	A case of promiscuity: Agrobacterium's endless hunt for new partners. Trends in Genetics, 2006, 22, 29-37.	6.7	164
30	Identification of Arabidopsis rat Mutants. Plant Physiology, 2003, 132, 494-505.	4.8	159
31	Effects of Calreticulin on Viral Cell-to-Cell Movement. Plant Physiology, 2005, 138, 1866-1876.	4.8	156
32	Single-Stranded DNA Binding Protein Encoded by the virE Locus of Agrobacterium tumefaciens. Science, 1988, 240, 501-504.	12.6	154
33	Nucleic Acid Transport in Plant-Microbe Interactions: The Molecules That Walk Through the Walls. Annual Review of Microbiology, 2000, 54, 187-219.	7.3	147
34	TRANSPORT OF PROTEINS AND NUCLEIC ACIDS THROUGH PLASMODESMATA. Annual Review of Plant Biology, 1997, 48, 27-50.	14.3	146
35	Agrobacterium VirE2 protein mediates nuclear uptake of single-stranded DNA in plant cells Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 2392-2397.	7.1	144
36	Systemic movement of a tobamovirus requires host cell pectin methylesterase. Plant Journal, 2003, 35, 386-392.	5.7	144

#	Article	IF	CITATIONS
37	How pollen tubes grow. Developmental Biology, 2007, 303, 405-420.	2.0	143
38	Uncoupling of the functions of the Arabidopsis VIP1 protein in transient and stable plant genetic transformation by Agrobacterium. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5733-5738.	7.1	141
39	Biological systems of the host cell involved in Agrobacterium infection. Cellular Microbiology, 2007, 9, 9-20.	2.1	140
40	Increasing plant susceptibility to Agrobacterium infection by overexpression of the Arabidopsis nuclear protein VIP1. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10435-10440.	7.1	137
41	Site-Specific Integration of Agrobacterium tumefaciens T-DNA via Double-Stranded Intermediates. Plant Physiology, 2003, 133, 1011-1023.	4.8	134
42	Nuclear import of Agrobacterium VirD2 and VirE2 proteins in maize and tobacco Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 3210-3214.	7.1	128
43	Nuclear import of the capsid protein of tomato yellow leaf curl virus (TYLCV) in plant and insect cells. Plant Journal, 1998, 13, 393-399.	5.7	126
44	Transport of Nucleic Acids Through Membrane Channels: Snaking Through Small Holes. Annual Review of Microbiology, 1993, 47, 167-197.	7.3	125
45	The systemic movement of a tobamovirus is inhibited by a cadmium-ion-induced glycine-rich protein. Nature Cell Biology, 2002, 4, 478-486.	10.3	117
46	Transfer of DNA from Bacteria to Eukaryotes. MBio, 2016, 7, .	4.1	112
47	The VirE3 protein of Agrobacterium mimics a host cell function required for plant genetic transformation. EMBO Journal, 2005, 24, 428-437.	7.8	109
48	Arabidopsis VIRE2 INTERACTING PROTEIN2 Is Required for Agrobacterium T-DNA Integration in Plants. Plant Cell, 2007, 19, 1695-1708.	6.6	109
49	A genetic system for detection of protein nuclear import and export. Nature Biotechnology, 2000, 18, 433-437.	17.5	107
50	Gene I, a potential cell-to-cell movement locus of cauliflower mosaic virus, encodes an RNA-binding protein Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 2476-2480.	7.1	105
51	How do plant virus nucleic acids move through intercellular connections?. BioEssays, 1991, 13, 373-379.	2.5	102
52	Functional transient genetic transformation of Arabidopsis leaves by biolistic bombardment. Nature Protocols, 2009, 4, 71-77.	12.0	102
53	TheAgrobacteriumDNA Transfer Complex. Critical Reviews in Plant Sciences, 1997, 16, 279-295.	5.7	101
54	The molecular structure of agrobacterium VirE2-single stranded DNA complexes involved in nuclear import. Journal of Molecular Biology, 1997, 271, 718-727.	4.2	100

#	Article	IF	CITATIONS
55	Plant Viruses. Invaders of Cells and Pirates of Cellular Pathways. Plant Physiology, 2005, 138, 1809-1814.	4.8	91
56	The Small Subunit of Snapdragon Geranyl Diphosphate Synthase Modifies the Chain Length Specificity of Tobacco Geranylgeranyl Diphosphate Synthase in Planta. Plant Cell, 2010, 21, 4002-4017.	6.6	91
57	The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation. International Journal of Developmental Biology, 2013, 57, 467-481.	0.6	91
58	Agrobacterium Induces Expression of a Host F-Box Protein Required for Tumorigenicity. Cell Host and Microbe, 2010, 7, 197-209.	11.0	85
59	Reorganization of specific chromosomal domains and activation of silent genes in plant cells acquiring pluripotentiality. Developmental Dynamics, 2004, 230, 12-22.	1.8	83
60	Inhibition of plant viral systemic infection by nonâ€ŧoxic concentrations of cadmium. Plant Journal, 1998, 13, 591-602.	5.7	81
61	Involvement of KU80 in T-DNA integration in plant cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 19231-19236.	7.1	79
62	To Gate, or Not to Gate: Regulatory Mechanisms for Intercellular Protein Transport and Virus Movement in Plants. Molecular Plant, 2011, 4, 782-793.	8.3	78
63	Functional analysis of the Cucumber mosaic virus 2b protein: pathogenicity and nuclear localization. Journal of General Virology, 2004, 85, 3135-3147.	2.9	76
64	The emerging structure of theAgrobacterium T-DNA transfer complex. BioEssays, 1990, 12, 103-108.	2.5	72
65	The Use of Fluorescence Dequenching Measurements to Follow Viral Membrane Fusion Events. Methods of Biochemical Analysis, 2006, 33, 129-164.	0.2	71
66	Systemic transport of RNA in plants. Trends in Plant Science, 2000, 5, 52-54.	8.8	69
67	Association of the <i>Agrobacterium</i> T-DNA–protein complex with plant nucleosomes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15429-15434.	7.1	69
68	From host recognition to T-DNA integration: the function of bacterial and plant genes in the Agrobacterium-plant cell interaction. Molecular Plant Pathology, 2000, 1, 201-212.	4.2	67
69	Identification of an interactor of cadmium ion-induced glycine-rich protein involved in regulation of callose levels in plant vasculature. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12089-12094.	7.1	66
70	The Plant VirE2 Interacting Protein 1. A Molecular Link between the Agrobacterium T-Complex and the Host Cell Chromatin?. Plant Physiology, 2005, 138, 1318-1321.	4.8	66
71	C2H2 zinc finger-SET histone methyltransferase is a plant-specific chromatin modifier. Developmental Biology, 2007, 303, 259-269.	2.0	66
72	Autoluminescent Plants. PLoS ONE, 2010, 5, e15461.	2.5	65

#	Article	IF	CITATIONS
73	Three-dimensional Reconstruction of Agrobacterium VirE2 Protein with Single-stranded DNA. Journal of Biological Chemistry, 2004, 279, 25359-25363.	3.4	63
74	Pathways of DNA Transfer to Plants from <i>Agrobacterium tumefaciens</i> and Related Bacterial Species. Annual Review of Phytopathology, 2019, 57, 231-251.	7.8	62
75	Probing Plasmodesmal Transport with Plant Viruses. Plant Physiology, 1993, 102, 1071-1076.	4.8	61
76	Tobacco mosaic virus: a pioneer to cell–to–cell movement. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 637-643.	4.0	61
77	Protein Interactions Involved in Nuclear Import of the Agrobacterium VirE2 Protein in Vivo and in Vitro. Journal of Biological Chemistry, 2004, 279, 29528-29533.	3.4	61
78	Nuclear import and export of plant virus proteins and genomes. Molecular Plant Pathology, 2006, 7, 131-146.	4.2	61
79	ANK, a Host Cytoplasmic Receptor for the Tobacco mosaic virus Cell-to-Cell Movement Protein, Facilitates Intercellular Transport through Plasmodesmata. PLoS Pathogens, 2010, 6, e1001201.	4.7	60
80	Identification of an Arabidopsis thaliana Mutation (vsm1) That Restricts Systemic Movement of Tobamoviruses. Molecular Plant-Microbe Interactions, 1998, 11, 706-709.	2.6	58
81	Involvement of KDM1C histone demethylase–OTLD1 otubain-like histone deubiquitinase complexes in plant gene repression. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11157-11162.	7.1	57
82	Fusion of Sendai virions with phosphatidylcholine-cholesterol liposomes reflects the viral activity required for fusion with biological membranes. FEBS Letters, 1985, 193, 135-140.	2.8	53
83	A Functional Bacterium-to-Plant DNA Transfer Machinery of Rhizobium etli. PLoS Pathogens, 2016, 12, e1005502.	4.7	50
84	Proteasomal degradation in plant–pathogen interactions. Seminars in Cell and Developmental Biology, 2009, 20, 1048-1054.	5.0	48
85	Regulation of Root Elongation by Histone Acetylation in Arabidopsis. Journal of Molecular Biology, 2009, 385, 45-50.	4.2	48
86	The <i>Tomato yellow leaf curl virus</i> (TYLCV) V2 protein interacts with the host papain-like cysteine protease CYP1. Plant Signaling and Behavior, 2012, 7, 983-989.	2.4	48
87	Localizing protein–protein interactions by bimolecular fluorescence complementation in planta. Methods, 2008, 45, 196-206.	3.8	46
88	<i>Agrobacterium</i> Counteracts Host-Induced Degradation of Its Effector F-Box Protein. Science Signaling, 2011, 4, ra69.	3.6	46
89	Agrobacterium-mediated genetic transformation of tea leaf explants: effects of counteracting bactericidity of leaf polyphenols without loss of bacterial virulence. Plant Cell Reports, 2007, 26, 169-176.	5.6	45
90	Non-toxic concentrations of cadmium inhibit systemic movement of turnip vein clearing virus by a salicylic acid-independent mechanism. Plant Journal, 1998, 16, 13-20.	5.7	44

#	Article	IF	CITATIONS
91	Inhibition of systemic onset of post-transcriptional gene silencing by non-toxic concentrations of cadmium. Plant Journal, 2001, 28, 283-291.	5.7	42
92	Comparison between nuclear localization of nopaline- and octopine-specific Agrobacterium VirE2 proteins in plant, yeast and mammalian cells. Molecular Plant Pathology, 2001, 2, 171-176.	4.2	41
93	The Agrobacterium-Plant Cell Interaction. Taking Biology Lessons from a Bug Â. Plant Physiology, 2003, 133, 943-947.	4.8	40
94	Identification of a Functional Plasmodesmal Localization Signal in a Plant Viral Cell-To-Cell-Movement Protein. MBio, 2016, 7, e02052-15.	4.1	40
95	Will you let me use your nucleus? How Agrobacterium gets its T-DNA expressed in the host plant cellThis paper is one of a selection of papers published in this Special Issue, entitled The Nucleus: A Cell Within A Cell Canadian Journal of Physiology and Pharmacology, 2006, 84, 333-345.	1.4	38
96	Cell-to-cell movement of tobacco mosaic virus: enigmas and explanations. Molecular Plant Pathology, 2000, 1, 33-39.	4.2	35
97	The Plasmodesmal Localization Signal of TMV MP Is Recognized by Plant Synaptotagmin SYTA. MBio, 2018, 9, .	4.1	33
98	Epigenetic control of Agrobacterium T-DNA integration. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2011, 1809, 388-394.	1.9	32
99	Characterization of a tomato karyopherin that interacts with the Tomato Yellow Leaf Curl Virus (TYLCV) capsid protein. Journal of Experimental Botany, 1999, 50, 731-732.	4.8	30
100	Hijacking of the Host SCF Ubiquitin Ligase Machinery by Plant Pathogens. Frontiers in Plant Science, 2011, 2, 87.	3.6	30
101	Disassembly of synthetic <i>Agrobacterium</i> T-DNA–protein complexes via the host SCF ^{VBF} ubiquitin–ligase complex pathway. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 169-174.	7.1	28
102	The Tomato yellow leaf curl virus (TYLCV) V2 protein inhibits enzymatic activity of the host papain-like cysteine protease CYP1. Biochemical and Biophysical Research Communications, 2015, 460, 525-529.	2.1	28
103	Biolistic Approach for Transient Gene Expression Studies in Plants. Methods in Molecular Biology, 2020, 2124, 125-139.	0.9	28
104	Cell-to-cell movement of plant viruses. Trends in Microbiology, 1993, 1, 105-109.	7.7	27
105	Transient Gene Expression in Epidermal Cells of Plant Leaves by Biolistic DNA Delivery. Methods in Molecular Biology, 2013, 940, 17-26.	0.9	27
106	RNA commutes to work: regulation of plant gene expression by systemically transported RNA molecules. BioEssays, 2001, 23, 1087-1090.	2.5	23
107	Control improves with age: Intercellular transport in plant embryos and adults. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1817-1818.	7.1	22

108 Spread Throughout the Plant: Systemic Transport of Viruses. , 2007, , 85-118.

22

#	Article	IF	CITATIONS
109	Nuclear Export of African Swine Fever Virus p37 Protein Occurs through Two Distinct Pathways and Is Mediated by Three Independent Signals. Journal of Virology, 2006, 80, 1393-1404.	3.4	20
110	Extracellular VirB5 Enhances T-DNA Transfer from Agrobacterium to the Host Plant. PLoS ONE, 2011, 6, e25578.	2.5	20
111	Focus on Ubiquitin in Plant Biology. Plant Physiology, 2012, 160, 1-1.	4.8	20
112	A Plasmodesmal Glycosyltransferase-Like Protein. PLoS ONE, 2013, 8, e58025.	2.5	20
113	Characterization of VIP1 activity as a transcriptional regulator in vitro and in planta. Scientific Reports, 2013, 3, 2440.	3.3	19
114	Active function of membrane receptors for enveloped viruses. Experimental Cell Research, 1986, 166, 279-294.	2.6	18
115	The Role of the Ubiquitin-Proteasome System in <i>Agrobacterium tumefaciens</i> -Mediated Genetic Transformation of Plants. Plant Physiology, 2012, 160, 65-71.	4.8	18
116	Adaptor proteins GIR1 and GIR2. I. Interaction with the repressor GLABRA2 and regulation of root hair development. Biochemical and Biophysical Research Communications, 2017, 488, 547-553.	2.1	18
117	Plant defense pathways subverted by <i>Agrobacterium</i> for genetic transformation. Plant Signaling and Behavior, 2010, 5, 1245-1248.	2.4	17
118	The histone deubiquitinase OTLD1 targets euchromatin to regulate plant growth. Science Signaling, 2016, 9, ra125.	3.6	17
119	Adaptor proteins GIR1 and GIR2. II. Interaction with the co-repressor TOPLESS and promotion of histone deacetylation of target chromatin. Biochemical and Biophysical Research Communications, 2017, 488, 609-613.	2.1	17
120	Beyond Agrobacterium-Mediated Transformation: Horizontal Gene Transfer from Bacteria to Eukaryotes. Current Topics in Microbiology and Immunology, 2018, 418, 443-462.	1.1	17
121	Two African Swine Fever Virus Proteins Derived from a Common Precursor Exhibit Different Nucleocytoplasmic Transport Activities. Journal of Virology, 2004, 78, 9731-9739.	3.4	16
122	African swine fever virus p10 protein exhibits nuclear import capacity and accumulates in the nucleus during viral infection. Veterinary Microbiology, 2008, 130, 47-59.	1.9	16
123	Plasmodesmata-associated proteins. Plant Signaling and Behavior, 2014, 9, e27899.	2.4	16
124	The <i>Agrobacterium</i> F-Box Protein Effector VirF Destabilizes the <i>Arabidopsis</i> GLABROUS1 Enhancer/Binding Protein-Like Transcription Factor VFP4, a Transcriptional Activator of Defense Response Genes. Molecular Plant-Microbe Interactions, 2018, 31, 576-586.	2.6	16
125	Receptor-like kinase BAM1 facilitates early movement of the Tobacco mosaic virus. Communications Biology, 2021, 4, 511.	4.4	16
126	Activation of gene expression by histone deubiquitinase OTLD1. Epigenetics, 2017, 12, 584-590.	2.7	14

#	Article	IF	CITATIONS
127	The Agrobacterium DNA Transfer Complex. Critical Reviews in Plant Sciences, 1997, 16, 279-296.	5.7	14
128	Assaying Proteasomal Degradation in a Cell-free System in Plants. Journal of Visualized Experiments, 2014, , .	0.3	13
129	Interaction of Arabidopsis Trihelix-Domain Transcription Factors VFP3 and VFP5 with Agrobacterium Virulence Protein VirF. PLoS ONE, 2015, 10, e0142128.	2.5	13
130	The <i>Agrobacterium</i> VirE2 effector interacts with multiple members of the <i>Arabidopsis</i> VIP1 protein family. Molecular Plant Pathology, 2018, 19, 1172-1183.	4.2	13
131	Histone Deubiquitinase OTU1 Epigenetically Regulates DA1 and DA2, Which Control Arabidopsis Seed and Organ Size. IScience, 2020, 23, 100948.	4.1	13
132	Nucleic Acid Transport in Plant-Pathogen Interactions. , 1997, 19, 201-214.		13
133	AnArabidopsis thalianaMutant with Virus-Inducible Phenotype. Virology, 1998, 249, 119-128.	2.4	11
134	Preservation of plant cell ultrastructure during immunolocalization of virus particles. Journal of Virological Methods, 1998, 74, 223-229.	2.1	11
135	Nopaline-type Ti plasmid of Agrobacterium encodes a VirF-like functional F-box protein. Scientific Reports, 2015, 5, 16610.	3.3	11
136	Yeast-Plant Coupled Vector System for Identification of Nuclear Proteins. Plant Physiology, 2007, 145, 1264-1271.	4.8	10
137	Recent Patents on Agrobacterium-Mediated Gene and Protein Transfer,for Research and Biotechnology. Recent Patents on DNA & Gene Sequences, 2008, 2, 69-81.	0.7	10
138	Transcriptional Activation of Virulence Genes of Rhizobium etli. Journal of Bacteriology, 2017, 199, .	2.2	10
139	Coordinate activation of a target gene by KDM1C histone demethylase and OTLD1 histone deubiquitinase in Arabidopsis. Epigenetics, 2019, 14, 602-610.	2.7	10
140	Arabidopsis Co-Repressor Complexes Containing Polyamine Oxidase-Like Proteins and Plant-Specific Histone Methyltransferases. Plant Signaling and Behavior, 2007, 2, 174-177.	2.4	9
141	Agrobacterium aiming for the host chromatin. Communicative and Integrative Biology, 2009, 2, 42-45.	1.4	9
142	Agrobacterium tumefaciens-Induced Bacteraemia Does Not Lead to Reporter Gene Expression in Mouse Organs. PLoS ONE, 2008, 3, e2352.	2.5	8
143	Expression of complete metabolic pathways in transgenic plants. Biotechnology and Genetic Engineering Reviews, 2012, 28, 1-14.	6.2	8
144	Myosin-driven transport network in plants is functionally robust and distinctive. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1756-1758.	7.1	7

#	Article	IF	CITATIONS
145	Transport of protein—nucleic acid complexes within and between plant cells. Membrane Protein Transport, 1995, , 39-57.	0.2	6
146	Tobacco Mosaic Virus: Pioneering Research for a Century. Plant Cell, 1999, 11, 301.	6.6	6
147	Nuclear Import of Agrobacterium T-DNA. , 2005, , 83-99.		6
148	Pol II-directed short RNAs suppress the nuclear export of mRNA. Plant Molecular Biology, 2010, 74, 591-603.	3.9	6
149	Plant homologs of mammalian MBT-domain protein-regulated KDM1 histone lysine demethylases do not interact with plant Tudor/PWWP/MBT-domain proteins. Biochemical and Biophysical Research Communications, 2016, 470, 913-916.	2.1	6
150	A mutation in negative regulator of basal resistance WRKY17 of Arabidopsis increases susceptibility to Agrobacterium-mediated genetic transformation. F1000Research, 2013, 2, 33.	1.6	6
151	Advanced Expression Vector Systems: New Weapons for Plant Research and Biotechnology. Plant Physiology, 2007, 145, 1087-1089.	4.8	5
152	[41] Implantation of Isolated Carriers and receptors into living cells by Sendai virus envelope-mediated fusion. Methods in Enzymology, 1989, 171, 829-850.	1.0	4
153	Identification of Plasmodesmal Localization Sequences in Proteins In Planta . Journal of Visualized Experiments, 2017, , .	0.3	4
154	Rapid generation of inoculum of a plant RNA virus using overlap PCR. Virology, 2021, 553, 46-50.	2.4	4
155	Active Function of Membrane Receptors in Fusion of Enveloped Viruses with Cell Plasma Membranes. , 1988, , 413-426.		4
156	Movement and subcellular localization of a tobamovirus in <i>Arabidopsis</i> . Plant Journal, 1997, 12, 537-545.	5.7	3
157	A Cell-to-cell Macromolecular Transport Assay in Planta Utilizing Biolistic Bombardment. Journal of Visualized Experiments, 2010, , .	0.3	3
158	Protein Membrane Overlay Assay: A Protocol to Test Interaction Between Soluble and Insoluble Proteins in vitro . Journal of Visualized Experiments, 2011, , .	0.3	3
159	<i><scp>A</scp>grobacterium</i> â€ <scp>Tâ€DNA</scp> â€encoded protein <scp>A</scp> tu6002 interferes with the host auxin response. Molecular Plant Pathology, 2014, 15, 275-283.	4.2	3
160	Modulation of plant DNA damage response gene expression during Agrobacterium infection. Biochemical and Biophysical Research Communications, 2021, 554, 7-12.	2.1	3
161	Visualization and Characterization of Tobacco Mosaic Virus Movement Protein Binding to Single-Stranded Nucleic Acids. Plant Cell, 1992, 4, 397.	6.6	2
162	Phosphorylation of viral movement proteins – regulation of cell-to-cell trafficking: Response. Trends in Microbiology, 2001, 9, 8.	7.7	2

#	Article	IF	CITATIONS
163	Host Factors Involved in Genetic Transformation of Plant Cells byAgrobacterium. , 2011, , 1-29.		2
164	Pectin Methylesterase Enhances Tomato Bushy Stunt Virus P19 RNA Silencing Suppressor Effects. , 2011, , 125-134.		2
165	Agrobacterium-Plant Cell DNA Transport: Have Virulence Proteins, Will Travel. Plant Cell, 1996, 8, 1699.	6.6	1
166	Transport of DNA into the Nuclei of Xenopus Oocytes by a Modified VirE2 Protein of Agrobacterium. Plant Cell, 1996, 8, 363.	6.6	1
167	Arrest in Viral Transport as the Basis for Plant Resistance to Infection. , 2006, , 289-314.		1
168	Mammalian Cells. , 2006, 344, 435-451.		1
169	Probing Interactions Between Plant Virus Movement Proteins and Nucleic Acids. Methods in Molecular Biology, 2008, 451, 293-316.	0.9	1
170	Intellectual Property Aspects of Plant Transformation. , 2011, , 243-270.		1
171	Novel Dual Binary Vectors (pCLEAN) for Plant Transformation. , 2011, , 139-147.		1
172	Visualizing protein import into the plant cell nucleus. , 1994, , 551-566.		1
173	A mutation in negative regulator of basal resistance WRKY17 of Arabidopsis increases susceptibility to Agrobacterium-mediated transient genetic transformation. F1000Research, 0, 2, 33.	1.6	1
174	Intracellular Transport of Agrobacterium T-DNA. , 2008, , 365-394.		1
175	Arabidopsis Protocols.Jose M. Martinez-Zapater , Julio Salinas. Quarterly Review of Biology, 1998, 73, 345-345.	0.1	0
176	September 11th: A touchstone for reflections on who we are and where we are going. BioEssays, 2001, 23, 1085-1086.	2.5	0
177	Systems biology of plant–pathogen interactions. Seminars in Cell and Developmental Biology, 2009, 20, 1015-1016.	5.0	0
178	My BBRC: From learning biochemistry to editorial decisions. Biochemical and Biophysical Research Communications, 2019, 520, 672-673.	2.1	0
179	Cell-to-Cell Movement of Tobacco Mosaic Virus. Current Plant Science and Biotechnology in Agriculture, 1999, , 359-363.	0.0	0