Xiaojing Mu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8150294/publications.pdf

Version: 2024-02-01

54	1,816	24 h-index	42
papers	citations		g-index
54	54	54	1889
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Boosting Output Performance of Triboelectric Nanogenerator via Mutual Coupling Effects Enabled Photonâ€Carriers and Plasmon. Advanced Science, 2022, 9, e2103957.	11.2	16
2	Resonant Magnetometer for Ultralow Magnetic Field Detection by Integrating Magnetoelastic Membrane on Film Bulk Acoustic Resonator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 1452-1460.	3.0	5
3	Directional etching for high aspect ratio nano-trenches on hexagonal boron nitride by catalytic metal particles. 2D Materials, 2022, 9, 025015.	4.4	8
4	A high performance triboelectric nanogenerator based on ordered doping technique for human-machine interaction sensing. Nano Energy, 2022, 95, 107025.	16.0	15
5	An Energy Harvester Coupled with a Triboelectric Mechanism and Electrostatic Mechanism for Biomechanical Energy Harvesting. Nanomaterials, 2022, 12, 933.	4.1	13
6	Lossâ€induced phase transition in midâ€infrared plasmonic metamaterials for ultrasensitive vibrational spectroscopy. InformaÄnÃ-Materiály, 2022, 4, .	17.3	18
7	Infrared metamaterial for surface-enhanced infrared absorption spectroscopy: pushing the frontier of ultrasensitive on-chip sensing. International Journal of Optomechatronics, 2021, 15, 97-119.	6.6	46
8	Enhancing the Output Charge Density of Triboelectric Nanogenerator via Building Charge Blocking Layer. , $2021,$, .		0
9	An Enhanced-Differential PMUT for Ultra-Long Distance Measurement in Air. , 2021, , .		5
10	A Nonresonant Hybridized Electromagnetic-Triboelectric Nanogenerator for Irregular and Ultralow Frequency Blue Energy Harvesting. Research, 2021, 2021, 5963293.	5.7	24
11	Mid-IR Metamaterial Absorber with Polyvinylamine as a Sensitive Layer for On-Chip Sensing of Carbon Dioxide. , 2021, , .		1
12	Infrared Plasmonic Biosensor with Tetrahedral DNA Nanostructure as Carriers for Labelâ€Free and Ultrasensitive Detection of <i>miRâ€155</i> . Advanced Science, 2021, 8, e2100583.	11.2	43
13	Bionic Ultraâ€Sensitive Selfâ€Powered Electromechanical Sensor for Muscleâ€Triggered Communication Application. Advanced Science, 2021, 8, e2101020.	11.2	41
14	Theoretical and Experimental Studies on MEMS Variable Cross-Section Cantilever Beam Based Piezoelectric Vibration Energy Harvester. Micromachines, 2021, 12, 772.	2.9	8
15	Plasmonic Biosensor Augmented by a Genetic Algorithm for Ultra-Rapid, Label-Free, and Multi-Functional Detection of COVID-19. Analytical Chemistry, 2021, 93, 9437-9444.	6.5	34
16	A piezoelectric micromachined ultrasonic transducer with mechanical grooves. Journal of Micromechanics and Microengineering, 2021, 31, 085009.	2.6	4
17	Multifunctional Chemical Sensing Platform Based on Dualâ€Resonant Infrared Plasmonic Perfect Absorber for Onâ€Chip Detection of Poly(ethyl cyanoacrylate). Advanced Science, 2021, 8, e2101879.	11.2	29
18	Temperature Monitorable Kinetics Study of Human Blood Coagulation by Utilizing a Dual-Mode AlN-Based Acoustic Wave Resonator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 131-135.	3.0	7

#	Article	IF	CITATIONS
19	A chaotic pendulum triboelectric-electromagnetic hybridized nanogenerator for wave energy scavenging and self-powered wireless sensing system. Nano Energy, 2020, 69, 104440.	16.0	152
20	Tannic acid-modified silver nanoparticles for enhancing anti-biofilm activities and modulating biofilm formation. Biomaterials Science, 2020, 8, 4852-4860.	5.4	56
21	A Triboelectric Nanogenerator Exploiting the Bernoulli Effect for Scavenging Wind Energy. Cell Reports Physical Science, 2020, 1, 100207.	5.6	26
22	Metal–Organic Frameworkâ€Surfaceâ€Enhanced Infrared Absorption Platform Enables Simultaneous Onâ€Chip Sensing of Greenhouse Gases. Advanced Science, 2020, 7, 2001173.	11.2	71
23	A self-powered and self-functional tracking system based on triboelectric-electromagnetic hybridized blue energy harvesting module. Nano Energy, 2020, 72, 104684.	16.0	58
24	An aptamer-based shear horizontal surface acoustic wave biosensor with a CVD-grown single-layered graphene film for high-sensitivity detection of a label-free endotoxin. Microsystems and Nanoengineering, 2020, 6, 4.	7.0	37
25	Single-Layered Graphene/Au-Nanoparticles-Based Love Wave Biosensor for Highly Sensitive and Specific Detection of <i>Staphylococcus aureus</i> Gene Sequences. ACS Applied Materials & Samp; Interfaces, 2020, 12, 12417-12425.	8.0	21
26	Surface-Enhanced Infrared Absorption-Based Biosensor and its Application to DNA Identification. , 2020, , .		4
27	Piezoelectric PVDF Films Enhanced by Ag@SiO2 Nanoparticles for MEMS Transducer. , 2020, , .		1
28	Metamaterial Gas Sensing Platform Based on Surface-Enhanced Infrared Absorption. , 2020, , .		5
29	Simultaneous Quantification and Identification of Protein by Metamaterial Perfect Absorber. , 2020, , .		1
30	Enhancing the Output Performance of Triboelectric Nanogenerator via Gratingâ€Electrodeâ€Enabled Surface Plasmon Excitation. Advanced Energy Materials, 2019, 9, 1902725.	19.5	45
31	Study on the Influence of Ferroelectric Materials on the Output Performance of Triboelectric Nanogenerators., 2019,,.		0
32	Terahertz biosensing based on bi-layer metamaterial absorbers toward ultra-high sensitivity and simple fabrication. Applied Physics Letters, 2019, 115, .	3.3	59
33	Integrating a Microwave Resonator and a Microchannel with an Immunochromatographic Strip for Stable and Quantitative Biodetection. ACS Applied Materials & Stable and Quantitative Biodetection. ACS Applied Materials & Stable and Quantitative Biodetection.	8.0	25
34	Triboelectric Nanogenerators: Enhancing the Output Performance of Triboelectric Nanogenerator via Gratingâ€Electrodeâ€Enabled Surface Plasmon Excitation (Adv. Energy Mater. 44/2019). Advanced Energy Materials, 2019, 9, 1970177.	19.5	4
35	A high sensitive SH-SAW biosensor based 36° Y-X black LiTaO3 for label-free detection of Pseudomonas Aeruginosa. Sensors and Actuators B: Chemical, 2019, 281, 757-764.	7.8	29
36	Electric Field Stiffening Effect in <i>c</i> -Oriented Aluminum Nitride Piezoelectric Thin Films. ACS Applied Materials & Samp; Interfaces, 2018, 10, 1819-1827.	8.0	18

#	Article	IF	Citations
37	A double-helix-structured triboelectric nanogenerator enhanced with positive charge traps for self-powered temperature sensing and smart-home control systems. Nanoscale, 2018, 10, 19781-19790.	5.6	46
38	Temperature decoupled viscosity-density product measurement in liquid by utilizing a dual-mode AlN-based acoustic wave resonator. Applied Physics Letters, 2018, 113, .	3.3	6
39	Multi-Band Sensing for Dielectric Property of Chemicals Using Metamaterial Integrated Microfluidic Sensor. Scientific Reports, 2018, 8, 14801.	3.3	60
40	Dual-resonator Lamb wave strain sensor with temperature compensation and enhanced sensitivity. Applied Physics Letters, $2018,113,.$	3.3	11
41	Dual-mode resonant infrared detector based on film bulk acoustic resonator toward ultra-high sensitivity and anti-interference capability. Applied Physics Letters, 2018, 112, .	3.3	16
42	High-temperature high-sensitivity AlN-on-SOI Lamb wave resonant strain sensor. AIP Advances, 2018, 8, .	1.3	10
43	Note: Modified π-type Butterworth-Van Dyke model for dual-mode Lamb-wave resonator with precise two-port Y-parameter characterizations. Review of Scientific Instruments, 2016, 87, 106101.	1.3	6
44	A modified PiBVD model for Lamb wave resonator. , 2016, , .		0
45	Modelling of high frequency Lamb wave resonator for monolithic CMOS radar transceiver. , 2016, , .		0
46	Triboelectric liquid volume sensor for self-powered lab-on-chip applications. Nano Energy, 2016, 23, 80-88.	16.0	101
47	Flexible and transparent triboelectric nanogenerator based on high performance well-ordered porous PDMS dielectric film. Nano Research, 2016, 9, 3714-3724.	10.4	120
48	Flutter Phenomenon in Flow Driven Energy Harvester–A Unified Theoretical Model for "Stiff―and "Flexible―Materials. Scientific Reports, 2016, 6, 35180.	3.3	15
49	Diaphragm shape effect on the sensitivity of surface acoustic wave based pressure sensor for harsh environment. Applied Physics Letters, 2015, 107, .	3.3	44
50	Flowâ€Driven Triboelectric Generator for Directly Powering a Wireless Sensor Node. Advanced Materials, 2015, 27, 240-248.	21.0	167
51	Methods for improving electromechanical coupling coefficient in two dimensional electric field excited AIN Lamb wave resonators. Applied Physics Letters, 2015, 106, .	3.3	47
52	Elasto-Aerodynamics-Driven Triboelectric Nanogenerator for Scavenging Air-Flow Energy. ACS Nano, 2015, 9, 9554-9563.	14.6	165
53	Viscosity and density decoupling method using a higher order Lamb wave sensor. Journal of Micromechanics and Microengineering, 2014, 24, 075002.	2.6	30
54	Dual mode acoustic wave sensor for precise pressure reading. Applied Physics Letters, 2014, 105, 113507.	3.3	43