
Joaquim Miguel Vieira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8149995/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood, 2010, 116, 829-840.	1.4	932
2	De novo cardiomyocytes from within the activated adult heart after injury. Nature, 2011, 474, 640-644.	27.8	602
3	Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature, 2015, 522, 62-67.	27.8	387
4	Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair. Nature Communications, 2020, 11, 600.	12.8	216
5	The cardiac lymphatic system stimulates resolution of inflammation following myocardial infarction. Journal of Clinical Investigation, 2018, 128, 3402-3412.	8.2	180
6	VEGF Signaling through Neuropilin 1 Guides Commissural Axon Crossing at the Optic Chiasm. Neuron, 2011, 70, 951-965.	8.1	153
7	NRP1 acts cell autonomously in endothelium to promote tip cell function during sprouting angiogenesis. Blood, 2013, 121, 2352-2362.	1.4	142
8	Selective requirements for NRP1 ligands during neurovascular patterning. Development (Cambridge), 2007, 134, 1833-1843.	2.5	112
9	Neuropilin 1 signaling guides neural crest cells to coordinate pathway choice with cell specification. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6164-6169.	7.1	97
10	Neuropilin 1 and 2 control cranial gangliogenesis and axon guidance through neural crest cells. Development (Cambridge), 2008, 135, 1605-1613.	2.5	91
11	The embryonic mouse hindbrain as a qualitative and quantitative model for studying the molecular and cellular mechanisms of angiogenesis. Nature Protocols, 2013, 8, 418-429.	12.0	88
12	BRG1-SWI/SNF-dependent regulation of the Wt1 transcriptional landscape mediates epicardial activity during heart development and disease. Nature Communications, 2017, 8, 16034.	12.8	69
13	Expression of vascular endothelial growth factor (VEGF) and its receptors in thyroid carcinomas of follicular origin: a potential autocrine loop. European Journal of Endocrinology, 2005, 153, 701-709.	3.7	68
14	Expression and function of the chemokine receptor CCR7 in thyroid carcinomas. Journal of Endocrinology, 2006, 191, 229-238.	2.6	56
15	Tissue-resident macrophages regulate lymphatic vessel growth and patterning in the developing heart. Development (Cambridge), 2021, 148, .	2.5	55
16	The evolving cardiac lymphatic vasculature in development, repair and regeneration. Nature Reviews Cardiology, 2021, 18, 368-379.	13.7	52
17	Loss of <i>Prox1</i> in striated muscle causes slow to fast skeletal muscle fiber conversion and dilated cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9515-9520.	7.1	45
18	Characterisation of the human embryonic and foetal epicardium during heart development. Development (Cambridge), 2015, 142, 3630-6.	2.5	41

#	Article	IF	CITATIONS
19	Myocardial regeneration: expanding the repertoire of thymosin β4 in the ischemic heart. Annals of the New York Academy of Sciences, 2012, 1269, 92-101.	3.8	35
20	Epicardium-derived cells: a new source of regenerative capacity. Heart, 2011, 97, 15-19.	2.9	32
21	Epistatic Rescue of Nkx2.5 Adult Cardiac Conduction Disease Phenotypes by Prospero-Related Homeobox Protein 1 and HDAC3. Circulation Research, 2012, 111, e19-31.	4.5	32
22	Model organisms at the heart of regeneration. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	22
23	The extracellular matrix protein agrin is essential for epicardial epithelial-to-mesenchymal transition during heart development. Development (Cambridge), 2021, 148, .	2.5	16
24	Chemical genetics and its potential in cardiac stem cell therapy. British Journal of Pharmacology, 2013, 169, 318-327.	5.4	7
25	Lymphatic Clearance of Immune Cells in Cardiovascular Disease. Cells, 2021, 10, 2594.	4.1	7
26	Neuropilin 1 and 2 control cranial gangliogenesis and axon guidance through neural crest cells. Development (Cambridge), 2009, 136, 347-347.	2.5	1
27	Analysis of Placental Arteriovenous Formation Reveals New Insights Into Embryos With Congenital Heart Defects. Frontiers in Genetics, 2021, 12, 806136.	2.3	1
28	Quantitative Three-Dimensional Analysis of the Lymphatic Vasculature in the Postnatal Mouse Heart. Methods in Molecular Biology, 2022, 2441, 171-181.	0.9	0