
Heimo Breiteneder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8149631/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of vicilin, legumin and antimicrobial peptide 2a as macadamia nut allergens. Food Chemistry, 2022, 370, 131028.	8.2	13
2	lsotype-specific binding patterns of serum antibodies to multiple conformational epitopes of Bet ν 1. Journal of Allergy and Clinical Immunology, 2022, 149, 1786-1794.e12.	2.9	8
3	Basophil activation test shows high accuracy in the diagnosis of peanut and tree nut allergy: The Markers of Nut Allergy Study. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1800-1812.	5.7	37
4	COVIDâ€19 pandemic: Practical considerations on the organization of an allergy clinic—An EAACI/ARIA Position Paper. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 648-676.	5.7	79
5	Identification of Pru du 6 as a potential marker allergen for almond allergy. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1463-1472.	5.7	27
6	Expanding the allergen repertoire of salmon and catfish. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1443-1453.	5.7	46
7	Expression of chondroitin sulfate proteoglycanÂ4 (CSPG4) in melanoma cells is downregulated upon inhibition of BRAF. Oncology Reports, 2021, 45, .	2.6	8
8	Allergens and their associated small molecule ligands—their dual role in sensitization. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2367-2382.	5.7	36
9	Vaccines and allergic reactions: The past, the current COVIDâ€19 pandemic, and future perspectives. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1640-1660.	5.7	72
10	A chondroitin sulfate proteoglycan 4‑specific monoclonal antibody inhibits melanoma cell invasion in a spheroid model. International Journal of Oncology, 2021, 59, .	3.3	6
11	Newly defined allergens in the WHO/IUIS Allergen Nomenclature Database during 01/2019â€03/2021. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 3359-3373.	5.7	27
12	Fish Allergy Around the World—Precise Diagnosis to Facilitate Patient Management. Frontiers in Allergy, 2021, 2, 732178.	2.8	9
13	The Major Peanut Allergen Ara h 2 Produced in Nicotiana benthamiana Contains Hydroxyprolines and Is a Viable Alternative to the E. Coli Product in Allergy Diagnosis. Frontiers in Plant Science, 2021, 12, 723363.	3.6	6
14	Tracing Human IgE B Cell Antigen Receptor-Bearing Cells With a Monoclonal Anti-Human IgE Antibody That Specifically Recognizes Non-Receptor-Bound IgE. Frontiers in Immunology, 2021, 12, 803236.	4.8	2
15	Development of a novel Ara h 2 hypoallergen with no IgE binding or anaphylactogenic activity. Journal of Allergy and Clinical Immunology, 2020, 145, 229-238.	2.9	32
16	Legends of allergy and immunology: Clemens von Pirquet. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1276-1277.	5.7	3
17	Crossâ€reactivities of nonâ€homologous allergens. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1019-1022.	5.7	18
18	Allergen-specific IgE levels and the ability of IgE-allergen complexes to cross-link determine the extent of CD23-mediated T-cell activation. Journal of Allergy and Clinical Immunology, 2020, 145, 958-967.e5.	2.9	11

#	Article	IF	CITATIONS
19	Advances and novel developments in molecular allergology. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 3027-3038.	5.7	12
20	Biomarkers for diagnosis and prediction of therapy responses in allergic diseases and asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 3039-3068.	5.7	127
21	Increased antiviral response in circulating lymphocytes from hypogammaglobulinemia patients. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 3147-3158.	5.7	4
22	A compendium answering 150 questions on COVIDâ€19 and SARS oVâ€2. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2503-2541.	5.7	95
23	Collagen—An Important Fish Allergen for Improved Diagnosis. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 3084-3092.e10.	3.8	26
24	Fish-derived low molecular weight components modify bronchial epithelial barrier properties and release of pro-inflammatory cytokines. Molecular Immunology, 2019, 112, 140-150.	2.2	6
25	Future research trends in understanding the mechanisms underlying allergic diseases for improved patient care. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2293-2311.	5.7	76
26	Allergen databases—A critical evaluation. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2057-2060.	5.7	15
27	Evidence for a Role of TGF-β-Activated Kinase 1 and MAP3K7 Binding Protein 3 in Peanut-Specific T-Cell Responses. International Archives of Allergy and Immunology, 2019, 179, 10-16.	2.1	4
28	Legends of allergy/immunology: Dietrich Kraft. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1591-1593.	5.7	3
29	Patients Allergic to Fish Tolerate Ray Based on the Low Allergenicity of Its Parvalbumin. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 500-508.e11.	3.8	40
30	The functional biology of peanut allergens and possible links to their allergenicity. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 888-898.	5.7	24
31	Engineering of structural variants of the major peanut allergens Ara h 2 and Ara h 6 for allergen-specific immunotherapy. Journal of Allergy and Clinical Immunology, 2019, 143, 1226-1229.e10.	2.9	11
32	The <scp>WHO</scp> / <scp>IUIS</scp> Allergen Nomenclature. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 429-431.	5.7	20
33	Peanut allergy—Individual molecules as a key to precision medicine. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 216-219.	5.7	11
34	Peanut allergens. Molecular Immunology, 2018, 100, 58-70.	2.2	100
35	Mapping of conformational IgE epitopes of food allergens. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 2107-2109.	5.7	26
36	Critical and direct involvement of the CD23 stalk region in IgE binding. Journal of Allergy and Clinical Immunology, 2017, 139, 281-289.e5.	2.9	22

#	Article	IF	CITATIONS
37	Lactobacillus buchneri S-layer as carrier for an Ara h 2-derived peptide for peanut allergen-specific immunotherapy. Molecular Immunology, 2017, 85, 81-88.	2.2	21
38	Recombinant Allergens in Structural Biology, Diagnosis, and Immunotherapy. International Archives of Allergy and Immunology, 2017, 172, 187-202.	2.1	44
39	Hypoxia increases the heterogeneity of melanoma cell populations and affects the response to vemurafenib. Molecular Medicine Reports, 2016, 13, 3281-3288.	2.4	18
40	An Infrared Absorbance Sensor for the Detection of Melanoma in Skin Biopsies. Sensors, 2016, 16, 1659.	3.8	16
41	Monitoring the epitope recognition profiles of IgE, IgG 1 , and IgG 4 during birch pollen immunotherapy. Journal of Allergy and Clinical Immunology, 2016, 137, 1600-1603.e1.	2.9	24
42	Notch4 Signaling Induces a Mesenchymal–Epithelial–like Transition in Melanoma Cells to Suppress Malignant Behaviors. Cancer Research, 2016, 76, 1690-1697.	0.9	45
43	Anti-chondroitin sulfate proteoglycan 4-specific antibodies modify the effects of vemurafenib on melanoma cells differentially in normoxia and hypoxia. International Journal of Oncology, 2015, 47, 81-90.	3.3	14
44	The Major Birch Pollen Allergen Bet v 1 Induces Different Responses in Dendritic Cells of Birch Pollen Allergic and Healthy Individuals. PLoS ONE, 2015, 10, e0117904.	2.5	19
45	The diversity of Bet v 1–specific IgG 4 antibodies remains mostly constant during the course of birch pollen immunotherapy. Journal of Allergy and Clinical Immunology, 2015, 136, 1680-1682.e3.	2.9	9
46	Component-Resolved IgE Profiles in Austrian Patients with a Convincing History of Peanut Allergy. International Archives of Allergy and Immunology, 2015, 166, 13-24.	2.1	28
47	Differential T-Helper Cell Polarization after Allergen-Specific Stimulation of Autologous Dendritic Cells in Polysensitized Allergic Patients. International Archives of Allergy and Immunology, 2015, 166, 97-106.	2.1	13
48	Qualitative analysis of Xinyue Capsules (心æ,¦èƒ¶å›Š) by high-performance liquid chromatography: Preliminary evaluation of drug quality in a Sino-Austrian joint study. Chinese Journal of Integrative Medicine, 2015, 21, 772-777.	1.6	12
49	Atopic donor status does not influence the uptake of the major grass pollen allergen, Phl p 5, by dendritic cells. Journal of Immunological Methods, 2015, 424, 120-130.	1.4	2
50	A Cross-Reactive Human Single-Chain Antibody for Detection of Major Fish Allergens, Parvalbumins, and Identification of a Major IgE-Binding Epitope. PLoS ONE, 2015, 10, e0142625.	2.5	12
51	BetÂvÂ1 und Homologe: Verursacher der Baumpollenallergie und Birkenpollen-assoziierter Kreuzreaktionen. , 2015, , 15-32.		1
52	Traditional Formula, Modern Application: Chinese Medicine Formula Sini Tang Improves Early Ventricular Remodeling and Cardiac Function after Myocardial Infarction in Rats. Evidence-based Complementary and Alternative Medicine, 2014, 2014, 1-10.	1.2	19
53	Anti-Inflammatory Effects of the Chinese Herbal Formula Sini Tang in Myocardial Infarction Rats. Evidence-based Complementary and Alternative Medicine, 2014, 2014, 1-10.	1.2	22
54	Developing Therapies for Peanut Allergy. International Archives of Allergy and Immunology, 2014, 165, 179-194.	2.1	15

#	Article	IF	CITATIONS
55	Recombinant Allergen Methods. Methods, 2014, 66, 1-2.	3.8	1
56	Cross-Reactivity of Peanut Allergens. Current Allergy and Asthma Reports, 2014, 14, 426.	5.3	78
57	Advances in allergen-microarray technology for diagnosis and monitoring of allergy: The MeDALL allergen-chip. Methods, 2014, 66, 106-119.	3.8	210
58	Solution and high-pressure NMR studies of the structure, dynamics, and stability of the cross-reactive allergenic cod parvalbumin Gad m 1. Proteins: Structure, Function and Bioinformatics, 2014, 82, 3032-3042.	2.6	22
59	Chimeras of Bet v 1 and Api g 1 reveal heterogeneous IgE responses in patients with birch pollen allergy. Journal of Allergy and Clinical Immunology, 2014, 134, 188-194.	2.9	29
60	Do lipids influence the allergic sensitization process?. Journal of Allergy and Clinical Immunology, 2014, 134, 521-529.	2.9	117
61	lgE cross-reactivity between the major peanut allergen Ara h 2 and the nonhomologous allergens Ara h 1 and Ara h 3. Journal of Allergy and Clinical Immunology, 2013, 132, 118-124.e12.	2.9	85
62	Kiwifruit allergy across Europe: Clinical manifestation and IgE recognition patterns to kiwifruit allergens. Journal of Allergy and Clinical Immunology, 2013, 131, 164-171.	2.9	82
63	Biopsy analysis using a quadruple infrared sensor. , 2013, , .		1
64	Structural and bioinformatic analysis of the kiwifruit allergen Act d 11, a member of the family of ripening-related proteins. Molecular Immunology, 2013, 56, 794-803.	2.2	43
65	Pressure–Temperature Stability, Ca ²⁺ Binding, and Pressure–Temperature Phase Diagram of Cod Parvalbumin: Gad m 1. Biochemistry, 2012, 51, 5903-5911.	2.5	40
66	A label-free indicator for tumor cells based on the CH2-stretch ratio. Analyst, The, 2011, 136, 2397.	3.5	13
67	A label-free sensor system for chemotherapeutic drug screening. , 2011, , .		Ο
68	Down Regulation of Putative Defence-associated Transcripts Correlates with Ripe Rot Symptoms on Kiwifruit (Actinidia chinensis). Journal of Phytopathology, 2011, 159, no-no.	1.0	5
69	Structural and Immunologic Characterization of Ara h 1, a Major Peanut Allergen. Journal of Biological Chemistry, 2011, 286, 39318-39327.	3.4	89
70	Physicochemical properties and thermal stability of Lep w 1, the major allergen of whiff. Molecular Nutrition and Food Research, 2010, 54, 861-869.	3.3	31
71	Component-resolved diagnosis of kiwifruit allergy with purified natural and recombinant kiwifruit allergens. Journal of Allergy and Clinical Immunology, 2010, 125, 687-694.e1.	2.9	95
72	Differential T-cell responses and allergen uptake after exposure of dendritic cells to the birch pollen allergens Bet v 1.0101, Bet v 1.0401 and Bet v 1.1001. Immunobiology, 2010, 215, 903-909.	1.9	28

#	Article	IF	CITATIONS
73	Structure, Allergenicity, and Cross-Reactivity of Plant Allergens. , 2009, , 127-151.		3
74	Protein families: implications for allergen nomenclature, standardisation and specific immunotherapy. , 2009, 96, 249-54; discussion 254-6.		4
75	Effects of gastrointestinal digestion and heating on the allergenicity of the kiwi allergens Act d 1, actinidin, and Act d 2, a thaumatinâ€ike protein. Molecular Nutrition and Food Research, 2008, 52, 1130-1139.	3.3	78
76	The Bet v 1 fold: an ancient, versatile scaffold for binding of large, hydrophobic ligands. BMC Evolutionary Biology, 2008, 8, 286.	3.2	237
77	Allergens are distributed into few protein families and possess a restricted number of biochemical functions. Journal of Allergy and Clinical Immunology, 2008, 121, 847-852.e7.	2.9	429
78	Comparison of natural and recombinant forms of the major fish allergen parvalbumin from cod and carp. Molecular Nutrition and Food Research, 2008, 52 Suppl 2, S196-207.	3.3	25
79	Evolutionary biology of plant food allergens. Journal of Allergy and Clinical Immunology, 2007, 120, 518-525.	2.9	213
80	Evolutionary distance from human homologs reflects allergenicity of animal food proteins. Journal of Allergy and Clinical Immunology, 2007, 120, 1399-1405.	2.9	206
81	Structural bioinformatic approaches to understand cross-reactivity. Molecular Nutrition and Food Research, 2006, 50, 628-632.	3.3	39
82	Mutational Analysis of Amino Acid Positions Crucial for IgE-Binding Epitopes of the Major Apple <i>(Malus domestica)</i> Allergen, Mal d 1. International Archives of Allergy and Immunology, 2006, 139, 53-62.	2.1	69
83	Nonspecific lipid-transfer proteins in plant foods and pollens: an important allergen class. Current Opinion in Allergy and Clinical Immunology, 2005, 5, 275-279.	2.3	58
84	Plant food allergens—structural and functional aspects of allergenicity. Biotechnology Advances, 2005, 23, 395-399.	11.7	119
85	Crystal Structure of the Major Celery Allergen Api g 1: Molecular Analysis of Cross-reactivity. Journal of Molecular Biology, 2005, 351, 1101-1109.	4.2	75
86	Molecular properties of food allergens. Journal of Allergy and Clinical Immunology, 2005, 115, 14-23.	2.9	298
87	Structural relatedness of plant food allergens with specific reference to cross-reactive allergens: An in silico analysis. Journal of Allergy and Clinical Immunology, 2005, 115, 163-170.	2.9	245
88	Thaumatinâ€like proteins – a new family of pollen and fruit allergens. Allergy: European Journal of Allergy and Clinical Immunology, 2004, 59, 479-481.	5.7	154
89	A classification of plant food allergensâ ⁻ †. Journal of Allergy and Clinical Immunology, 2004, 113, 821-830.	2.9	485
90	lgE sensitization profiles toward green and gold kiwifruits differ among patients allergic to kiwifruit from 3 European countries. Journal of Allergy and Clinical Immunology, 2004, 114, 1169-1175.	2.9	100

#	Article	IF	CITATIONS
91	Crystal Structure of a Hypoallergenic Isoform of the Major Birch Pollen Allergen Bet v 1 and its Likely Biological Function as a Plant Steroid Carrier. Journal of Molecular Biology, 2003, 325, 123-133.	4.2	270
92	Plant-based Heterologous Expression of Mal d 2, a Thaumatin-like Protein and Allergen of Apple (Malus) Tj ETQq0 721-730.	0 0 rgBT / 4.2	Overlock 10 129
93	Crossâ€reactive Nâ€glycans of Api g 5, a high molecular weight glycoprotein allergen from celery, are required for immunoglobulin E binding and activation of effector cells from allergic patients. FASEB Journal, 2003, 17, 1697-1699.	0.5	106
94	Hev b 9, an enolase and a new crossâ€reactive allergen from <i>Hevea</i> latex and molds. FEBS Journal, 2000, 267, 7006-7014.	0.2	87
95	Allergen mimotopes for 3â€dimensional epitope search and induction of antibodies inhibiting human IgE. FASEB Journal, 2000, 14, 2177-2184.	0.5	65
96	Quantitative IgE inhibition experiments with purified recombinant allergens indicate pollen-derived allergens as the sensitizing agents responsible for many forms of plant food allergy. Journal of Allergy and Clinical Immunology, 2000, 105, 116-125.	2.9	149
97	Allergen mimotopes in food enhance type I allergic reactions in mice. FASEB Journal, 1999, 13, 1586-1592.	0.5	63
98	BRCA1-related breast cancer in Austrian breast and ovarian cancer families: SpecificBRCA1 mutations and pathological characteristics. , 1998, 77, 354-360.		81
99	A mimotope defined by phage display inhibits IgE binding to the plant panallergen profilin. European Journal of Immunology, 1998, 28, 2921-2927.	2.9	32
100	Modulation of IgE reactivity of allergens by siteâ€directed mutagenesis: potential use of hypoallergenic variants for immunotherapy. FASEB Journal, 1998, 12, 231-242.	0.5	257
101	Peptide mimotopes displayed by phage inhibit antibody binding to Bet v 1, the major birch pollen allergen, and induce specific IgG response in mice. FASEB Journal, 1998, 12, 1635-1642.	0.5	63
102	Molecular Characterization of Api g 1, the Major Allergen of Celery (<i>Apium graveolens</i>), and Its Immumological and Structural Relationships to a Group of 17â€kDa Tree Pollen Allergens. FEBS Journal, 1995, 233, 484-489.	0.2	212
103	Four Recombinant Isoforms of Cor a 1, the Major Allergen of Hazel Pollen, Show Different Reactivities with Allergen-specific T-lymphocyte Clones. FEBS Journal, 1994, 224, 717-722.	0.2	35
104	Four recombinant isoforms of <i>Cor a</i> I, the major allergen of hazel pollen, show different IgEâ€binding properties. FEBS Journal, 1993, 212, 355-362.	0.2	186
105	Food Allergens: Molecular and Immunological Characteristics. , 0, , 43-61.		4

106 Identification and Characterisation of Food Allergens. , 0, , 42-69.