Selvakumar Subbian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8149172/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Imaging tuberculosis with endogenous β-lactamase reporter enzyme fluorescence in live mice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12239-12244.	7.1	168
2	Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis. Infection, Genetics and Evolution, 2016, 45, 474-492.	2.3	165
3	Critical Determinants of Cytokine Storm and Type I Interferon Response in COVID-19 Pathogenesis. Clinical Microbiology Reviews, 2021, 34, .	13.6	141
4	Of tuberculosis and non-tuberculous mycobacterial infections – a comparative analysis of epidemiology, diagnosis and treatment. Journal of Biomedical Science, 2020, 27, 74.	7.0	123
5	Macrophage migration inhibitory factor (MIF) is a critical mediator of the innate immune response to <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2997-3006.	7.1	120
6	The Capacity of <i>Mycobacterium tuberculosis</i> To Survive Iron Starvation Might Enable It To Persist in Iron-Deprived Microenvironments of Human Granulomas. MBio, 2017, 8, .	4.1	116
7	Host-Directed Therapeutic Strategies for Tuberculosis. Frontiers in Medicine, 2017, 4, 171.	2.6	109
8	The wide utility of rabbits as models of human diseases. Experimental and Molecular Medicine, 2018, 50, 1-10.	7.7	103
9	Biphasic Dynamics of Macrophage Immunometabolism during <i>Mycobacterium tuberculosis</i> Infection. MBio, 2019, 10, .	4.1	101
10	Chronic pulmonary cavitary tuberculosis in rabbits: a failed host immune response. Open Biology, 2011, 1, 110016.	3.6	99
11	Phosphodiesterase-4 Inhibition Combined with Isoniazid Treatment of Rabbits with Pulmonary Tuberculosis Reduces Macrophage Activation and Lung Pathology. American Journal of Pathology, 2011, 179, 289-301.	3.8	83
12	Phosphodiesterase-4 Inhibition Alters Gene Expression and Improves Isoniazid – Mediated Clearance of Mycobacterium tuberculosis in Rabbit Lungs. PLoS Pathogens, 2011, 7, e1002262.	4.7	83
13	Lesion-Specific Immune Response in Granulomas of Patients with Pulmonary Tuberculosis: A Pilot Study. PLoS ONE, 2015, 10, e0132249.	2.5	83
14	Immunometabolism in Tuberculosis. Frontiers in Immunology, 2016, 7, 150.	4.8	82
15	Early innate immunity determines outcome of Mycobacterium tuberculosis pulmonary infection in rabbits. Cell Communication and Signaling, 2013, 11, 60.	6.5	81
16	Storage lipid studies in tuberculosis reveal that foam cell biogenesis is disease-specific. PLoS Pathogens, 2018, 14, e1007223.	4.7	75
17	Strain specific transcriptional response in Mycobacterium tuberculosis infected macrophages. Cell Communication and Signaling, 2012, 10, 2.	6.5	73
18	Harnessing the mTOR Pathway for Tuberculosis Treatment. Frontiers in Microbiology, 2018, 9, 70.	3.5	71

2

#	Article	IF	CITATIONS
19	Spontaneous Latency in a Rabbit Model of Pulmonary Tuberculosis. American Journal of Pathology, 2012, 181, 1711-1724.	3.8	67
20	Phosphodiesterase 4 Inhibition Reduces Innate Immunity and Improves Isoniazid Clearance of Mycobacterium tuberculosis in the Lungs of Infected Mice. PLoS ONE, 2011, 6, e17091.	2.5	67
21	Immunometabolism of Phagocytes During Mycobacterium tuberculosis Infection. Frontiers in Molecular Biosciences, 2019, 6, 105.	3.5	65
22	Adjunctive Phosphodiesterase-4 Inhibitor Therapy Improves Antibiotic Response to Pulmonary Tuberculosis in a Rabbit Model. EBioMedicine, 2016, 4, 104-114.	6.1	59
23	Protection of <i>Mycobacterium tuberculosis</i> from Reactive Oxygen Species Conferred by the <i>mel2</i> Locus Impacts Persistence and Dissemination. Infection and Immunity, 2009, 77, 2557-2567.	2.2	57
24	Corticosteroids for COVID-19 Therapy: Potential Implications on Tuberculosis. International Journal of Molecular Sciences, 2021, 22, 3773.	4.1	52
25	Host Targeted Activity of Pyrazinamide in Mycobacterium tuberculosis Infection. PLoS ONE, 2013, 8, e74082.	2.5	43
26	Dual RNA-seq of Orientia tsutsugamushi informs on host-pathogen interactions for this neglected intracellular human pathogen. Nature Communications, 2020, 11, 3363.	12.8	39
27	Identification of Two Mycobacterium marinum Loci That Affect Interactions with Macrophages. Infection and Immunity, 2004, 72, 6902-6913.	2.2	38
28	The Synergistic Effects of the Glutathione Precursor, NAC and First-Line Antibiotics in the Granulomatous Response Against Mycobacterium tuberculosis. Frontiers in Immunology, 2018, 9, 2069.	4.8	38
29	Molecular immunologic correlates of spontaneous latency in a rabbit model of pulmonary tuberculosis. Cell Communication and Signaling, 2013, 11, 16.	6.5	37
30	Construction and evaluation of luciferase reporter phages for the detection of active and non-replicating tubercle bacilli. Journal of Microbiological Methods, 2008, 73, 18-25.	1.6	35
31	Human Defensins Inhibit SARS-CoV-2 Infection by Blocking Viral Entry. Viruses, 2021, 13, 1246.	3.3	35
32	Identification of Mycobacterium marinum macrophage infection mutants. Microbial Pathogenesis, 2006, 40, 139-151.	2.9	31
33	Application of optical imaging to study of extrapulmonary spread by tuberculosis. Tuberculosis, 2009, 89, S15-S17.	1.9	31
34	Differential Culturability of Mycobacterium tuberculosis in Culture-Negative Sputum of Patients With Pulmonary Tuberculosis and in a Simulated Model of Dormancy. Frontiers in Microbiology, 2019, 10, 2381.	3.5	31
35	IFN-Îμ protects primary macrophages against HIV infection. JCI Insight, 2016, 1, e88255.	5.0	30
36	A Mycobacterium marinum mel2 Mutant Is Defective for Growth in Macrophages That Produce Reactive Oxygen and Reactive Nitrogen Species. Infection and Immunity, 2007, 75, 127-134.	2.2	29

#	Article	IF	CITATIONS
37	The Mycobacterium marinum mel2 locus displays similarity to bacterial bioluminescence systems and plays a role in defense against reactive oxygen and nitrogen species. BMC Microbiology, 2007, 7, 4.	3.3	29
38	Pharmacologic Inhibition of Host Phosphodiesterase-4 Improves Isoniazid-Mediated Clearance of Mycobacterium tuberculosis. Frontiers in Immunology, 2016, 7, 238.	4.8	29
39	Adipose Tissue Regulates Pulmonary Pathology during TB Infection. MBio, 2019, 10, .	4.1	27
40	Extrapulmonary Tuberculosis—An Update on the Diagnosis, Treatment and Drug Resistance. Journal of Respiration, 2021, 1, 141-164.	1.1	27
41	Antimycobacterial Effects of Everolimus in a Human Granuloma Model. Journal of Clinical Medicine, 2020, 9, 2043.	2.4	26
42	Cryptococcus inositol utilization modulates the host protective immune response during brain infection. Cell Communication and Signaling, 2014, 12, 51.	6.5	23
43	Etanercept Exacerbates Inflammation and Pathology in a Rabbit Model of Active Pulmonary Tuberculosis. Journal of Interferon and Cytokine Research, 2014, 34, 716-726.	1.2	22
44	Vaccination with an Attenuated Ferritin Mutant Protects Mice against Virulent <i>Mycobacterium tuberculosis</i> . Journal of Immunology Research, 2015, 2015, 1-12.	2.2	21
45	Effect of Mycobacterium tuberculosis infection on adipocyte physiology. Microbes and Infection, 2018, 20, 81-88.	1.9	21
46	Erratum for Ramasamy and Subbian, "Critical Determinants of Cytokine Storm and Type I Interferon Response in COVID-19 Pathogenesis― Clinical Microbiology Reviews, 2021, 34, e0016321.	13.6	21
47	<i>Mycobacterium tuberculosis</i> Interferes with the Response to Infection by Inducing the Host EphA2 Receptor. Journal of Infectious Diseases, 2009, 199, 1797-1806.	4.0	19
48	Detection of Mycobacterium tuberculosis in latently infected lungs by immunohistochemistry and confocal microscopy. Journal of Medical Microbiology, 2014, 63, 1432-1435.	1.8	19
49	GM-CSF Dependent Differential Control of Mycobacterium tuberculosis Infection in Human and Mouse Macrophages: Is Macrophage Source of GM-CSF Critical to Tuberculosis Immunity?. Frontiers in Immunology, 2020, 11, 1599.	4.8	17
50	SARSâ€CoVâ€2, SARSâ€CoV, and MERSâ€CoV encode circular RNAs of spliceosomeâ€independent origin. Journal Medical Virology, 2022, 94, 3203-3222.	of 5.0	17
51	Glutamine Is Required for M1-like Polarization of Macrophages in Response to Mycobacterium tuberculosis Infection. MBio, 2022, 13, .	4.1	17
52	Thalidomide and Phosphodiesterase 4 Inhibitors as Host Directed Therapeutics for Tuberculous Meningitis: Insights From the Rabbit Model. Frontiers in Cellular and Infection Microbiology, 2019, 9, 450.	3.9	16
53	Development of immune-biomarkers of pulmonary tuberculosis in a rabbit model. Tuberculosis, 2016, 101, 1-7.	1.9	14
54	An intra-cytoplasmic route for SARS-CoV-2 transmission unveiled by Helium-ion microscopy. Scientific Reports, 2022, 12, 3794.	3.3	14

#	Article	IF	CITATIONS
55	Inoculum size and traits of the infecting clinical strain define the protection level against <i>Mycobacterium tuberculosis</i> infection in a rabbit model. European Journal of Immunology, 2020, 50, 858-872.	2.9	13
56	Extent of Spine Deformity Predicts Lung Growth and Function in Rabbit Model of Early Onset Scoliosis. PLoS ONE, 2015, 10, e0136941.	2.5	13
57	Eicosanoid regulation of debris-stimulated metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
58	Aggregation state of Mycobacterium tuberculosis impacts host immunity and augments pulmonary disease pathology. Communications Biology, 2021, 4, 1256.	4.4	12
59	Comprehensive Analysis of Disease Pathology in Immunocompetent and Immunocompromised Hosts following Pulmonary SARS-CoV-2 Infection. Biomedicines, 2022, 10, 1343.	3.2	11
60	The Strange Case of BCG and COVID-19: The Verdict Is Still up in the Air. Vaccines, 2020, 8, 612.	4.4	9
61	Small Animal Models for Human Immunodeficiency Virus (HIV), Hepatitis B, and Tuberculosis: Proceedings of an NIAID Workshop. Current HIV Research, 2020, 18, 19-28.	0.5	9
62	Human mesenchymal stem cell based intracellular dormancy model of Mycobacterium tuberculosis. Microbes and Infection, 2020, 22, 423-431.	1.9	9
63	Inactivation and Elimination of SARS-CoV-2 in Biosamples Using Simple Fixatives and Ultrafiltration. Methods and Protocols, 2021, 4, 18.	2.0	9
64	Effect of Iron Supplementation on the Outcome of Non-Progressive Pulmonary Mycobacterium tuberculosis Infection. Journal of Clinical Medicine, 2019, 8, 1155.	2.4	8
65	Unmethylated CpG motif-containing genomic DNA fragment of Bacillus calmette-guerin promotes macrophage functions through TLR9-mediated activation of NF-ήB and MAPKs signaling pathways. Innate Immunity, 2020, 26, 183-203.	2.4	8
66	L-GSH Supplementation in Conjunction With Rifampicin Augments the Treatment Response to Mycobacterium tuberculosis in a Diabetic Mouse Model. Frontiers in Pharmacology, 0, 13, .	3.5	8
67	Attainment of target rifampicin concentrations in cerebrospinal fluid during treatment of tuberculous meningitis. International Journal of Infectious Diseases, 2019, 84, 15-21.	3.3	7
68	Liposomal Glutathione Helps to Mitigate Mycobacterium tuberculosis Infection in the Lungs. Antioxidants, 2022, 11, 673.	5.1	7
69	Use of Gene Dosage Effects for a Whole-Genome Screen To Identify <i>Mycobacterium marinum</i> Macrophage Infection Loci. Infection and Immunity, 2008, 76, 3100-3115.	2.2	6
70	Effects of Glutathione Diminishment on the Immune Responses against Mycobacterium tuberculosis Infection. Applied Sciences (Switzerland), 2021, 11, 8274.	2.5	6
71	Experimental Evolution of Mycobacterium tuberculosis in Human Macrophages Results in Low-Frequency Mutations Not Associated with Selective Advantage. PLoS ONE, 2016, 11, e0167989.	2.5	6
72	An Update on Tuberculosis Vaccines. Methods in Molecular Biology, 2022, 2410, 387-409.	0.9	6

Selvakumar Subbian

#	Article	IF	CITATIONS
73	Role of the inositol pyrophosphate multikinase Kcs1 in Cryptococcus inositol metabolism. Fungal Genetics and Biology, 2018, 113, 42-51.	2.1	5
74	BCG Vaccination of Infants Confers <i>Mycobacterium tuberculosis</i> Strain-Specific Immune Responses by Leukocytes. ACS Infectious Diseases, 2020, 6, 3141-3146.	3.8	5
75	The Abstruse Side of Type I Interferon Immunotherapy for COVID-19 Cases with Comorbidities. Journal of Respiration, 2021, 1, 49-59.	1.1	5
76	Immune Correlates of Non-Necrotic and Necrotic Granulomas in Pulmonary Tuberculosis: A Pilot Study. Journal of Respiration, 2021, 1, 248-259.	1.1	5
77	Ramatroban for chemoprophylaxis and treatment of COVID-19: David takes on Goliath. Expert Opinion on Therapeutic Targets, 2022, 26, 13-28.	3.4	5
78	COVID-19 and cancer: start the resolution!. Cancer and Metastasis Reviews, 2022, 41, 1-15.	5.9	5
79	In Vitro Miniaturized Tuberculosis Spheroid Model. Biomedicines, 2021, 9, 1209.	3.2	4
80	Identification and characterization of the regulatory elements of the inducible acetamidase operon from Mycobacterium smegmatis. Canadian Journal of Microbiology, 2007, 53, 599-606.	1.7	3
81	An improved protocol to establish experimental tuberculous meningitis in the rabbit. MethodsX, 2020, 7, 100832.	1.6	3
82	3D host cell and pathogen-based bioassay development for testing anti-tuberculosis (TB) drug response and modeling immunodeficiency. Biomolecular Concepts, 2021, 12, 117-128.	2.2	3
83	Everolimus-induced effector mechanism in macrophages and survivability of Erdman, CDC1551 and HN878 strains of <i>Mycobacterium tuberculosis</i> infection. Biomolecular Concepts, 2021, 12, 46-54.	2.2	3
84	Animal Models of Tuberculosis. , 2018, , 67-97.		3
85	Human Macrophages Exhibit GM-CSF Dependent Restriction of Mycobacterium tuberculosis Infection via Regulating Their Self-Survival, Differentiation and Metabolism. Frontiers in Immunology, 2022, 13, .	4.8	3
86	Granulomatous Response to Mycobacterium tuberculosis Infection. , 2018, , 41-66.		2
87	Redox Imbalance and Oxidative DNA Damage During Isoniazid Treatment of HIV-Associated Tuberculosis: A Clinical and Translational Pharmacokinetic Study. Frontiers in Pharmacology, 2020, 11, 1103.	3.5	1
88	Editorial: Host-Directed Therapies for Tuberculosis. Frontiers in Cellular and Infection Microbiology, 2021, 11, 742053.	3.9	1
89	The Rabbit Model for Assessing Host-Directed Therapies for Tuberculosis. , 2021, , 275-282.		0

6