Jan-Willem C Alffenaar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/814848/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Antimicrobial therapeutic drug monitoring in critically ill adult patients: a Position Paper#. Intensive Care Medicine, 2020, 46, 1127-1153.	8.2	504
2	Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet, The, 2018, 392, 821-834.	13.7	452
3	Clinical Relevance of the Pharmacokinetic Interactions of Azole Antifungal Drugs with Other Coadministered Agents. Clinical Infectious Diseases, 2009, 48, 1441-1458.	5.8	368
4	Active tuberculosis, sequelae and COVID-19 co-infection: first cohort of 49 cases. European Respiratory Journal, 2020, 56, 2001398.	6.7	273
5	Management of patients with multidrug-resistant/extensively drug-resistant tuberculosis in Europe: a TBNET consensus statement. European Respiratory Journal, 2014, 44, 23-63.	6.7	256
6	Effectiveness and safety of bedaquiline-containing regimens in the treatment of MDR- and XDR-TB: a multicentre study. European Respiratory Journal, 2017, 49, 1700387.	6.7	233
7	Official International Association for Therapeutic Drug Monitoring and Clinical Toxicology Guideline: Development and Validation of Dried Blood Spot–Based Methods for Therapeutic Drug Monitoring. Therapeutic Drug Monitoring, 2019, 41, 409-430.	2.0	188
8	Worldwide Effects of Coronavirus Disease Pandemic on Tuberculosis Services, January–April 2020. Emerging Infectious Diseases, 2020, 26, 2709-2712.	4.3	133
9	Bedaquiline Resistance: Its Emergence, Mechanism, and Prevention. Clinical Infectious Diseases, 2018, 66, 1625-1630.	5.8	131
10	From Therapeutic Drug Monitoring to Modelâ€Informed Precision Dosing for Antibiotics. Clinical Pharmacology and Therapeutics, 2021, 109, 928-941.	4.7	131
11	Therapeutic Drug Monitoring of Posaconazole: an Update. Current Fungal Infection Reports, 2016, 10, 51-61.	2.6	126
12	MDR/XDR-TB management of patients and contacts: Challenges facing the new decade. The 2020 clinical update by the Global Tuberculosis Network. International Journal of Infectious Diseases, 2020, 92, S15-S25.	3.3	126
13	Determination of moxifloxacin in dried blood spots using LC–MS/MS and the impact of the hematocrit and blood volume. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 1063-1070.	2.3	117
14	Risk factors of multidrug-resistant tuberculosis: A global systematic review and meta-analysis. Journal of Infection, 2018, 77, 469-478.	3.3	114
15	Voriconazole metabolism is influenced by severe inflammation: a prospective study. Journal of Antimicrobial Chemotherapy, 2017, 72, 261-267.	3.0	113
16	Surveillance of adverse events in the treatment of drug-resistant tuberculosis: first global report. European Respiratory Journal, 2019, 54, 1901522.	6.7	113
17	Fast LC-MS/MS analysis of tacrolimus, sirolimus, everolimus and cyclosporin A in dried blood spots and the influence of the hematocrit and immunosuppressant concentration on recovery. Talanta, 2013, 115, 47-54.	5.5	110
18	Pharmacokinetics of Moxifloxacin in Cerebrospinal Fluid and Plasma in Patients with Tuberculous Meningitis. Clinical Infectious Diseases, 2009, 49, 1080-1082.	5.8	91

#	Article	IF	CITATIONS
19	Method for therapeutic drug monitoring of azole antifungal drugs in human serum using LC/MS/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 39-44.	2.3	89
20	Epidemic and pandemic viral infections: impact on tuberculosis and the lung. European Respiratory Journal, 2020, 56, 2001727.	6.7	89
21	Gauging the impact of the COVID-19 pandemic on tuberculosis services: a global study. European Respiratory Journal, 2021, 58, 2101786.	6.7	86
22	Inflammation Is Associated with Voriconazole Trough Concentrations. Antimicrobial Agents and Chemotherapy, 2014, 58, 7098-7101.	3.2	81
23	Dried Blood Spots: A New Tool for Tuberculosis Treatment Optimization. Current Pharmaceutical Design, 2011, 17, 2931-2939.	1.9	72
24	Pharmacokinetics of rifampicin in adult TB patients and healthy volunteers: a systematic review and meta-analysis. Journal of Antimicrobial Chemotherapy, 2018, 73, 2305-2313.	3.0	71
25	Evaluation of moxifloxacin for the treatment of tuberculosis: 3 years of experience. European Respiratory Journal, 2011, 38, 888-894.	6.7	70
26	Population pharmacokinetics and limited sampling strategy for first-line tuberculosis drugs and moxifloxacin. International Journal of Antimicrobial Agents, 2014, 44, 229-234.	2.5	68
27	Dried Blood Spot Analysis for Therapeutic Drug Monitoring of Linezolid in Patients with Multidrug-Resistant Tuberculosis. Antimicrobial Agents and Chemotherapy, 2012, 56, 5758-5763.	3.2	67
28	Simultaneous determination of rifampicin, clarithromycin and their metabolites in dried blood spots using LC–MS/MS. Talanta, 2014, 121, 9-17.	5.5	62
29	Current status and opportunities for therapeutic drug monitoring in the treatment of tuberculosis. Expert Opinion on Drug Metabolism and Toxicology, 2016, 12, 509-521.	3.3	62
30	The Role of Fluoroquinolones in the Treatment of Tuberculosis in 2019. Drugs, 2019, 79, 161-171.	10.9	61
31	Susceptibility of Clinical Mycobacterium tuberculosis Isolates to a Potentially Less Toxic Derivate of Linezolid, PNU-100480. Antimicrobial Agents and Chemotherapy, 2011, 55, 1287-1289.	3.2	59
32	Clarithromycin increases linezolid exposure in multidrug-resistant tuberculosis patients. European Respiratory Journal, 2013, 42, 1614-1621.	6.7	59
33	What is the right blood hematocrit preparation procedure for standards and quality control samples for dried blood spot analysis?. Bioanalysis, 2015, 7, 345-351.	1.5	59
34	Incorporating therapeutic drug monitoring into the World Health Organization hierarchy of tuberculosis diagnostics. European Respiratory Journal, 2016, 47, 1867-1869.	6.7	59
35	Integrating Pharmacokinetics and Pharmacodynamics in Operational Research to End Tuberculosis. Clinical Infectious Diseases, 2020, 70, 1774-1780.	5.8	59
36	Therapeutic Drug Monitoring Can Improve Linezolid Dosing Regimens in Current Clinical Practice: A Review of Linezolid Pharmacokinetics and Pharmacodynamics. Therapeutic Drug Monitoring, 2020, 42, 83-92.	2.0	59

#	Article	IF	CITATIONS
37	Limited Sampling Strategies for Therapeutic Drug Monitoring of Linezolid in Patients With Multidrug-Resistant Tuberculosis. Therapeutic Drug Monitoring, 2010, 32, 97-101.	2.0	55
38	Evaluation of co-trimoxazole in the treatment of multidrug-resistant tuberculosis. European Respiratory Journal, 2013, 42, 504-512.	6.7	55
39	Potential antimicrobial agents for the treatment of multidrug-resistant tuberculosis. European Respiratory Journal, 2014, 43, 884-897.	6.7	55
40	New Approaches and Therapeutic Options for Mycobacterium tuberculosis in a Dormant State. Clinical Microbiology Reviews, 2018, 31, .	13.6	55
41	Management of patients with multidrug-resistant tuberculosis. International Journal of Tuberculosis and Lung Disease, 2019, 23, 645-662.	1.2	55
42	Linezolid-based Regimens for Multidrug-resistant Tuberculosis (TB): A Systematic Review to Establish or Revise the Current Recommended Dose for TB Treatment. Clinical Infectious Diseases, 2018, 67, S327-S335.	5.8	53
43	A Systematic Review on the Effect of HIV Infection on the Pharmacokinetics of First-Line Tuberculosis Drugs. Clinical Pharmacokinetics, 2019, 58, 747-766.	3.5	53
44	Interventions to improve medication adherence in tuberculosis patients: a systematic review of randomized controlled studies. Npj Primary Care Respiratory Medicine, 2020, 30, 21.	2.6	53
45	Determination of Moxifloxacin in Human Plasma, Plasma Ultrafiltrate, and Cerebrospinal Fluid by a Rapid and Simple Liquid Chromatography-Tandem Mass Spectrometry Method. Journal of Analytical Toxicology, 2010, 34, 135-141.	2.8	52
46	Drug monitoring and individual dose optimization of antimicrobial drugs: oxazolidinones. Expert Opinion on Drug Metabolism and Toxicology, 2016, 12, 533-544.	3.3	52
47	Simultaneous determination of clarithromycin, rifampicin and their main metabolites in human plasma by liquid chromatography–tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 1771-1777.	2.3	51
48	Longitudinal Analysis of the Effect of Inflammation on Voriconazole Trough Concentrations. Antimicrobial Agents and Chemotherapy, 2016, 60, 2727-2731.	3.2	51
49	Omeprazole Significantly Reduces Posaconazole Serum Trough Level. Clinical Infectious Diseases, 2009, 48, 839-839.	5.8	50
50	Comparison of the Pharmacokinetics of Two Dosage Regimens of Linezolid in Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis Patients. Clinical Pharmacokinetics, 2010, 49, 559-565.	3.5	50
51	Pharmacokinetics of Rifampin and Clarithromycin in Patients Treated for <i>Mycobacterium ulcerans</i> Infection. Antimicrobial Agents and Chemotherapy, 2010, 54, 3878-3883.	3.2	49
52	Clinical Validation of Simultaneous Analysis of Tacrolimus, Cyclosporine A, and Creatinine in Dried Blood Spots in Kidney Transplant Patients. Transplantation, 2017, 101, 1727-1733.	1.0	49
53	Linezolid tolerability in multidrug-resistant tuberculosis: a retrospective study. European Respiratory Journal, 2015, 46, 1205-1207.	6.7	47
54	Dried blood spot analysis of creatinine with LC-MS/MS in addition to immunosuppressants analysis. Analytical and Bioanalytical Chemistry, 2015, 407, 1585-1594.	3.7	46

#	Article	IF	CITATIONS
55	Dried Blood Spot Analysis Suitable for Therapeutic Drug Monitoring of Voriconazole, Fluconazole, and Posaconazole. Antimicrobial Agents and Chemotherapy, 2013, 57, 4999-5004.	3.2	45
56	End TB with precision treatment!. European Respiratory Journal, 2016, 47, 680-682.	6.7	45
57	<scp>d</scp> -Cycloserine Pharmacokinetics/Pharmacodynamics, Susceptibility, and Dosing Implications in Multidrug-resistant Tuberculosis: A Faustian Deal. Clinical Infectious Diseases, 2018, 67, S308-S316.	5.8	45
58	Alternative Sampling Devices to Collect Dried Blood Microsamples: State-of-the-Art. Therapeutic Drug Monitoring, 2021, 43, 310-321.	2.0	44
59	Bedaquiline and Delamanid Combination Treatment of 5 Patients with Pulmonary Extensively Drug-Resistant Tuberculosis. Emerging Infectious Diseases, 2017, 23, 1718-1721.	4.3	43
60	A volumetric absorptive microsampling LC–MS/MS method for five immunosuppressants and their hematocrit effects. Bioanalysis, 2019, 11, 495-508.	1.5	43
61	Reduced Chance of Hearing Loss Associated with Therapeutic Drug Monitoring of Aminoglycosides in the Treatment of Multidrug-Resistant Tuberculosis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	42
62	Dried blood spot validation of five immunosuppressants, without hematocrit correction, on two LC–MS/MS systems. Bioanalysis, 2017, 9, 553-563.	1.5	42
63	The association between the <i>NAT2</i> genetic polymorphisms and risk of DILI during antiâ€TB treatment: a systematic review and metaâ€analysis. British Journal of Clinical Pharmacology, 2018, 84, 2747-2760.	2.4	42
64	Impact of food on the pharmacokinetics of first-line anti-TB drugs in treatment-naive TB patients: a randomized cross-over trial. Journal of Antimicrobial Chemotherapy, 2016, 71, 703-710.	3.0	41
65	Low Caspofungin Exposure in Patients in Intensive Care Units. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	41
66	Surveillance of adverse events in the treatment of drug-resistant tuberculosis: A global feasibility study. International Journal of Infectious Diseases, 2019, 83, 72-76.	3.3	41
67	LC-MS/MS for Therapeutic Drug Monitoring of anti-infective drugs. TrAC - Trends in Analytical Chemistry, 2016, 84, 34-40.	11.4	40
68	Population Pharmacokinetics and Bayesian Dose Adjustment to Advance TDM of Anti-TB Drugs. Clinical Pharmacokinetics, 2021, 60, 685-710.	3.5	39
69	Pharmacokinetics of Bedaquiline in Cerebrospinal Fluid and Serum in Multidrug-Resistant Tuberculous Meningitis. Clinical Infectious Diseases, 2016, 62, civ921.	5.8	38
70	Pharmacokinetic Modeling and Optimal Sampling Strategies for Therapeutic Drug Monitoring of Rifampin in Patients with Tuberculosis. Antimicrobial Agents and Chemotherapy, 2015, 59, 4907-4913.	3.2	37
71	Systematic Review of Salivary Versus Blood Concentrations of Antituberculosis Drugs and Their Potential for Salivary Therapeutic Drug Monitoring. Therapeutic Drug Monitoring, 2018, 40, 17-37.	2.0	37
72	Therapeutic drug monitoring: how to improve drug dosage and patient safety in tuberculosis treatment. International Journal of Infectious Diseases, 2015, 32, 101-104.	3.3	36

JAN-WILLEM C ALFFENAAR

#	Article	IF	CITATIONS
73	The performance of five different dried blood spot cards for the analysis of six immunosuppressants. Bioanalysis, 2015, 7, 1225-1235.	1.5	36
74	Therapeutic Drug Monitoring in Tuberculosis: Practical Application for Physicians. Clinical Infectious Diseases, 2017, 64, 104-105.	5.8	36
75	Quantification of amikacin and kanamycin in serum using a simple and validated LC–MS/MS method. Bioanalysis, 2014, 6, 2125-2133.	1.5	35
76	Simple strategy to assess linezolid exposure in patients with multi-drug-resistant and extensively-drug-resistant tuberculosis. International Journal of Antimicrobial Agents, 2017, 49, 688-694.	2.5	35
77	Pharmacokinetic Properties of Micafungin in Critically III Patients Diagnosed with Invasive Candidiasis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	33
78	Troubleshooting carry-over of LC–MS/MS method for rifampicin, clarithromycin and metabolites in human plasma. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2013, 917-918, 1-4.	2.3	32
79	Linezolid pharmacokinetics in MDR-TB: a systematic review, meta-analysis and Monte Carlo simulation. Journal of Antimicrobial Chemotherapy, 2018, 73, 1755-1762.	3.0	32
80	Digital Health Technologies to Improve Medication Adherence and Treatment Outcomes in Patients With Tuberculosis: Systematic Review of Randomized Controlled Trials. Journal of Medical Internet Research, 2022, 24, e33062.	4.3	32
81	Clarithromycin Significantly Increases Linezolid Serum Concentrations. Antimicrobial Agents and Chemotherapy, 2010, 54, 5418-5419.	3.2	31
82	Limited-Sampling Strategies for Therapeutic Drug Monitoring of Moxifloxacin in Patients With Tuberculosis. Therapeutic Drug Monitoring, 2011, 33, 350-354.	2.0	30
83	Pharmacokinetics of ertapenem in patients with multidrug-resistant tuberculosis. European Respiratory Journal, 2016, 47, 1229-1234.	6.7	30
84	Outcomes of patients with drug-resistant-tuberculosis treated with bedaquiline-containing regimens and undergoing adjunctive surgery. Journal of Infection, 2019, 78, 35-39.	3.3	30
85	Delamanid Resistance: Update and Clinical Management. Clinical Infectious Diseases, 2020, 71, 3252-3259.	5.8	30
86	Five year results of an international proficiency testing programme for measurement of antifungal drug concentrations. Journal of Antimicrobial Chemotherapy, 2014, 69, 2988-2994.	3.0	29
87	Subtherapeutic Posaconazole Exposure and Treatment Outcome in Patients With Invasive Fungal Disease. Therapeutic Drug Monitoring, 2015, 37, 766-771.	2.0	29
88	Pharmacodynamics of Voriconazole in Children: Further Steps along the Path to True Individualized Therapy. Antimicrobial Agents and Chemotherapy, 2016, 60, 2336-2342.	3.2	29
89	Determination of Bedaquiline in Human Serum Using Liquid Chromatography-Tandem Mass Spectrometry. Antimicrobial Agents and Chemotherapy, 2015, 59, 5675-5680.	3.2	28
90	Limited sampling strategies for therapeutic drug monitoring of amikacin and kanamycin in patients with multidrug-resistant tuberculosis. International Journal of Antimicrobial Agents, 2015, 46, 332-337.	2.5	28

#	Article	IF	CITATIONS
91	Pharmacokinetic/pharmacodynamic-based optimization of levofloxacin administration in the treatment of MDR-TB. Journal of Antimicrobial Chemotherapy, 2016, 71, 2691-2703.	3.0	28
92	Insufficient Fluconazole Exposure in Pediatric Cancer Patients and the Need for Therapeutic Drug Monitoring in Critically III Children. Clinical Infectious Diseases, 2014, 59, 1527-1533.	5.8	27
93	An interlaboratory quality control programme for the measurement of tuberculosis drugs. European Respiratory Journal, 2015, 46, 268-271.	6.7	27
94	Drug Exposure and Minimum Inhibitory Concentration Predict Pulmonary Tuberculosis Treatment Response. Clinical Infectious Diseases, 2021, 73, e3520-e3528.	5.8	27
95	Therapeutic drug monitoring in patients with tuberculosis and concurrent medical problems. Expert Opinion on Drug Metabolism and Toxicology, 2021, 17, 23-39.	3.3	27
96	Barriers and strategies to successful tuberculosis treatment in a high-burden tuberculosis setting: a qualitative study from the patient's perspective. BMC Public Health, 2021, 21, 1903.	2.9	27
97	Fluoroquinolones, the Cornerstone of Treatment of Drug-Resistant Tuberculosis: A Pharmacokinetic and Pharmacodynamic Approach. Current Pharmaceutical Design, 2011, 17, 2900-2930.	1.9	26
98	Pharmacokinetic/Pharmacodynamic Background and Methods and Scientific Evidence Base for Dosing of Second-line Tuberculosis Drugs. Clinical Infectious Diseases, 2018, 67, S267-S273.	5.8	26
99	Amikacin Dosing for MDR Tuberculosis: A Systematic Review to Establish or Revise the Current Recommended Dose for Tuberculosis Treatment. Clinical Infectious Diseases, 2018, 67, S303-S307.	5.8	26
100	Evaluation of Carbapenems for Treatment of Multi- and Extensively Drug-Resistant <i>Mycobacterium tuberculosis</i> . Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	26
101	Tolerability and Pharmacokinetic Evaluation of Inhaled Dry Powder Tobramycin Free Base in Non-Cystic Fibrosis Bronchiectasis Patients. PLoS ONE, 2016, 11, e0149768.	2.5	25
102	Population Pharmacokinetic Model and Limited Sampling Strategies for Personalized Dosing of Levofloxacin in Tuberculosis Patients. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	25
103	Low but Sufficient Anidulafungin Exposure in Critically III Patients. Antimicrobial Agents and Chemotherapy, 2014, 58, 304-308.	3.2	24
104	Pharmacokinetics of Levofloxacin in Multidrug- and Extensively Drug-Resistant Tuberculosis Patients. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	24
105	Clinical application of a dried blood spot assay for sirolimus and everolimus in transplant patients. Clinical Chemistry and Laboratory Medicine, 2019, 57, 1854-1862.	2.3	24
106	Consensus guidelines for optimising antifungal drug delivery and monitoring to avoid toxicity and improve outcomes in patients with haematological malignancy and haemopoietic stem cell transplant recipients, 2021. Internal Medicine Journal, 2021, 51, 37-66.	0.8	24
107	Drug concentration in lung tissue in multidrug-resistant tuberculosis. European Respiratory Journal, 2013, 42, 1750-1752.	6.7	23
108	Clinical Validation of the Analysis of Linezolid and Clarithromycin in Oral Fluid of Patients with Multidrug-Resistant Tuberculosis. Antimicrobial Agents and Chemotherapy, 2013, 57, 3676-3680.	3.2	23

#	Article	IF	CITATIONS
109	Susceptibility Testing of Antibiotics That Degrade Faster than the Doubling Time of Slow-Growing Mycobacteria: Ertapenem Sterilizing Effect versus Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 3193-3195.	3.2	23
110	Sterilizing Effect of Ertapenem-Clavulanate in a Hollow-Fiber Model of Tuberculosis and Implications on Clinical Dosing. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	23
111	Therapeutic Drug Monitoring in Non-Tuberculosis Mycobacteria Infections. Clinical Pharmacokinetics, 2021, 60, 711-725.	3.5	23
112	Emerging therapeutic drug monitoring of antiâ€infective agents in Australian hospitals: Availability, performance and barriers to implementation. British Journal of Clinical Pharmacology, 2022, 88, 669-679.	2.4	23
113	High voriconazole trough levels in relation to hepatic function: how to adjust the dosage?. British Journal of Clinical Pharmacology, 2009, 67, 262-263.	2.4	22
114	<i>In Vitro</i> Susceptibility of Mycobacterium tuberculosis to Amikacin, Kanamycin, and Capreomycin. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	22
115	Clinical standards for the dosing and management of TB drugs. International Journal of Tuberculosis and Lung Disease, 2022, 26, 483-499.	1.2	22
116	Role of therapeutic drug monitoring in pulmonary infections: use and potential for expanded use of dried blood spot samples. Bioanalysis, 2015, 7, 481-495.	1.5	21
117	Treatment of multidrug-resistant tuberculosis using therapeutic drug monitoring: first experiences with sub-300â€mg linezolid dosages using in-house made capsules. European Respiratory Journal, 2019, 54, 1900580.	6.7	21
118	Therapeutic Drug Monitoring: The Need for Practical Guidance. Clinical Infectious Diseases, 2019, 68, 1065-1066.	5.8	21
119	Evaluation of macrolides for possible use against multidrug-resistant <i>Mycobacterium tuberculosis</i> . European Respiratory Journal, 2015, 46, 444-455.	6.7	20
120	The role of therapeutic drug monitoring in individualised drug dosage and exposure measurement in tuberculosis and HIV co-infection. European Respiratory Journal, 2015, 45, 569-571.	6.7	20
121	Pharmacokinetics of moxifloxacin and linezolid during and after pregnancy in a patient with multidrug-resistant tuberculosis. European Respiratory Journal, 2017, 49, 1601724.	6.7	20
122	Ethambutol-induced optical neuropathy: risk of overdosing in obese subjects. International Journal of Tuberculosis and Lung Disease, 2008, 12, 967-71.	1.2	20
123	Bedaquiline as part of combination therapy in adults with pulmonary multi-drug resistant tuberculosis. Expert Review of Clinical Pharmacology, 2016, 9, 1025-1037.	3.1	19
124	Individualizing management of extensively drug-resistant tuberculosis: diagnostics, treatment, and biomarkers. Expert Review of Anti-Infective Therapy, 2017, 15, 11-21.	4.4	19
125	Bioavailability of voriconazole in hospitalised patients. International Journal of Antimicrobial Agents, 2017, 49, 243-246.	2.5	19
126	Intermediate Susceptibility Dose-Dependent Breakpoints For High-Dose Rifampin, Isoniazid, and Pyrazinamide Treatment in Multidrug-Resistant Tuberculosis Programs. Clinical Infectious Diseases, 2018. 67, 1743-1749.	5.8	19

#	Article	IF	CITATIONS
127	Limited Sampling Strategies Using Linear Regression and the Bayesian Approach for Therapeutic Drug Monitoring of Moxifloxacin in Tuberculosis Patients. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	19
128	Optimal Sampling Strategies for Therapeutic Drug Monitoring of First-Line Tuberculosis Drugs in Patients with Tuberculosis. Clinical Pharmacokinetics, 2019, 58, 1445-1454.	3.5	19
129	Tuberculosis-Related Malnutrition: Public Health Implications. Journal of Infectious Diseases, 2019, 220, 340-341.	4.0	19
130	Evaluation of 10 years of parainfluenza virus, human metapneumovirus, and respiratory syncytial virus infections in lung transplant recipients. American Journal of Transplantation, 2020, 20, 3529-3537.	4.7	19
131	Therapeutic Drug Monitoring of Ganciclovir: Where Are We?. Therapeutic Drug Monitoring, 2022, 44, 138-147.	2.0	19
132	Evaluation of dried blood spot sampling for pharmacokinetic research and therapeutic drug monitoring of anti-tuberculosis drugs in children. International Journal of Antimicrobial Agents, 2018, 52, 109-113.	2.5	18
133	Global TB Network: working together to eliminate tuberculosis. Jornal Brasileiro De Pneumologia, 2018, 44, 347-349.	0.7	18
134	Drug exposure and susceptibility of second-line drugs correlate with treatment response in patients with multidrug-resistant tuberculosis: a multicentre prospective cohort study in China. European Respiratory Journal, 2022, 59, 2101925.	6.7	18
135	Optimal Practice for Vancomycin Therapeutic Drug Monitoring: Position Statement From the Anti-infectives Committee of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Therapeutic Drug Monitoring, 2022, 44, 121-132.	2.0	18
136	Delamanid-containing regimens and multidrug-resistant tuberculosis: A systematic review and meta-analysis. International Journal of Infectious Diseases, 2022, 124, S90-S103.	3.3	18
137	Acquired Drug Resistance: We Can Do More Than We Think!. Clinical Infectious Diseases, 2015, 60, 969-970.	5.8	17
138	Flucloxacillin Results in Suboptimal Plasma Voriconazole Concentrations. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	17
139	Posaconazole therapeutic drug monitoring in clinical practice and longitudinal analysis of the effect of routine laboratory measurements on posaconazole concentrations. Mycoses, 2019, 62, 698-705.	4.0	17
140	Evaluation of Saliva as a Potential Alternative Sampling Matrix for Therapeutic Drug Monitoring of Levofloxacin in Patients with Multidrug-Resistant Tuberculosis. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	17
141	Mass spectrometry for therapeutic drug monitoring of anti-tuberculosis drugs. Clinical Mass Spectrometry, 2019, 14, 34-45.	1.9	17
142	Therapeutic drug monitoring of commonly used anti-infective agents: A nationwide cross-sectional survey of Australian hospital practices. International Journal of Antimicrobial Agents, 2020, 56, 106180.	2.5	17
143	Development and validation of a simple LC-MS/MS method for simultaneous determination of moxifloxacin, levofloxacin, prothionamide, pyrazinamide and ethambutol in human plasma. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1158, 122397.	2.3	17
144	Safety and tolerability of clarithromycin in the treatment of multidrug-resistant tuberculosis. European Respiratory Journal, 2017, 49, 1601612.	6.7	16

#	Article	IF	CITATIONS
145	The effect of inflammation on voriconazole trough concentrations in children. British Journal of Clinical Pharmacology, 2017, 83, 678-680.	2.4	16
146	Invasive Candidiasis in the Elderly: Considerations for Drug Therapy. Drugs and Aging, 2018, 35, 781-789.	2.7	16
147	A mobile microvolume UV/visible light spectrophotometer for the measurement of levofloxacin in saliva. Journal of Antimicrobial Chemotherapy, 2021, 76, 423-429.	3.0	16
148	Pharmacokinetics and safety/tolerability of isoniazid, rifampicin and pyrazinamide in children and adolescents treated for tuberculous meningitis. Archives of Disease in Childhood, 2022, 107, 70-77.	1.9	16
149	Quantification of isoniazid, pyrazinamide and ethambutol in serum using liquid chromatography-tandem mass spectrometry. Journal of Applied Bioanalysis, 2015, 1, 89-98.	0.2	16
150	Caspofungin Weight-Based Dosing Supported by a Population Pharmacokinetic Model in Critically III Patients. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	15
151	Coronavirus Disease-19: An Interim Evidence Synthesis of the World Association for Infectious Diseases and Immunological Disorders (Waidid). Frontiers in Medicine, 2020, 7, 572485.	2.6	15
152	Optimization of Fluconazole Dosing for the Prevention and Treatment of Invasive Candidiasis Based on the Pharmacokinetics of Fluconazole in Critically III Patients. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	15
153	Plasma concentrations of caspofungin at two different dosage regimens in a patient with hepatic dysfunction. Transplant Infectious Disease, 2012, 14, 440-443.	1.7	14
154	Trimethoprim/sulfamethoxazole susceptibility of Mycobacterium tuberculosis. International Journal of Antimicrobial Agents, 2013, 42, 472-474.	2.5	14
155	Simultaneous Quantification of Anidulafungin and Caspofungin in Plasma by an Accurate and Simple Liquid Chromatography Tandem Mass-Spectrometric Method. Therapeutic Drug Monitoring, 2013, 35, 778-784.	2.0	14
156	Quantification and Validation of Ertapenem Using a Liquid Chromatography-Tandem Mass Spectrometry Method. Antimicrobial Agents and Chemotherapy, 2014, 58, 3481-3484.	3.2	14
157	In vitro synergy between linezolid and clarithromycin against Mycobacterium tuberculosis. European Respiratory Journal, 2014, 44, 808-811.	6.7	14
158	Therapeutic drug monitoring to prevent acquired drug resistance of fluoroquinolones in the treatment of tuberculosis. European Respiratory Journal, 2017, 49, 1700173.	6.7	14
159	Performance of a web-based application measuring spot quality in dried blood spot sampling. Clinical Chemistry and Laboratory Medicine, 2019, 57, 1846-1853.	2.3	14
160	Predictors for treatment outcomes among patients with drug-susceptible tuberculosis in the Netherlands: a retrospective cohort study. Clinical Microbiology and Infection, 2019, 25, 761.e1-761.e7.	6.0	14
161	Combined Impact of Inflammation and Pharmacogenomic Variants on Voriconazole Trough Concentrations: A Meta-Analysis of Individual Data. Journal of Clinical Medicine, 2021, 10, 2089.	2.4	14
162	Therapeutic Drug Monitoring of the Echinocandin Antifungal Agents: Is There a Role in Clinical Practice? A Position Statement of the Anti-Infective Drugs Committee of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Therapeutic Drug Monitoring, 2022, 44, 198-214.	2.0	14

#	Article	IF	CITATIONS
163	Respiratory Syncytial Virus, Human Metapneumovirus, and Parainfluenza Virus Infections in Lung Transplant Recipients: A Systematic Review of Outcomes and Treatment Strategies. Clinical Infectious Diseases, 2022, 74, 2252-2260.	5.8	14
164	Dried Blood Spot Analysis Combined With Limited Sampling Models Can Advance Therapeutic Drug Monitoring of Tuberculosis Drugs. Journal of Infectious Diseases, 2012, 205, 1765-1766.	4.0	13
165	The relation of the number of hydrogen-bond acceptors with recoveries of immunosuppressants in DBS analysis. Bioanalysis, 2015, 7, 1717-1722.	1.5	13
166	Quality Assessment of Dried Blood Spots from Patients With Tuberculosis from 4 Countries. Therapeutic Drug Monitoring, 2019, 41, 714-718.	2.0	13
167	Levofloxacin pharmacokinetics, pharmacodynamics and outcome in multidrug-resistant tuberculosis patients. European Respiratory Journal, 2019, 53, 1802107.	6.7	13
168	Precision and personalized medicine and anti-TB treatment: Is TDM feasible for programmatic use?. International Journal of Infectious Diseases, 2020, 92, S5-S9.	3.3	13
169	Drug exposure of firstâ€line antiâ€tuberculosis drugs in China: A prospective pharmacological cohort study. British Journal of Clinical Pharmacology, 2021, 87, 1347-1358.	2.4	13
170	Levofloxacin pharmacokinetics in saliva as measured by a mobile microvolume UV spectrophotometer among people treated for rifampicin-resistant TB in Tanzania. Journal of Antimicrobial Chemotherapy, 2021, 76, 1547-1552.	3.0	13
171	Predictive Performance of Bayesian Vancomycin Monitoring in the Critically III*. Critical Care Medicine, 2021, 49, e952-e960.	0.9	13
172	Assessment of cefepime toxicodynamics: comprehensive examination of pharmacokinetic/pharmacodynamic targets for cefepime-induced neurotoxicity and evaluation of current dosing guidelines. International Journal of Antimicrobial Agents, 2021, 58, 106443.	2.5	13
173	Alternative Sampling Strategies for Therapeutic Drug Monitoring. , 2016, , 279-336.		12
174	Is there still room for therapeutic drug monitoring of linezolid in patients with tuberculosis?. European Respiratory Journal, 2016, 47, 1288-1290.	6.7	12
175	Pharmacokinetic Evaluation of Sulfamethoxazole at 800 Milligrams Once Daily in the Treatment of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 3942-3947.	3.2	12
176	Emerging drugs and alternative possibilities in the treatment of tuberculosis. Expert Opinion on Emerging Drugs, 2016, 21, 103-116.	2.4	12
177	Target attainment with continuous dosing of piperacillin/tazobactam in critical illness: a prospective observational study. International Journal of Antimicrobial Agents, 2017, 50, 68-73.	2.5	12
178	Membrane Filtration Is Suitable for Reliable Elimination of Mycobacterium tuberculosis from Saliva for Therapeutic Drug Monitoring. Journal of Clinical Microbiology, 2017, 55, 3292-3293.	3.9	12
179	Diabetes mellitus comorbidity in patients enrolled in tuberculosis drug efficacy trials around the world: A systematic review. British Journal of Clinical Pharmacology, 2019, 85, 1407-1417.	2.4	12
180	Antituberculosis Drug-induced Liver Injury in Children. Pediatric Infectious Disease Journal, 2019, 38, 50-53.	2.0	12

#	Article	IF	CITATIONS
181	Pharmacokinetic Modeling, Simulation, and Development of a Limited Sampling Strategy of Cycloserine in Patients with Multidrug-/Extensively Drug-Resistant Tuberculosis. Clinical Pharmacokinetics, 2020, 59, 899-910.	3.5	12
182	Therapeutic drug monitoring using saliva as matrix: an opportunity for linezolid, but challenge for moxifloxacin. European Respiratory Journal, 2020, 55, 1901903.	6.7	12
183	Cefdinir and β-Lactamase Inhibitor Independent Efficacy Against Mycobacterium tuberculosis. Frontiers in Pharmacology, 2021, 12, 677005.	3.5	12
184	Polymorphisms of NAT2, CYP2E1, GST, and HLA related to drug-induced liver injury in indonesian tuberculosis patients. International Journal of Mycobacteriology, 2018, 7, 380.	0.6	12
185	Intravenous Voriconazole after Toxic Oral Administration. Antimicrobial Agents and Chemotherapy, 2010, 54, 2741-2742.	3.2	11
186	Immunoassay Analysis of Kanamycin in Serum Using the Tobramycin Kit. Antimicrobial Agents and Chemotherapy, 2016, 60, 4646-4651.	3.2	11
187	Individualized treatment of multidrug-resistant tuberculosis using therapeutic drug monitoring. International Journal of Mycobacteriology, 2016, 5, S44-S45.	0.6	11
188	Pound foolish and penny wise—when will dosing of rifampicin be optimised?. Lancet Respiratory Medicine,the, 2018, 6, e11-e12.	10.7	11
189	Nationwide analysis of treatment outcomes in children and adolescents routinely treated for tuberculosis in the Netherlands. European Respiratory Journal, 2019, 54, 1901402.	6.7	11
190	Should we worry about bedaquiline exposure in the treatment of multidrug-resistant and extensively drug-resistant tuberculosis?. European Respiratory Journal, 2020, 55, 1901908.	6.7	11
191	Saliva for Precision Dosing of Antifungal Drugs: Saliva Population PK Model for Voriconazole Based on a Systematic Review Frontiers in Pharmacology, 2020, 11, 894.	3.5	11
192	Practices of therapeutic drug monitoring in tuberculosis: an international survey. European Respiratory Journal, 2022, 59, 2102787.	6.7	11
193	Pharmacogenomic testing: perception of clinical utility, enablers and barriers to adoption in Australian hospitals. Internal Medicine Journal, 2022, 52, 1135-1143.	0.8	11
194	Clinical Validation of the Analysis of Fluconazole in Oral Fluid in Hospitalized Children. Antimicrobial Agents and Chemotherapy, 2014, 58, 6742-6746.	3.2	10
195	Limited-Sampling Strategies for Anidulafungin in Critically Ill Patients. Antimicrobial Agents and Chemotherapy, 2015, 59, 1177-1181.	3.2	10
196	Pharmacokinetic Modeling and Limited Sampling Strategies Based on Healthy Volunteers for Monitoring of Ertapenem in Patients with Multidrug-Resistant Tuberculosis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	10
197	In vitro evaluation of an intravenous microdialysis catheter for therapeutic drug monitoring of gentamicin and vancomycin. Pharmacology Research and Perspectives, 2019, 7, e00483.	2.4	10
198	Role of Therapeutic Drug Monitoring in Treatment Optimization in Tuberculosis and Diabetes Mellitus Comorbidity. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	10

#	Article	IF	CITATIONS
199	Challenging the management of drug-resistant tuberculosis. Lancet, The, 2020, 395, 783.	13.7	10
200	Saliva-based linezolid monitoring on a mobile UV spectrophotometer. Journal of Antimicrobial Chemotherapy, 2021, 76, 1786-1792.	3.0	10
201	A snapshot of exhaled nitric oxide and asthma characteristics: experience from high to low income countries. Pulmonology, 2022, 28, 44-58.	2.1	10
202	Country-specific lockdown measures in response to the COVID-19 pandemic and its impact on tuberculosis control: a global study. Jornal Brasileiro De Pneumologia, 2022, 48, e20220087.	0.7	10
203	Shorter treatment for multidrug-resistant tuberculosis: the good, the bad and the ugly. European Respiratory Journal, 2016, 48, 1800-1802.	6.7	9
204	Multidrug-resistant tuberculosis: pharmacokinetic and pharmacodynamic science. Lancet Infectious Diseases, The, 2017, 17, 898.	9.1	9
205	Lack of penetration of amikacin into saliva of tuberculosis patients. European Respiratory Journal, 2018, 51, 1702024.	6.7	9
206	Simple and robust LC–MS/MS analysis method for therapeutic drug monitoring of micafungin. Bioanalysis, 2018, 10, 877-886.	1.5	9
207	Posaconazole trough concentrations are not influenced by inflammation: A prospective study. International Journal of Antimicrobial Agents, 2019, 53, 325-329.	2.5	9
208	Suboptimal moxifloxacin and levofloxacin drug exposure during treatment of patients with multidrug-resistant tuberculosis: results from a prospective study in China. European Respiratory Journal, 2021, 57, 2003463.	6.7	9
209	Determination of levofloxacin in human serum using liquid chromatography tandem mass spectrometry. Journal of Applied Bioanalysis, 2018, 4, 16-25.	0.2	9
210	Dosage of isoniazid and rifampicin poorly predicts drug exposure in tuberculosis patients. European Respiratory Journal, 2016, 48, 1237-1239.	6.7	8
211	Comment on: Utility of voriconazole therapeutic drug monitoring: a meta-analysis: TableÂ1 Journal of Antimicrobial Chemotherapy, 2016, 71, 3316-3317.	3.0	8
212	Dried blood spots can help decrease the burden on patients dually infected with multidrug-resistant tuberculosis and HIV. European Respiratory Journal, 2016, 48, 932-934.	6.7	8
213	Pharmacokinetics of 2,000 Milligram Ertapenem in Tuberculosis Patients. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	8
214	Assessment of the Additional Value of Verapamil to a Moxifloxacin and Linezolid Combination Regimen in a Murine Tuberculosis Model. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	8
215	Dose optimisation of first-line tuberculosis drugs using therapeutic drug monitoring in saliva: feasible for rifampicin, not for isoniazid. European Respiratory Journal, 2020, 56, 2000803.	6.7	8
216	Evaluation of target attainment of oral posaconazole suspension in immunocompromised children. Journal of Antimicrobial Chemotherapy, 2020, 75, 726-729.	3.0	8

#	Article	IF	CITATIONS
217	Protocol for establishing an Adaptive Diseases control Expert Programme in Tanzania (ADEPT) for integrating care of communicable and non-communicable diseases using tuberculosis and diabetes as a case study. BMJ Open, 2021, 11, e041521.	1.9	8
218	Therapeutic Drug Monitoring of Anti-infective Drugs: Implementation Strategies for 3 Different Scenarios. Therapeutic Drug Monitoring, 2022, 44, 3-10.	2.0	8
219	Adequate Design of Pharmacokinetic-Pharmacodynamic Studies Will Help Optimize Tuberculosis Treatment for the Future. Antimicrobial Agents and Chemotherapy, 2015, 59, 2474-2474.	3.2	7
220	Statin Adjunctive Therapy for Tuberculosis Treatment. Antimicrobial Agents and Chemotherapy, 2016, 60, 7004-7004.	3.2	7
221	Cross border, highly individualised treatment of a patient with challenging extensively drug-resistant tuberculosis. European Respiratory Journal, 2018, 51, 1702490.	6.7	7
222	Plasma concentrations of second-line antituberculosis drugs in relation to minimum inhibitory concentrations in multidrug-resistant tuberculosis patients in China: a study protocol of a prospective observational cohort study. BMJ Open, 2018, 8, e023899.	1.9	7
223	Improving antibacterial prescribing safety in the management of COPD exacerbations: systematic review of observational and clinical studies on potential drug interactions associated with frequently prescribed antibacterials among COPD patients. Journal of Antimicrobial Chemotherapy, 2019, 74, 2848-2864.	3.0	7
224	Reduced moxifloxacin exposure in patients with tuberculosis and diabetes. European Respiratory Journal, 2019, 54, 1900373.	6.7	7
225	Mycobacterium tuberculosis sterilizing activity of faropenem, pyrazinamide and linezolid combination and failure to shorten the therapy duration. International Journal of Infectious Diseases, 2021, 104, 680-684.	3.3	7
226	Barriers to Optimal Tuberculosis Treatment Services at Community Health Centers: A Qualitative Study From a High Prevalent Tuberculosis Country. Frontiers in Pharmacology, 2022, 13, 857783.	3.5	7
227	Predictors of Prolonged TB Treatment in a Dutch Outpatient Setting. PLoS ONE, 2016, 11, e0166030.	2.5	6
228	Commemorating World TB Day 2020: "IT'S TIME―— It's time to End the Global TB Epidemic. Interna Journal of Infectious Diseases, 2020, 92, S1-S4.	ational	6
229	Therapeutic drug monitoring practice in patients with active tuberculosis: assessment of opportunities. European Respiratory Journal, 2021, 57, 2002349.	6.7	6
230	Standard ganciclovir dosing results in slow decline of cytomegalovirus viral loads. Journal of Antimicrobial Chemotherapy, 2022, 77, 466-473.	3.0	6
231	Clinical standards for drug-susceptible pulmonary TB. International Journal of Tuberculosis and Lung Disease, 2022, 26, 592-604.	1.2	6
232	Breakpoints and Drug Exposure Are Inevitably Closely Linked. Antimicrobial Agents and Chemotherapy, 2015, 59, 1384-1384.	3.2	5
233	Fixed-dose combination and therapeutic drug monitoring in tuberculosis: friend or foe?. European Respiratory Journal, 2016, 48, 1230-1233.	6.7	5
234	Food intake and darunavir plasma concentrations in people living with HIV in an outpatient setting. British Journal of Clinical Pharmacology, 2017, 83, 2325-2329.	2.4	5

#	Article	IF	CITATIONS
235	Continuous versus intermittent infusion of cefotaxime in critically ill patients: a randomized controlled trial comparing plasma concentrations. Journal of Antimicrobial Chemotherapy, 2019, 75, 441-448.	3.0	5
236	Darunavir Population Pharmacokinetic Model Based on HIV Outpatient Data. Therapeutic Drug Monitoring, 2019, 41, 59-65.	2.0	5
237	Nontuberculosis mycobacteria infections: would there be pharmacodynamics without pharmacokinetics?. European Respiratory Journal, 2019, 54, 1901508.	6.7	5
238	Treatment outcomes of patients with MDR-TB in Nepal on a current programmatic standardised regimen: retrospective single-centre study. BMJ Open Respiratory Research, 2020, 7, e000606.	3.0	5
239	A Model-Informed Method for the Purpose of Precision Dosing of Isoniazid in Pulmonary Tuberculosis. Clinical Pharmacokinetics, 2021, 60, 943-953.	3.5	5
240	Patients and Medical Staff Attitudes Toward the Future Inclusion of eHealth in Tuberculosis Management: Perspectives From Six Countries Evaluated using a Qualitative Framework. JMIR MHealth and UHealth, 2020, 8, e18156.	3.7	5
241	Dosing of vancomycin and target attainment in neonates: a systematic review. International Journal of Antimicrobial Agents, 2022, 59, 106515.	2.5	5
242	Population Pharmacokinetic Modelling and Limited Sampling Strategies for Therapeutic Drug Monitoring of Pyrazinamide in Patients with Tuberculosis. Antimicrobial Agents and Chemotherapy, 2022, 66, .	3.2	5
243	Risk factors contributing to a low darunavir plasma concentration. British Journal of Clinical Pharmacology, 2018, 84, 456-461.	2.4	4
244	Making optimal use of available anti-tuberculosis drugs: first steps to investigate terizidone. International Journal of Tuberculosis and Lung Disease, 2018, 22, 2-2.	1.2	4
245	Acquired Drug Resistance: Recognizing the Potential of Repurposed Drugs. Clinical Infectious Diseases, 2019, 69, 2038-2039.	5.8	4
246	Respiratory Syncytial Virus Infection Morbidity in the Elderly: Time for Repurposing of Ribavirin?. Clinical Infectious Diseases, 2020, 70, 2238-2239.	5.8	4
247	Prospective evaluation of improving fluoroquinolone exposure using centralised therapeutic drug monitoring (TDM) in patients with tuberculosis (PERFECT): a study protocol of a prospective multicentre cohort study. BMJ Open, 2020, 10, e035350.	1.9	4
248	Clinical Relevance of Rifampicinâ€Moxifloxacin Interaction in Isoniazid-Resistant/Intolerant Tuberculosis Patients. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0182921.	3.2	4
249	Malnutrition assessment methods in adult patients with tuberculosis: a systematic review. BMJ Open, 2021, 11, e049777.	1.9	4
250	Precision Therapy for Invasive Fungal Diseases. Journal of Fungi (Basel, Switzerland), 2022, 8, 18.	3.5	4
251	Raltegravir and rifampicin in patients with HIV and tuberculosis. Lancet Infectious Diseases, The, 2014, 14, 1046-1047.	9.1	3
252	Quantification of co-trimoxazole in serum and plasma using MS/MS. Bioanalysis, 2015, 7, 2741-2749.	1.5	3

#	Article	IF	CITATIONS
253	Therapeutic drug monitoring of first-line anti-tuberculosis drugs comprises more than C _{2h} measurements. International Journal of Tuberculosis and Lung Disease, 2016, 20, 1695-1696.	1.2	3
254	Population pharmacokinetics of ribavirin in lung transplant recipients and examination of current and alternative dosing regimens. Journal of Antimicrobial Chemotherapy, 2019, 74, 691-698.	3.0	3
255	Towards elimination of childhood and adolescent tuberculosis in the Netherlands: an epidemiological time-series analysis of national surveillance data. European Respiratory Journal, 2020, 56, 2001086.	6.7	3
256	Influence of age on real-life effects of doxycycline for acute exacerbations among COPD outpatients: a population-based cohort study. BMJ Open Respiratory Research, 2020, 7, e000535.	3.0	3
257	An Audit to Evaluate Vancomycin Therapeutic Drug Monitoring in a Neonatal Intensive Care Unit. Therapeutic Drug Monitoring, 2022, 44, 651-658.	2.0	3
258	Sertraline for HIV-associated cryptococcal meningitis. Lancet Infectious Diseases, The, 2016, 16, 1111.	9.1	2
259	Optimal Dose or Optimal Exposure? Consideration for Linezolid in Tuberculosis Treatment. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	2
260	Exploring failure of antimicrobial prophylaxis and pre-emptive therapy for transplant recipients: a systematic review. BMJ Open, 2020, 10, e034940.	1.9	2
261	Cross-validation of Liquid Chromatography-Tandem Mass Spectrometry Method for Quantification of Levofloxacin in Saliva. Journal of Applied Bioanalysis, 2020, 6, 68-70.	0.2	2
262	Safety and pharmacokinetics-pharmacodynamics of a shorter tuberculosis treatment with high-dose pyrazinamide and rifampicin: a study protocol of a phase II clinical trial (HighShort-RP). BMJ Open, 2022, 12, e054788.	1.9	2
263	A simple HPLC-UV Method for Therapeutic Drug Monitoring of Linezolid in human Plasma in low-resourced settings. Journal of Applied Bioanalysis, 2021, 7, e21008-e21008.	0.2	2
264	Treatment of Mycobacterium avium–intracellulare complex: a great leap forward. Journal of Antimicrobial Chemotherapy, 2017, 72, i1-i2.	3.0	1
265	Renal Fanconi syndrome with meropenem-containing regimen in drug-resistant tuberculosis. European Respiratory Journal, 2018, 51, 1702187.	6.7	1
266	Antifungal PK/PD in the Critically III. , 2018, , 213-238.		1
267	Repurposed Oral Ribavirin for Respiratory Virus Infections Requires Pharmacokinetic-pharmacodynamic Dose Optimization. Clinical Infectious Diseases, 2019, 70, 1258.	5.8	1
268	Comment on: The potential use of rifabutin for treatment of patients diagnosed with rifampicin-resistant tuberculosis. Journal of Antimicrobial Chemotherapy, 2019, 74, 834-834.	3.0	1
269	Measuring anti-TB drug concentrations in hair: unlocking the door to cumulative drug exposure and treatment outcome. International Journal of Tuberculosis and Lung Disease, 2021, 25, 3-5.	1.2	1
270	Reply to Van Daele et al., "Fluconazole Underexposure in Critically III Patients: a Matter of Using the Right Targets?― Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	1

#	Article	IF	CITATIONS
271	Does Chemotherapy-Induced Gastrointestinal Mucositis Affect the Bioavailability and Efficacy of Anti-Infective Drugs?. Biomedicines, 2021, 9, 1389.	3.2	1
272	Monitoring during and after tuberculosis treatment. , 0, , 308-325.		1
273	The Never Ending Struggle Against Development of Drug Resistance. Clinical Infectious Diseases, 2015, 61, 137-138.	5.8	0
274	Reply to Verhaeghe et al: Table 1 Clinical Infectious Diseases, 2016, 63, 146-147.	5.8	0
275	Cost-utility analysis of high-dose treatment for intermediate-susceptible, dose-dependent tuberculosis patients. International Journal of Tuberculosis and Lung Disease, 2018, 22, 991-999.	1.2	0
276	1538. Who Will Benefit From Therapeutic Drug Monitoring of Ganciclovir?. Open Forum Infectious Diseases, 2019, 6, S560-S561.	0.9	0
277	Regimen design and pharmacokinetic–pharmacodynamic science: lessons learned. Lancet Infectious Diseases, The, 2019, 19, 3-4.	9.1	0
278	Intermittent regimens for tuberculosis treatment: Back to the Future?. European Respiratory Journal, 2020, 56, 2002510.	6.7	0
279	Investigator-Initiated Studies in Infectious Diseases—Considerations for Pharmacokinetic-Pharmacodynamic Optimization. Clinical Infectious Diseases, 2021, 73, 1742.	5.8	0
280	Paediatric Acute Respiratory DistressÂSyndrome Neuromuscular Blockade study (PAN-study): a phase IV randomised controlled trial of early neuromuscular blockade in moderate-to-severe paediatric acute respiratory distress syndrome. Trials, 2022, 23, 96.	1.6	0
281	Real-World Effects of Antibiotic Treatment on Acute COPD Exacerbations in Outpatients: A Cohort Study under the Pharm lines Initiative, Respiration, 2022, 101, 553-564	2.6	0