Atul Rangadurai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8147916/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Measuring thermodynamic preferences to form non-native conformations in nucleic acids using ultraviolet melting. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	8
2	Probing the Hydrogen-Bonding Environment of Individual Bases in DNA Duplexes with Isotope-Edited Infrared Spectroscopy. Journal of Physical Chemistry B, 2021, 125, 7613-7627.	2.6	9
3	A quantitative model predicts how m6A reshapes the kinetic landscape of nucleic acid hybridization and conformational transitions. Nature Communications, 2021, 12, 5201.	12.8	18
4	Rapid assessment of Watson–Crick to Hoogsteen exchange in unlabeled DNA duplexes using high-power SELOPE imino ¹ H CEST. Magnetic Resonance, 2021, 2, 715-731.	1.9	9
5	Developments in solution-state NMR yield broader and deeper views of the dynamic ensembles of nucleic acids. Current Opinion in Structural Biology, 2021, 70, 16-25.	5.7	42
6	Revealing A-T and G-C Hoogsteen base pairs in stressed protein-bound duplex DNA. Nucleic Acids Research, 2021, 49, 12540-12555.	14.5	10
7	DNA mismatches reveal conformational penalties in protein–DNA recognition. Nature, 2020, 587, 291-296.	27.8	74
8	Rapid and accurate determination of atomistic RNA dynamic ensemble models using NMR and structure prediction. Nature Communications, 2020, 11, 5531.	12.8	52
9	2′- <i>O</i> -Methylation can increase the abundance and lifetime of alternative RNA conformational states. Nucleic Acids Research, 2020, 48, 12365-12379.	14.5	59
10	Probing conformational transitions towards mutagenic Watson–Crick-like G·T mismatches using off-resonance sugar carbon R1ϕrelaxation dispersion. Journal of Biomolecular NMR, 2020, 74, 457-471.	2.8	15
11	Extending the Sensitivity of CEST NMR Spectroscopy to Microâ€ŧoâ€Millisecond Dynamics in Nucleic Acids Using Highâ€Power Radioâ€Frequency Fields. Angewandte Chemie, 2020, 132, 11358-11362.	2.0	1
12	Environmental Effects on Guanine-Thymine Mispair Tautomerization Explored with Quantum Mechanical/Molecular Mechanical Free Energy Simulations. Journal of the American Chemical Society, 2020, 142, 11183-11191.	13.7	20
13	Extending the Sensitivity of CEST NMR Spectroscopy to Microâ€toâ€Millisecond Dynamics in Nucleic Acids Using Highâ€Power Radioâ€Frequency Fields. Angewandte Chemie - International Edition, 2020, 59, 11262-11266.	13.8	20
14	Hoogsteen base pairs increase the susceptibility of double-stranded DNA to cytotoxic damage. Journal of Biological Chemistry, 2020, 295, 15933-15947.	3.4	20
15	Direct evidence for (G)O6···H2-N4(C)+ hydrogen bonding in transient G(syn)-C+ and G(syn)-m5C+ Hoogsteen base pairs in duplex DNA from cytosine amino nitrogen off-resonance R1ï•relaxation dispersion measurements. Journal of Magnetic Resonance, 2019, 308, 106589.	2.1	11
16	Characterizing micro-to-millisecond chemical exchange in nucleic acids using off-resonance R1Ï• relaxation dispersion. Progress in Nuclear Magnetic Resonance Spectroscopy, 2019, 112-113, 55-102.	7.5	53
17	NMR Chemical Exchange Measurements Reveal That <i>N</i> ⁶ -Methyladenosine Slows RNA Annealing. Journal of the American Chemical Society, 2019, 141, 19988-19993.	13.7	46
18	Atomic structures of excited state A–T Hoogsteen base pairs in duplex DNA by combining NMR relaxation dispersion, mutagenesis, and chemical shift calculations. Journal of Biomolecular NMR, 2018, 70, 229-244.	2.8	30

Atul Rangadurai

#	Article	IF	CITATIONS
19	High-performance virtual screening by targeting a high-resolution RNA dynamic ensemble. Nature Structural and Molecular Biology, 2018, 25, 425-434.	8.2	69
20	Why are Hoogsteen base pairs energetically disfavored in A-RNA compared to B-DNA?. Nucleic Acids Research, 2018, 46, 11099-11114.	14.5	23
21	5â€Oxyacetic Acid Modification Destabilizes Double Helical Stem Structures and Favors Anionic Watson–Crick like cmo ⁵ Uâ€G Base Pairs. Chemistry - A European Journal, 2018, 24, 18903-18906.	3.3	18
22	Increasing the length of poly-pyrimidine bulges broadens RNA conformational ensembles with minimal impact on stacking energetics. Rna, 2018, 24, 1363-1376.	3.5	13
23	Insights into Watson–Crick/Hoogsteen breathing dynamics and damage repair from the solution structure and dynamic ensemble of DNA duplexes containing m1A. Nucleic Acids Research, 2017, 45, 5586-5601.	14.5	57