
Philippe Horvath

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8146184/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Expanding natural transformation to improve beneficial lactic acid bacteria. FEMS Microbiology Reviews, 2022, 46, .	8.6	4
2	Functional Study of the Type II-A CRISPR-Cas System of <i>Streptococcus agalactiae</i> Hypervirulent Strains. CRISPR Journal, 2021, 4, 233-242.	2.9	4
3	Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nature Reviews Microbiology, 2020, 18, 67-83.	28.6	1,427
4	Dairy lactococcal and streptococcal phage–host interactions: an industrial perspective in an evolving phage landscape. FEMS Microbiology Reviews, 2020, 44, 909-932.	8.6	33
5	Novel Genus of Phages Infecting Streptococcus thermophilus: Genomic and Morphological Characterization. Applied and Environmental Microbiology, 2020, 86, .	3.1	22
6	A mutation in the methionine aminopeptidase gene provides phage resistance in Streptococcus thermophilus. Scientific Reports, 2019, 9, 13816.	3.3	17
7	Widespread anti-CRISPR proteins in virulent bacteriophages inhibit a range of Cas9 proteins. Nature Communications, 2018, 9, 2919.	12.8	147
8	The CRISPR-Cas app goes viral. Current Opinion in Microbiology, 2017, 37, 103-109.	5.1	6
9	Natural DNA Transformation Is Functional in Lactococcus lactis subsp. cremoris KW2. Applied and Environmental Microbiology, 2017, 83, .	3.1	18
10	An anti-CRISPR from a virulent streptococcal phage inhibits Streptococcus pyogenes Cas9. Nature Microbiology, 2017, 2, 1374-1380.	13.3	153
11	A decade of discovery: CRISPR functions and applications. Nature Microbiology, 2017, 2, 17092.	13.3	238
12	CRISPR: A Useful Genetic Feature to Follow Vaginal Carriage of Group B Streptococcus. Frontiers in Microbiology, 2017, 8, 1981.	3.5	16
13	Analysis of the type II-A CRISPR-Cas system of Streptococcus agalactiae reveals distinctive features according to genetic lineages. Frontiers in Genetics, 2015, 6, 214.	2.3	45
14	Draft Genome Sequence of <i>Lactobacillus</i> sp. Strain TCF032-E4, Isolated from Fermented Radish. Genome Announcements, 2015, 3, .	0.8	1
15	An updated evolutionary classification of CRISPR–Cas systems. Nature Reviews Microbiology, 2015, 13, 722-736.	28.6	2,081
16	Rough and smooth morphotypes isolated from Lactobacillus farciminis CNCM I-3699 are two closely-related variants. International Journal of Food Microbiology, 2015, 193, 82-90.	4.7	9
17	Lactobacillus herbarum sp. nov., a species related to Lactobacillus plantarum. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 4682-4688.	1.7	24
18	Programmable RNA Shredding by the Type III-A CRISPR-Cas System of Streptococcus thermophilus. Molecular Cell. 2014. 56, 506-517.	9.7	278

Philippe Horvath

#	Article	IF	CITATIONS
19	Genomic impact of CRISPR immunization against bacteriophages. Biochemical Society Transactions, 2013, 41, 1383-1391.	3.4	54
20	In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus. EMBO Journal, 2013, 32, 385-394.	7.8	220
21	Applications of the Versatile CRISPR-Cas Systems. , 2013, , 267-286.		1
22	crRNA and tracrRNA guide Cas9-mediated DNA interference in <i>Streptococcus thermophilus</i> . RNA Biology, 2013, 10, 841-851.	3.1	203
23	RNA-guided genome editing à la carte. Cell Research, 2013, 23, 733-734.	12.0	16
24	Phage mutations in response to <scp>CRISPR</scp> diversification in a bacterial population. Environmental Microbiology, 2013, 15, 463-470.	3.8	97
25	Applications of the Versatile CRISPR-Cas Systems. , 2013, , 267-286.		1
26	Persisting Viral Sequences Shape Microbial CRISPR-based Immunity. PLoS Computational Biology, 2012, 8, e1002475.	3.2	136
27	Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2579-86.	7.1	2,217
28	Mobile CRISPR/Cas-Mediated Bacteriophage Resistance in Lactococcus lactis. PLoS ONE, 2012, 7, e51663.	2.5	71
29	Analysis of the Lactobacillus casei supragenome and its influence in species evolution and lifestyle adaptation. BMC Genomics, 2012, 13, 533.	2.8	144
30	CRISPR: New Horizons in Phage Resistance and Strain Identification. Annual Review of Food Science and Technology, 2012, 3, 143-162.	9.9	162
31	Phage-Induced Expression of CRISPR-Associated Proteins Is Revealed by Shotgun Proteomics in Streptococcus thermophilus. PLoS ONE, 2012, 7, e38077.	2.5	88
32	The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Research, 2011, 39, 9275-9282.	14.5	701
33	Lactic Acid Bacteria Defenses Against Phages. , 2011, , 459-478.		5
34	Evolution and classification of the CRISPR–Cas systems. Nature Reviews Microbiology, 2011, 9, 467-477.	28.6	2,078
35	Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO Journal, 2011, 30, 1335-1342.	7.8	363
36	The fast milk acidifying phenotype of Streptococcus thermophilus can be acquired by natural transformation of the genomic island encoding the cell-envelope proteinase PrtS. Microbial Cell Factories, 2011, 10, S21.	4.0	58

Philippe Horvath

#	Article	IF	CITATIONS
37	The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 2010, 468, 67-71.	27.8	1,897
38	A Novel Pheromone Quorum-Sensing System Controls the Development of Natural Competence in <i>Streptococcus thermophilus</i> and <i>Streptococcus salivarius</i> . Journal of Bacteriology, 2010, 192, 1444-1454.	2.2	205
39	Development of a Versatile Procedure Based on Natural Transformation for Marker-Free Targeted Genetic Modification in <i>Streptococcus thermophilus</i> . Applied and Environmental Microbiology, 2010, 76, 7870-7877.	3.1	48
40	CRISPR/Cas, the Immune System of Bacteria and Archaea. Science, 2010, 327, 167-170.	12.6	1,995
41	Comparison of the Complete Genome Sequences of <i>Bifidobacterium animalis</i> subsp. <i>lactis</i> DSM 10140 and Bl-04. Journal of Bacteriology, 2009, 191, 4144-4151.	2.2	147
42	Comparative analysis of CRISPR loci in lactic acid bacteria genomes. International Journal of Food Microbiology, 2009, 131, 62-70.	4.7	255
43	Comparative Analyses of Prophage-Like Elements Present in Bifidobacterial Genomes. Applied and Environmental Microbiology, 2009, 75, 6929-6936.	3.1	45
44	The CRISPR System Protects Microbes against Phages, Plasmids. Microbe Magazine, 2009, 4, 224-230.	0.4	18
45	Phage Response to CRISPR-Encoded Resistance in <i>Streptococcus thermophilus</i> . Journal of Bacteriology, 2008, 190, 1390-1400.	2.2	1,110
46	Diversity, Activity, and Evolution of CRISPR Loci in <i>Streptococcus thermophilus</i> . Journal of Bacteriology, 2008, 190, 1401-1412.	2.2	748
47	CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes. Science, 2007, 315, 1709-1712.	12.6	4,956
48	Evolution and diversity of pyrimidine metabolism genes in lactic acid bacteria. Sciences Des Aliments, 2000, 20, 71-84.	0.2	0
49	Protection against Foreign DNA. , 0, , 333-348.		2