Philippe Horvath

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8146184/publications.pdf

Version: 2024-02-01

49 papers

22,564 citations

147801 31 h-index 243625 44 g-index

51 all docs

51 docs citations

51 times ranked

14980 citing authors

#	Article	IF	CITATIONS
1	CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes. Science, 2007, 315, 1709-1712.	12.6	4,956
2	Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2579-86.	7.1	2,217
3	An updated evolutionary classification of CRISPR–Cas systems. Nature Reviews Microbiology, 2015, 13, 722-736.	28.6	2,081
4	Evolution and classification of the CRISPR–Cas systems. Nature Reviews Microbiology, 2011, 9, 467-477.	28.6	2,078
5	CRISPR/Cas, the Immune System of Bacteria and Archaea. Science, 2010, 327, 167-170.	12.6	1,995
6	The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 2010, 468, 67-71.	27.8	1,897
7	Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nature Reviews Microbiology, 2020, 18, 67-83.	28.6	1,427
8	Phage Response to CRISPR-Encoded Resistance in <i>Streptococcus thermophilus</i> Journal of Bacteriology, 2008, 190, 1390-1400.	2.2	1,110
9	Diversity, Activity, and Evolution of CRISPR Loci in <i>Streptococcus thermophilus</i> Journal of Bacteriology, 2008, 190, 1401-1412.	2.2	748
10	The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Research, 2011, 39, 9275-9282.	14.5	701
11	Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO Journal, 2011, 30, 1335-1342.	7.8	363
12	Programmable RNA Shredding by the Type III-A CRISPR-Cas System of Streptococcus thermophilus. Molecular Cell, 2014, 56, 506-517.	9.7	278
13	Comparative analysis of CRISPR loci in lactic acid bacteria genomes. International Journal of Food Microbiology, 2009, 131, 62-70.	4.7	255
14	A decade of discovery: CRISPR functions and applications. Nature Microbiology, 2017, 2, 17092.	13.3	238
15	In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus. EMBO Journal, 2013, 32, 385-394.	7.8	220
16	A Novel Pheromone Quorum-Sensing System Controls the Development of Natural Competence in <i>Streptococcus thermophilus</i> and <i>Streptococcus salivarius</i> Journal of Bacteriology, 2010, 192, 1444-1454.	2.2	205
17	crRNA and tracrRNA guide Cas9-mediated DNA interference in <i>Streptococcus thermophilus</i> . RNA Biology, 2013, 10, 841-851.	3.1	203
18	CRISPR: New Horizons in Phage Resistance and Strain Identification. Annual Review of Food Science and Technology, 2012, 3, 143-162.	9.9	162

#	Article	IF	CITATIONS
19	An anti-CRISPR from a virulent streptococcal phage inhibits Streptococcus pyogenes Cas9. Nature Microbiology, 2017, 2, 1374-1380.	13.3	153
20	Comparison of the Complete Genome Sequences of <i>Bifidobacterium animalis</i> subsp. <i>lactis</i> DSM 10140 and Bl-04. Journal of Bacteriology, 2009, 191, 4144-4151.	2.2	147
21	Widespread anti-CRISPR proteins in virulent bacteriophages inhibit a range of Cas9 proteins. Nature Communications, 2018, 9, 2919.	12.8	147
22	Analysis of the Lactobacillus casei supragenome and its influence in species evolution and lifestyle adaptation. BMC Genomics, 2012, 13, 533.	2.8	144
23	Persisting Viral Sequences Shape Microbial CRISPR-based Immunity. PLoS Computational Biology, 2012, 8, e1002475.	3.2	136
24	Phage mutations in response to <scp>CRISPR</scp> diversification in a bacterial population. Environmental Microbiology, 2013, 15, 463-470.	3.8	97
25	Phage-Induced Expression of CRISPR-Associated Proteins Is Revealed by Shotgun Proteomics in Streptococcus thermophilus. PLoS ONE, 2012, 7, e38077.	2.5	88
26	Mobile CRISPR/Cas-Mediated Bacteriophage Resistance in Lactococcus lactis. PLoS ONE, 2012, 7, e51663.	2.5	71
27	The fast milk acidifying phenotype of Streptococcus thermophilus can be acquired by natural transformation of the genomic island encoding the cell-envelope proteinase PrtS. Microbial Cell Factories, 2011, 10, S21.	4.0	58
28	Genomic impact of CRISPR immunization against bacteriophages. Biochemical Society Transactions, 2013, 41, 1383-1391.	3.4	54
29	Development of a Versatile Procedure Based on Natural Transformation for Marker-Free Targeted Genetic Modification in <i>Streptococcus thermophilus</i> . Applied and Environmental Microbiology, 2010, 76, 7870-7877.	3.1	48
30	Comparative Analyses of Prophage-Like Elements Present in Bifidobacterial Genomes. Applied and Environmental Microbiology, 2009, 75, 6929-6936.	3.1	45
31	Analysis of the type II-A CRISPR-Cas system of Streptococcus agalactiae reveals distinctive features according to genetic lineages. Frontiers in Genetics, 2015, 6, 214.	2.3	45
32	Dairy lactococcal and streptococcal phage–host interactions: an industrial perspective in an evolving phage landscape. FEMS Microbiology Reviews, 2020, 44, 909-932.	8.6	33
33	Lactobacillus herbarum sp. nov., a species related to Lactobacillus plantarum. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 4682-4688.	1.7	24
34	Novel Genus of Phages Infecting Streptococcus thermophilus: Genomic and Morphological Characterization. Applied and Environmental Microbiology, 2020, 86, .	3.1	22
35	Natural DNA Transformation Is Functional in Lactococcus lactis subsp. cremoris KW2. Applied and Environmental Microbiology, 2017, 83, .	3.1	18
36	The CRISPR System Protects Microbes against Phages, Plasmids. Microbe Magazine, 2009, 4, 224-230.	0.4	18

3

#	Article	IF	CITATIONS
37	A mutation in the methionine aminopeptidase gene provides phage resistance in Streptococcus thermophilus. Scientific Reports, 2019, 9, 13816.	3.3	17
38	RNA-guided genome editing à la carte. Cell Research, 2013, 23, 733-734.	12.0	16
39	CRISPR: A Useful Genetic Feature to Follow Vaginal Carriage of Group B Streptococcus. Frontiers in Microbiology, 2017, 8, 1981.	3 . 5	16
40	Rough and smooth morphotypes isolated from Lactobacillus farciminis CNCM I-3699 are two closely-related variants. International Journal of Food Microbiology, 2015, 193, 82-90.	4.7	9
41	The CRISPR-Cas app goes viral. Current Opinion in Microbiology, 2017, 37, 103-109.	5.1	6
42	Lactic Acid Bacteria Defenses Against Phages. , 2011, , 459-478.		5
43	Functional Study of the Type II-A CRISPR-Cas System of <i>Streptococcus agalactiae</i> Hypervirulent Strains. CRISPR Journal, 2021, 4, 233-242.	2.9	4
44	Expanding natural transformation to improve beneficial lactic acid bacteria. FEMS Microbiology Reviews, 2022, 46, .	8.6	4
45	Protection against Foreign DNA. , 0, , 333-348.		2
46	Applications of the Versatile CRISPR-Cas Systems. , 2013, , 267-286.		1
47	Draft Genome Sequence of <i>Lactobacillus</i> sp. Strain TCF032-E4, Isolated from Fermented Radish. Genome Announcements, 2015, 3, .	0.8	1
48	Applications of the Versatile CRISPR-Cas Systems. , 2013, , 267-286.		1
49	Evolution and diversity of pyrimidine metabolism genes in lactic acid bacteria. Sciences Des Aliments, 2000, 20, 71-84.	0.2	0