Pyung Cheon Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8145625/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresource Technology, 2011, 102, 7466-7469.	9.6	283
2	Succinic acid production with reduced by-product formation in the fermentation ofAnaerobiospirillum succiniciproducens using glycerol as a carbon source. Biotechnology and Bioengineering, 2001, 72, 41-48.	3.3	254
3	Biosynthesis of plant-specific stilbene polyketides in metabolically engineered Escherichia coli. BMC Biotechnology, 2006, 6, 22.	3.3	162
4	Batch and continuous fermentation of succinic acid from wood hydrolysate by Mannheimia succiniciproducens MBEL55E. Enzyme and Microbial Technology, 2004, 35, 648-653.	3.2	158
5	Exploring Recombinant Flavonoid Biosynthesis in Metabolically Engineered Escherichia coli. ChemBioChem, 2004, 5, 500-507.	2.6	144
6	Succinic acid production by Anaerobiospirillum succiniciproducens: effects of the H2/CO2 supply and glucose concentration. Enzyme and Microbial Technology, 1999, 24, 549-554.	3.2	134
7	Discovery of a Substrate Selectivity Switch in Tyrosine Ammonia-Lyase, a Member of the Aromatic Amino Acid Lyase Family. Chemistry and Biology, 2006, 13, 1317-1326.	6.0	117
8	Metabolic engineering of Pichia pastoris X-33 for lycopene production. Process Biochemistry, 2009, 44, 1095-1102.	3.7	109
9	Production of lactic acid by Lactobacillus rhamnosus with vitamin-supplemented soybean hydrolysate. Enzyme and Microbial Technology, 2000, 26, 209-215.	3.2	107
10	Biosynthesis of Structurally Novel Carotenoids in Escherichia coli. Chemistry and Biology, 2003, 10, 453-462.	6.0	104
11	Proposed cytotoxic mechanisms of the saffron carotenoids crocin and crocetin on cancer cell lines. Biochemistry and Cell Biology, 2014, 92, 105-111.	2.0	69
12	Effects of medium components on the growth of Anaerobiospirillum succiniciproducens and succinic acid production. Process Biochemistry, 1999, 35, 49-55.	3.7	68
13	Fermentative production of succinic acid from glucose and corn steep liquor byAnaerobiospirillum succiniciproducens. Biotechnology and Bioprocess Engineering, 2000, 5, 379-381.	2.6	65
14	Investigation of factors influencing production of the monocyclic carotenoid torulene in metabolically engineered Escherichia coli. Applied Microbiology and Biotechnology, 2004, 65, 538-46.	3.6	61
15	Functional Expression and Extension of Staphylococcal Staphyloxanthin Biosynthetic Pathway in Escherichia coli. Journal of Biological Chemistry, 2012, 287, 21575-21583.	3.4	56
16	Metabolic engineering of menaquinoneâ€8 pathway of <i>Escherichia coli</i> as a microbial platform for vitamin K production. Biotechnology and Bioengineering, 2011, 108, 1997-2002.	3.3	54
17	Identification of a Carotenoid Oxygenase Synthesizing Acyclic Xanthophylls. Chemistry and Biology, 2005, 12, 453-460.	6.0	52
18	Redesign and reconstruction of a steviol-biosynthetic pathway for enhanced production of steviol in Escherichia coli. Microbial Cell Factories, 2020, 19, 20.	4.0	50

#	Article	IF	CITATIONS
19	Directed evolution of Escherichia coli farnesyl diphosphate synthase (IspA) reveals novel structural determinants of chain length specificity. Metabolic Engineering, 2005, 7, 18-26.	7.0	49
20	Redesign, Reconstruction, and Directed Extension of the <i>Brevibacterium linens</i> C ₄₀ Carotenoid Pathway in <i>Escherichia coli</i> . Applied and Environmental Microbiology, 2010, 76, 5199-5206.	3.1	46
21	Generation of structurally novel short carotenoids and study of their biological activity. Scientific Reports, 2016, 6, 21987.	3.3	45
22	Engineering and application of synthetic nar promoter for fine-tuning the expression of metabolic pathway genes in Escherichia coli. Biotechnology for Biofuels, 2018, 11, 103.	6.2	45
23	Long-term adaptive evolution of Leuconostoc mesenteroides for enhancement of lactic acid tolerance and production. Biotechnology for Biofuels, 2016, 9, 240.	6.2	41
24	Development of microalga Scenedesmus dimorphus mutant with higher lipid content by radiation breeding. Bioprocess and Biosystems Engineering, 2014, 37, 2437-2444.	3.4	40
25	Heterologous Carotenoid-Biosynthetic Enzymes: Functional Complementation and Effects on Carotenoid Profiles in Escherichia coli. Applied and Environmental Microbiology, 2013, 79, 610-618.	3.1	38
26	Kinetic study on succinic acid and acetic acid formation during continuous cultures of Anaerobiospirillum succiniciproducens grown on glycerol. Bioprocess and Biosystems Engineering, 2010, 33, 465-471.	3.4	36
27	Succinic Acid Production by Anaerobiospirillum succiniciproducens ATCC 29305 Growing on Galactose, Galactose/Glucose, and Galactose/Lactose. Journal of Microbiology and Biotechnology, 2008, 18, 1792-1796.	2.1	33
28	Strain-Dependent Carotenoid Productions in Metabolically Engineered Escherichia coli. Applied Biochemistry and Biotechnology, 2010, 162, 2333-2344.	2.9	31
29	New Insight into the Cleavage Reaction of Nostoc sp. Strain PCC 7120 Carotenoid Cleavage Dioxygenase in Natural and Nonnatural Carotenoids. Applied and Environmental Microbiology, 2013, 79, 3336-3345.	3.1	31
30	Molecular Cloning and Characterization of an Endoxylanase Gene of Bacillus sp. in Escherichia coli. Enzyme and Microbial Technology, 1998, 22, 599-605.	3.2	28
31	Engineering of a butyraldehyde dehydrogenase of <i>Clostridium saccharoperbutylacetonicum</i> to fit an engineered 1,4â€butanediol pathway in <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2014, 111, 1374-1384.	3.3	28
32	Optimization of culture medium for enhanced production of exopolysaccharide from Aureobasidium pullulans. Bioprocess and Biosystems Engineering, 2012, 35, 167-172.	3.4	27
33	Flavobacterium faecale sp. nov., an agarase-producing species isolated from stools of Antarctic penguins. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 2884-2890.	1.7	26
34	Sphingomonas lacus sp. nov., an astaxanthin-dideoxyglycoside-producing species isolated from soil near a pond. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 2824-2830.	1.7	26
35	Effect of gamma irradiation on the structure of fucoidan. Radiation Physics and Chemistry, 2014, 100, 54-58.	2.8	25
36	Biosynthesis of Ubiquinone Compounds with Conjugated Prenyl Side Chains. Applied and Environmental Microbiology, 2008, 74, 6908-6917.	3.1	24

#	Article	IF	CITATIONS
37	Application of an oxygenâ€inducible <i>nar</i> promoter system in metabolic engineering for production of biochemicals in <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2017, 114, 468-473.	3.3	24
38	Metabolic engineering of the Stevia rebaudiana ent-kaurene biosynthetic pathway in recombinant Escherichia coli. Journal of Biotechnology, 2015, 214, 95-102.	3.8	23
39	Planococcus faecalis sp. nov., a carotenoid-producing species isolated from stools of Antarctic penguins. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 3373-3378.	1.7	23
40	Investigation of cellular targeting of carotenoid pathway enzymes in Pichia pastoris. Journal of Biotechnology, 2009, 140, 227-233.	3.8	21
41	Carbon sources-dependent carotenoid production in metabolically engineered Escherichia coli. World Journal of Microbiology and Biotechnology, 2010, 26, 2231-2239.	3.6	21
42	Creating Carotenoid Diversity in E. coli Cells using Combinatorial and Directed Evolution Strategies. Phytochemistry Reviews, 2006, 5, 67-74.	6.5	19
43	The astaxanthin dideoxyglycoside biosynthesis pathway in Sphingomonas sp. PB304. Applied Microbiology and Biotechnology, 2014, 98, 9993-10003.	3.6	19
44	Novel Activity of Rhodobacter sphaeroides Spheroidene Monooxygenase CrtA Expressed in Escherichia coli. Applied and Environmental Microbiology, 2010, 76, 7328-7331.	3.1	18
45	Flavobacterium kingsejongi sp. nov., a carotenoid-producing species isolated from Antarctic penguin faeces. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 911-916.	1.7	18
46	Alteration of product specificity of Aeropyrum pernix farnesylgeranyl diphosphate synthase (Fgs) by directed evolution. Protein Engineering, Design and Selection, 2004, 17, 771-777.	2.1	17
47	Carotenoid production from n-alkanes with a broad range of chain lengths by the novel species Gordonia ajoucoccus A2T. Applied Microbiology and Biotechnology, 2014, 98, 3759-3768.	3.6	16
48	Branched poly(1,4-butylene carbonate- <i>co</i> -terephthalate)s: LDPE-like semicrystalline thermoplastics. Journal of Polymer Science Part A, 2015, 53, 914-923.	2.3	16
49	Organelle Engineering in Yeast: Enhanced Production of Protopanaxadiol through Manipulation of Peroxisome Proliferation in Saccharomyces cerevisiae. Microorganisms, 2022, 10, 650.	3.6	14
50	Characterization of Carotenoid Biosynthesis in Newly Isolated Deinococcus sp. AJ005 and Investigation of the Effects of Environmental Conditions on Cell Growth and Carotenoid Biosynthesis. Marine Drugs, 2019, 17, 705.	4.6	12
51	Use of a Novel Escherichia coli-Leuconostoc Shuttle Vector for Metabolic Engineering of Leuconostoc citreum To Overproduce <scp>d</scp> -Lactate. Applied and Environmental Microbiology, 2013, 79, 1428-1435.	3.1	11
52	Complete genome sequence of Planococcus faecalis AJ003 T , the type species of the genus Planococcus and a microbial C30 carotenoid producer. Journal of Biotechnology, 2018, 266, 72-76.	3.8	11
53	Complete genome sequence of Flavobacterium kingsejongi WV39, a type species of the genus Flavobacterium and a microbial C40 carotenoid zeaxanthin producer. Journal of Biotechnology, 2018, 266, 9-13.	3.8	11
54	Genome Mining Reveals Two Missing CrtP and AldH Enzymes in the C30 Carotenoid Biosynthesis Pathway in Planococcus faecalis AJ003T. Molecules, 2020, 25, 5892.	3.8	11

#	Article	IF	CITATIONS
55	Title is missing!. Biotechnology Letters, 2001, 23, 983-988.	2.2	10
56	Redesign and reconstruction of a mevalonate pathway and its application in terpene production in Escherichia coli. Bioresource Technology Reports, 2019, 7, 100291.	2.7	10
57	Microbial Production of Retinyl Palmitate and Its Application as a Cosmeceutical. Antioxidants, 2020, 9, 1130.	5.1	10
58	Kinetic Study of Organic Acid Formations and Growth of Anaerobiospirillum succiniciproducens During Continuous Cultures. Journal of Microbiology and Biotechnology, 2009, 19, 1379-84.	2.1	10
59	Evaluation of a Pretreatment Method for Two-Dimensional Gel Electrophoresis of Synovial Fluid Using Cartilage Oligomeric Matrix Protein as a Marker. Journal of Microbiology and Biotechnology, 2012, 22, 654-658.	2.1	10
60	Microbial Production of Bioactive Retinoic Acid Using Metabolically Engineered Escherichia coli. Microorganisms, 2021, 9, 1520.	3.6	9
61	Construction of homologous and heterologous synthetic sucrose utilizing modules and their application for carotenoid production in recombinant Escherichia coli. Bioresource Technology, 2013, 130, 288-295.	9.6	8
62	Dynamics of membrane fatty acid composition of succinic acid-producing Anaerobiospirillum succiniciproducens. Journal of Biotechnology, 2015, 193, 130-133.	3.8	8
63	Efficient synthesis of organic carbonates and poly(1,4â€butylene carbonateâ€ <i>co</i> â€terephthalate)s. Journal of Applied Polymer Science, 2017, 134, .	2.6	8
64	Psychrobacillus glaciei sp. nov., a psychrotolerant species isolated from an Antarctic iceberg. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 1947-1952.	1.7	8
65	Development of anaerobically inducible nar promoter expression vectors for the expression of recombinant proteins in Escherichia coli. Journal of Biotechnology, 2011, 151, 102-107.	3.8	7
66	Polystyrene Chain Growth Initiated from Dialkylzinc for Synthesis of Polyolefin-Polystyrene BlockÁCopolymers. Polymers, 2020, 12, 537.	4.5	6
67	Differences in the Fatty Acid Profile, Morphology, and Tetraacetylphytosphingosine-Forming Capability Between Wild-Type and Mutant Wickerhamomyces ciferrii. Frontiers in Bioengineering and Biotechnology, 2021, 9, 662979.	4.1	6
68	Chiral Separation of Lactic Acid in Culture Media and Cells of Lactobacillus delbrueckii subsp. lactis as O-Pentafluoropropionylated (S)-(+)-3-Methyl-2-Butyl Ester by Achiral Gas Chromatography-Mass Spectrometry. Bulletin of the Korean Chemical Society, 2011, 32, 2418-2422.	1.9	6
69	Comparative Genome Analysis of Psychrobacillus Strain PB01, Isolated from an Iceberg. Journal of Microbiology and Biotechnology, 2020, 30, 237-243.	2.1	6
70	Melanin biopolymer synthesis using a new melanogenic strain of Flavobacterium kingsejongi and a recombinant strain of Escherichia coli expressing 4-hydroxyphenylpyruvate dioxygenase from F. kingsejongi. Microbial Cell Factories, 2022, 21, 75.	4.0	6
71	Cloning and characterization ofMannheimia succiniciproducens MBEL55E phosphoenolpyruvate carboxykinase (pckA) gene. Biotechnology and Bioprocess Engineering, 2002, 7, 95-99.	2.6	5
72	Succinic acid production with reduced byâ€product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source. Biotechnology and Bioengineering, 2001, 72, 41-48.	3.3	4

#	Article	IF	CITATIONS
73	Effect of the replication mode of a plasmid on the stability of multimeric endoxylanase genes in Bacillus subtilis. Journal of Biotechnology, 1998, 62, 177-185.	3.8	3
74	Lysostaphin-mediated fragmentation of microbial peptidoglycans for label-free electrochemical impedance immunoanalysis of Staphylococcus aureus. Biochip Journal, 2013, 7, 344-352.	4.9	3
75	Complete Genome Sequence of the Carotenoid-Producing <i>Deinococcus</i> sp. Strain AJ005. Microbiology Resource Announcements, 2019, 8, .	0.6	3
76	Peroxisome Targeting of Lycopene Pathway Enzymes in Pichia pastoris. Methods in Molecular Biology, 2012, 898, 161-169.	0.9	2
77	Genome resequencing and analysis of d-lactic acid fermentation ability of Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293. Process Biochemistry, 2018, 75, 83-88.	3.7	2
78	Complete Genome Sequence of the Carotenoid-Producing Strain Gordonia ajoucoccus A2. Microbiology Resource Announcements, 2020, 9, .	0.6	2
79	Isolation and Characterization of a Cryptic Plasmid, pMBLR00, from Leuconostoc mesenteroides subsp. mesenteroides KCTC 3733. Journal of Microbiology and Biotechnology, 2013, 23, 837-842.	2.1	2
80	Heterologous Carotenoid-Biosynthetic Enzymes: Functional Complementation and Effects on Carotenoid Profiles in Escherichia coli. Applied and Environmental Microbiology, 2013, 79, 1761-1761.	3.1	1
81	Purification of biomevalonate from fermentation broth and conversion of biomevalonate into biomevalonate into biomevalonolactone. Journal of Biotechnology, 2017, 259, 46-49.	3.8	1
82	Vortex dynamics at the junction of Y-shaped microchannels in dilute polymer solutions. Korea Australia Rheology Journal, 2019, 31, 189-194.	1.7	1
83	Complete Genome Sequence of Yellow Pigment-Producing Sphingobium sp. Strain HAL-16. Microbiology Resource Announcements, 2020, 9, .	0.6	1
84	Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source. , 2001, 72, 41.		1
85	Hot Spots of Phytoene Desaturase from Rhodobacter sphaeroides Influencing the Desaturation of Phytoene. Catalysts, 2021, 11, 1248.	3.5	1
86	Complete Genome Sequence of the Novel <i>Psychrobacter</i> sp. Strain AJ006, Which Has the Potential for Biomineralization. Microbiology Resource Announcements, 2020, 9, .	0.6	0